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Abstract

An objective function with the intention to evaluate the effectiveness of FES

cycling is defined. To optimize this function a heuristic control strategy that relies

on the global function optimizer Differential Evolution (DE) is presented. In this

approach the timing of the muscle stimulation is changed by DE. To evaluate, how

effective DE can optimize this problem domain a FES cycling computer model is

used. Results show that the online optimization takes between 15 min and 40 min

of cycling. A comparison of the stimulation intensity showed that the optimised

FES cycling shows a 9, 6% reduction. This saving might enable longer FES cycling

therapies.

1 Cycling by Means of Functional Electrical Stimu-

lation

The Functional Electrical Stimulation (FES) is a special form of neuromodulation, which

stimulates the neural interface via electrical pulses. One of it’s many applications is

FES cycling. FES cycling is intended for patients with central neurological impairments

that partially or completely paralyse the lower limbs. For example an individual with

paraplegia due to spinal cord injury can cycle by means of FES stimulation. This is

achieved by stimulation of the large leg actuating muscles in such way, that the resulting

muscle contraction leads to a positive drive torque at the crank. Most FES cycling

therapies are carried out on specialised stationary ergometers with the FES stimulation



applied via surface electrodes [6, pp.395-402].

(a) Stimulated muscle groups (source:[13])
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Figure 1: Stimulated muscles and stimulation pattern. If the crank angle is in between
the ranges defined by the stimulation pattern, the corresponding muscle gets stimulated.

The three most commonly stimulated muscle groups in FES cycling are displayed in

Figure 1(a). Most control strategies for FES cycling map a stimulation pattern over the

crank shaft angle. For every stimulated muscle group the stimulation pattern defines

ranges for effective muscle stimulation. An exemplary stimulation pattern for the right

leg can be seen in Figure 1(b). In most classic control strategies the stimulation pattern is

predefined and static. Only a cadence correction shifts the stimulation pattern forward in

time to counteract the rising influence of muscle contraction latency with rising cadence.

In this study the start and stop angles of the stimulation are variable within a 40◦ range

and are optimized with respect to an objective function.

1.1 The Possible Benefits of Differential Evolution in FES Cy-

cling

The medical benefits of FES cycling have been subject to many clinical studies. The phys-

ical exercise enabled by FES cycling primarily prevents secondary medical complications

[9, 5, 1, 3]. Key to a successful training is the ease-of-use and the intensity of training. In

comparison with the cycling of able-bodied persons the FES cycling’s power output and

efficiency is significantly lower [2].

One way to improve the efficiency and power output of FES cycling is to find better con-

trol strategies. Control strategies for FES cycling face numerous challenges. The plant

of the control system, i.e. the patient-bicycle/ergometer system, changes with respect to

the day to day condition of the patient, as well as the varying mechanical set-up. Fatigue

of the patient also plays a significant role. Thus the system plant is heavily time variant.

The optimal cycling movement itself is complex and still object of research. Additionally

actuating muscles or nerves with FES is non-linear. In sum, all properties are too complex



for a precise mathematical description. Nevertheless, a good control strategy should be

able to optimize the training effect while delivering stable results without human inter-

vention. A heuristic control strategy relying on Differential Evolution (DE) as a global

function optimizer may be one possibility to fulfill these requirements.

2 Control Strategy

A heuristic control strategy that can optimize FES cycling with respect to a given

objective function is shown in Figure 2. Here Differential Evolution (DE) is implemented

in such way, that it can change the stimulation pattern during cycling.
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Figure 2: State based control strategy relying on differential evolution

The control strategy is state-based to guarantee that cycling does not stop, even

if DE tries non-functioning stimulation patterns. It consists of two states. Directly

after initialisation the control strategy is in the motor help state, where a motor at the

ergometer crank supports the cycling movement. After 2 s the trial state is entered, the

motor help is turned off and the evaluation of the FES induced cycling movement begins.

Every time a new cost is calculated, DE assigns this cost to the last tried stimulation

pattern and proposes a new one. If one second after entering the trial state the average

cadence rave is smaller than a minimal cadence rmin the control strategy switches to the

motor help state. Here DE proposes a new stimulation pattern and assigns very high cost

to the unsuccessful one. Thus, ensuring that non-functioning stimulation patterns get

eliminated by differential evolution over time.

