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Abstract

Within the last years Multiple-Input Multiple-Output (MIMO) transmission has
reached a lot of attention in the optical fibre community. Theoretically, the concept
of MIMO is well understood. However, practical implementations of optical com-
ponents are in the focus of interest for further computer simulations. That’s why
in this contribution the specific impulse responses of the (2 x 2) MIMO channel,
including a 1.4 km multi-mode fibre and optical couplers at both ends, are mea-
sured for operating wavelengths of 1326 nm and 1576 nm. Since semiconductor
diode lasers, capable of working at different wavelengths, are used for the charac-
terization of the underlying optical MIMO channel, inverse filtering is needed for
obtaining the respective impulse responses. However, the process of inverse filtering
also known as signal deconvolution is critical in noisy environments. That’s why dif-
ferent approaches such as Wiener and parametric filtering are studied with respect
to different optimization criteria. Moreover, different measurement impacts on the
impulse response, such as offset compensation, timing and synchronisation etc., will
be investigated. Using these obtained impulse responses a baseband MIMO data
transmission is modelled. In order to create orthogonal channels enabling a success-
ful transmission, a MIMO zero—forcing (ZF) equaliser is implemented and analysed.
Our main results given as an open eye-diagram and calculated bit-error rates show

the successful implementation of the MIMO transmission system.

1 Introduction

Aiming at further increasing the fibre capacity in optical transmission systems the concept
of MIMO, well studied and wide-spread in radio transmission systems, has led to increased
research activities in this area [1-3|. Theoretical investigations have shown that similar
capacity increases are possible compared to wireless systems [4,5]. The basis for this

approach is the exploitation of the different optical mode groups.



However, the practical implementation has to cope with many technological obsta-
cles such as mode multiplexing and management. This includes mode combining, mode
maintenance and mode splitting. In order to improve existing simulation tools practical
measurements are needed. That’s why in this contribution a whole optical transmission
testbed is characterized by its respective impulse responses obtained by high-bandwidth
measurements.

In order to describe the optical MIMO testbed at different operating wavelengths
semiconductor laser diodes with a pulse width of 25 ps are used. Since the used picosecond
laser generator doesn’t guarantee a fully flat frequency spectrum in the region of interest,
inverse filtering has to be applied to obtain the MIMO impulse responses. However,
the process of inverse filtering also known as signal deconvolution is critical in noisy
environments. That’s why different approaches such as Wiener and parametric filtering
are studied with respect to different optimization criteria such as the mean square error
(MSE) and the imaginary error parameter introduced by Gans [6].

Using the measured impulse responses a MIMO baseband transmission system can
be constructed. In order to exploit the full potential of the MIMO system, properly
selected signal processing strategies have to be applied. The focus of this work is on
the whole testbed functionality including the signal processing needed to separate the
data streams. Based on computer simulations the end-to-end functionality of the whole
testbed is demonstrated and appropriate quality criteria such as the eye-diagram and the
the bit-error rate (BER) are calculated.

The novelty of this paper is given by the proven testbed functionality, which includes
the whole electro-optical path with the essential optical MIMO components of mode
combining and splitting. The next logical step is the implementation of the MIMO receiver
modules such as automatic clock recovery, frame synchronisation, channel estimation and
equalisation as demonstrated in |7].

The remaining part of the paper is structured as follows: In Section 2 the optical MIMO
testbed and its corresponding system model are introduced. The further processing of
the measured impulse responses, which is carried out by inverse filtering, is described
in Section 3. The obtained results are given in Section 4. Finally, Section