The parameter matrix V p proposed by DE defines the stimulation pattern and contains

start and stop angles of the stimulation for quadriceps (q), hamstring (h) and gluteus (g)

muscle group of the right leg:

V p[k] =

qstart[k] qstop[k]

hstart[k] hstop[k]

gstart[k] gstop[k]

 (1)



In this notation k denotes the sample time instances. Symmetry between both legs is as-

sumed. Hence the stimulation pattern for the left leg is calculated by shifting with 180◦.

Strict bound constraints at initialisation and during optimization as shown in Figure 1(b)

are used. The parameter matrix is quantized by the uniform quantization function Q() to

a precision of 2◦, because the precision of stimulation is limited by the sample frequency

of the crank encoder.

The stimulator interprets the parameter vector to generate FES pulses for every stim-

ulated muscle group. In the stimulator block the crank angle is linearly shifted forward

in time to compensate the influence of muscle activation delay of approximately 130 ms
1. The stimulator logic stimulates every muscle group with a pulse width of 300 µs at a

frequency of 50 Hz, if the shifted crank angle lies in between the start and stop angles

defined by the the parameter vector.

In this study a FES cycling computer model is used. The inputs of the model are

vectors of pulse widths pw and frequencies f , defining the FES stimulation for every mus-

cle group. The electrical stimulation is modelled as applied via surface electrodes. The

neuro-muscular model incorporates five muscles per leg, which are the same as depicted

in Figure 1(a). The neuromuscular model was taken from Riener and Fuhr [12]. A five

bar rigid body network, implemented in the Open Dynamics Engine [14], represents the

skeletal system. The fatigue component of the FES cycling computer model is turned off.

This makes the interpretation of the optimization easier because the optimum is not time

dependent and no warm up routine has to be added to the control strategy.

If the control strategy is in the trial state the evaluation block begins to buffer the

measurement data for four full revolutions to ensure that the cycling has adapted to the

new stimulation pattern. Then the following x full revolutions are used as data input for

the objective function2.

It has to be clarified that the heuristic control strategy presented in this section can not

be used in a therapeutic FES application without additional effort. The abrupt engag-

ing motor aid constitutes an injury risk for patients. This is especially true, when DE

activates stimulation at non effective ranges and the motor tries to overcome the muscle

contraction.

Computational Environment and Computer Code

The control strategy is implemented in a Matlab Simulink model at a sample time of

5 ms. The FES cycling model internally runs with a higher sample rate. The DE algo-

rithm is taken from a C++ Library provided by Michel [8]. To work with the Simulink

environment the library was made accessible via a S-function.

2.1 Objective Function

The objective function is key to a reasonable optimization process. In this study an

objective function is used, for which the optimum is the global minimum. The evaluation

1see arrow in Figure 1(b)
2see Section 2.1



of the objective function is conducted over multiple full cycling revolutions. To reflect

more than one aspect of FES cycling the objective function is the weighted sum of multiple

terms:

C = wcadence ccadence + wStimCost cStimCost + wDeadCentre cDeadCentre (2)

First of all, the cadence r shall be influenceable. Hence a cadence deviation penalty has

to be set in such way, that great deviations definitely get eliminated but small deviations

do not influence the objective function primarily. Therefore, the cadence deviation penalty

divides the squared difference between the desired cadence and the average cadence for

all evaluated sample time steps k ∈ [0...K] by the desired cadence:

ccadence =
(rdesired − 1

K

∑K
k=0 r[k])2

rdesired
(3)

Furthermore, the biomechanical efficiency of FES cycling shall be optimized, which

is difficult with limited sensory information. For an able-bodied person many receptors

at the joints, the tendons and the skeletal muscles give feedback during cycling. This

study only focuses on cadence information and the used stimulation pattern, because

these informations can be acquired cost efficient and without additional set-up times.

Research by Hunt et al. suggest that the stimulation rate in FES cycling correlates

with the metabolic work measured by the oxygen uptake [4]. Therefore, in this study it is

assumed that the stimulation cost is a good indicator for the biomechanical effectiveness

of the stimulation pattern. For every stimulated muscle group mg and sample time

instance k ∈ [0...K] the product of pulse width pwmg[k] and frequency fmg[k] is summed

up over the evaluation time to obtain the raw stimulation cost. Then the average is

taken by dividing with the number of evaluated sample time instances K. This average

is divided by the maximum pulse width PW , maximum frequency F and the number of

stimulated muscles SM , thus scaling the stimulation cost in a range of [0, 1]:

cStimCost =

∑
∀mg

∑K
k=0 pwmg[k]fmg[k]

K SM PW F
(4)

The dead centre or dead spot is a state in a mechanical crankshaft system in which an

applied force does not produce a torque at the crank. The dead centres of cycling can

be defined as the points where extension and flexion at the hip or knee joint alternate

or as the points where the resulting force at the pedal is parallel to the crank arm. The

position of these dead centres can be influenced by seating position, mechanical set-up and

pedalling technique. Either way, every cycling revolution has two dead centres in which it

is particularly difficult to produce effective drive torque [7]. To find a stimulation strategy

that effectively overcomes the dead centres, the minimum cadence and the average cadence

of the evaluated revolutions are taken into account:

cDeadCentre = 1− min∀k(r[k])
1
K

∑K
k=0 r[k]

(5)



Initial test runs to evaluate the weighting of the cost function have shown, that the cadence

penalty was too dominant. Therefore, the following weighting is used:

C =
1

4
ccadence + cStimCost + cDeadCentre (6)

2.2 Differential Evolution (DE)

The differential evolution algorithm is an evolutionary algorithm for global function op-

timization. Introduced by Price and Storn in 1995, DE was intended to be a ”simple and

efficient adaptive scheme”[10]. The fundamental idea behind evolutionary algorithms is

to mimic nature’s evolution and survival of the fittest, in order to solve computational

problems. DE’s general design makes it a direct search method, which enables to optimize

non-differentiable and even non-continuous objective functions.

A simple flowchart of DE is displayed in Figure 3. At the start the population has to be

initialized. Within each generation a trial population with the same size as the current

population is generated by the mutation and crossover processes. Then selection decides

based on a cost value which members of the trial or current population survive and be-

come member of the next generation. If a termination criterion is met the algorithm

terminates.

Initialize

Current Population P x
Differential Mutation

Mutated Population P v

Crossover

Trial Population P u
Selection

Criterion met?

Terminate

Continue

yes

no

Figure 3: Flowchart of differential evolution. The grey parallelograms represent data
input and output. Termination can be invoked by many different criteria and at every
state of DE.

Problem Formulation:

It is the goal to find a global optimum x∗ of an objective function C:

C : D ⊂ Rn → R (7)

The domain D is encoded in floating point representation, regardless of the data type of

the parameters it represents. The co-domain of the objective function has to be scaled

ordinal with respect to the optimization problem at least.



For many practical applications a approximation of the true global optimum is adequate.

Therefore, a termination criteria can be defined e.g. as a value to be met, based on

population statistics or a maximum computational time [11, pp. 128-130].

Population Structure and Initialization:

Since DE is a population based algorithm, the currently regarded solutions are stored in

a population. The population P x
g is a vector and consists of Np members which are the

parameter vectors xi,g. From an evolutionary point of view, the parameter vectors are

the individuals of the population. Every parameter vector itself contains D parameter

values:

P x
g = (xi=0,g,xi=1,g, ...,xi=Np−1,g), g = 0...gmax (8)

xi,g = (xp=0,i,g, xp=1,i,g, ..., xp=D−1,i,g) (9)

In this syntax the lower index g denotes the generation. The high index x of P indicates

that this population is a current population. A population P with a superscript v refers

to a mutated population and a superscript u refers to a trial population. The mutant

and trial population are identical to the current population in structure and size. The

first lower index i of x can be read as individual. This index identifies every individual.

Equivalent the first lower index p of x can be read as parameter. This index identifies

every parameter of one individual.

At the beginning a start population has to be initialized. Therefore the parameters of

Np individuals have to be chosen. These initial points are distributed according to a

predefined probability distribution function. If nothing is known about the location of

the global optimum a uniform distribution should be used.

The number of the population members Np is one control parameter of the DE Algorithm.

Depending on the complexity of the objective function this value has to adapted [11, pp.

53-60].

Differential Mutation:

In analogy to the biological mutation, the differential mutation is part of DE to ensure

the diversity of the population.

The differential mutation adds the weighted difference of two parameter vectors to a third,

to create a mutant vector vi,g. The three mutated vectors have to be chosen randomly in

such way, that they differ from each other:

classic DE: vi,g = xr0,g + F ∗ (xr1,g − xr2,g) (10)

target-to-best: vi,g = xi,g + F ∗ (xbest,g − xi,g) + F ∗ (xr1,g − xr2,g) (11)

∀i ∈ Np, r0 6= r1 6= r2 ∈ [0, Np− 1]

The weighting factor F is a scalar. The first indexes of x indicate which parameter vector,

i.e. individual this formula is applied to. In classic DE the base vector index r0 and the

difference vector indices r1 and r2 differ from each other and are different from the target

vector index i, thus guaranteeing that the DE algorithm does not degenerate. The target-



to-best variant replaces the base vector xr0,g with a vector that lies between the target

vector xi,g and the best so far vector xbest,g, thus shifting the search space towards the

best so far individual. Every individual of the current population is mutated. Hence, the

mutated population P v
g is of the same size as the current population.

The weighting factor F is another control parameter of the DE algorithm. It can be

interpreted as an indication for the rate at which the population converges. Due to the

selection process, population diversity is reduced and premature convergence in a local

optimum might occur. To counteract this selection pressure the weighting should be

chosen high enough. Dependent on the objective function a value chosen from [0, 1[ is

advisable [11, pp. 75-91].

Crossover:

As the name suggest the crossover process is inspired by the genetic crossover. The genetic

crossover describes which parts of genetic information of two parental chromosomes are

passed on to the next generation. In DE the crossover process is applied on two individuals

and the genetic information is the value of their parameters.

To derive the trial vector ui,g for the selection process every mutant vector vi,g is crossed

over with the parameter vector xi,g it originates from. This means that for each parameter

up,i,g of the newly formed trial vector it is determined with the crossover probability Cr

if it originates from the mutant vector or from the current population vector. To avoid

duplication of existing vectors at least one of the parameters of the mutant vector, with

the random index p, has to be a part of the newly formed trial vector:

∀i ∈ Np : ui,g = (up,i,g) =

vp,i,g if (randp(0, 1) ≤ Cr or p = rand(0, D − 1))

xp,i,g otherwise

(12)

Crossover is applied to the parameters of every individual in the mutated population,

thus creating a trial population P u
g with the same size and structure as the current pop-

ulation. The trial population overwrites the mutant population during crossover, so two

vector populations are sufficient when implementing DE.

The discrete crossover strategy explained here is called uniform or binomial crossover,

since the genetic information which is derived from one parent follows approximately a

binomial probability distribution function with the probability Cr. Hence the crossover

probability Cr defines how big the portion of mutated parameters is in the newly formed

trial vector and can be interpreted as the mutation rate. Cr is one of the control param-

eters of the DE algorithm and should be chosen from [0, 1] [11, pp.104-106].

Selection:

After generating a trial population the individuals of the next generation are determined

by the selection process. Classic DE directly compares the trial vector ui,g with the



parameter vector xi,g it was crossed over with:

∀i ∈ Np : xi,g+1 =

ui,g if C(ui,g) ≤ C(xi,g)

xi,g otherwise
(13)

C() refers to the objective function described in Equation (7). The selection is a one-to-one

tournament selection. The selection is elitist, which means that under no circumstances

the best so far solution can get eliminated [11, pp. 118-123].

3 Results

To evaluate DE’s ability to effectively optimize the given problem the performance shall

be evaluated in two scenarios. Both are optimized five times with the target-to-best DE

variant and the following DE control parameters:

population members: Np = 10

weight: F = 0.875

crossover probability: Cr = 0.875

scenario 1: rdesired = 50 min−1

scenario 2: rdesired = 60 min−1

Scenario 1:

Only in one out of the five optimization runs the motor help was needed once in the first

generation to support the cycling movement. This results from a sensible definition of

the boundary constraints. As can be seen in Figure 4(a) the average best cost converges

towards a minimal cost of 0.62. Overall, the average best cost improved by 0.059, with

more than 90% of the improvement made within the first 38.3 min. The convergence of

the parameter vector shows muscle group specific convergence (see Figure 4(b)). This

indicates that multiple optima with comparable costs are present. Figure 5(a) shows the

effect of the dead centre cost. Without the dead centre cost active, ceteris paribus, the

minimal cadence is 29 min−1. This is 6.9 min−1 lower than with the dead centre criteria.

The average cadence of the optimization runs (see Figure 5(c)) settles slightly below the

desired 50 min−1, because the stimulation cost rises with increasing cadence.

Scenario 2:

In the five optimizations of the second scenario the motor help was only active during

initialisation. Compared with scenario 1, the cost converges faster. As can be seen in

Figure 4(c) 90% of the improvement in average cost is made within the first 12.9 min.

Again the parameter convergence is muscle group specific (see Figure 4(d)). The start

angle of the quadriceps stimulation qstart is in this case remarkable. In all five optimization

runs it converged towards the lower boundary of the constraints, thus indicating that the

boundary constraints for this scenario might have to be adapted. The restrictive boundary

constraints for quadriceps stimulation might also be the reason, why the average cadence

of all successful trials did not rise over about 57 min−1 (see Figure 5(d)). A change in
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Figure 4: Cost and parameter convergence for 5 target-to-best optimizations with the
boundary constraints from Figure 1(b). (DE/target-to-best/1/bin, weight F = 0.875,
crossover probability Cr = 0.875, population members Np = 10, maximum number of
generations gmax = 30; evaluated revolutions x = 6)

boundary constraints or weighting of the cost function might bring the average cadence

closer to 60 min−1. Nonetheless, it can be seen that DE is able to adapt the stimulation

patterns to achieve different cadences.

3.1 Stimulation Cost Savings

As mentioned before, the stimulation cost might indicate how effective a stimulation

pattern is. A static classic stimulation strategy with the following start and stop angles
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Figure 5: Depicted in (a) and (b) is the cadence resulting from the stimulation pattern
with the overall lowest cost. The average cadence shown in (c) and (d) is the average
cadence of all five optimizations.

is used as a benchmark:

V p,ClassicStatic[k] =

 qstart[k] = 50◦ qstop[k] = 160◦

hstart[k] = 190◦ hstop[k] = 260◦

gstart[k] = 90◦ gstop[k] = 180◦

 (14)

To compare the stimulation cost an optimization is needed that also results in the same

average cadence of about 60 min−1. This is achieved by setting boundary constraints

different from those in the scenarios:

V p[k] =

 qstart[k] ∈ [ 30◦, 70◦] qstop[k] ∈ [140◦, 200◦]

hstart[k] ∈ [170◦, 210◦] hstop[k] ∈ [220◦, 260◦]

gstart[k] ∈ [ 70◦, 110◦] gstop[k] ∈ [180◦, 220◦]

 (15)

It can be seen in Figure 6(b) that after 10 min the resulting average cadence of the FES

cycling optimization fluctuates slightly below of the desired cadence of 60 min−1. Depicted

in Figure 6(a) is the corresponding stimulation cost. At the beginning of the optimization

DE has to rise the average cadence, therefore the stimulation cost rises within the first

5 min. Not until 20 min DE stops testing stimulation patterns that yield worse stimulation

costs than the classic static stimulation pattern. A decline in stimulation cost that does

not lower the average cadence significantly is following. After 58 min the moving mean of



the stimulation cost optimized by DE is round about 9.6% percent lower than that of the

classic static stimulation pattern.

0 20 40 60
0.4

0.45

0.5

0.55

0.6

time [min]

st
im

u
la
ti
o
n
co
st

classic stimulation pattern

stimulation pattern optimized by DE

moving mean of optimized stimulation pattern

(a) Comparison of stimulation cost

0 20 40 60

54

56

58

60

62

time [min]

ca
d
en

ce
[m

in
−
1
]

classic stimulation pattern

stimulation pattern optimized by DE

(b) Comparison of the average cadence

Figure 6: Comparison between classic static stimulation pattern and stimulation pattern
optimized by differential evolution.

4 Discussion and Conclusion

The heuristic control strategy relying on differential evolution is able to optimize the FES

cycling computer model. It might be that even better stimulation patterns can be found

by DE, if more parameters of the stimulation pattern would be changed, but problematic

remains the convergence time. Usually, FES cycling therapies last for round about 30 min.

Depending on the given scenario the optimization took as long as 15 min or up to 40 min.

A further increase in convergence speed can be achieved by setting narrower boundary

constraints, reducing the number of population members or reducing the number of eval-

uated cycling revolutions.

Questionable also remains how much a reduction in average stimulation cost can prolong

FES cycling training. Furthermore, it has to be tested if an optimization of the stimula-

tion pattern might lead to stimulation patterns that tend to neglect the weakest muscle

groups, thus reducing therapeutic effects.

To evaluate the minimal convergence time under realistic conditions, as well as the re-

sulting optimized stimulations patterns it is indispensable to test this heuristic control

strategy in an experiment.
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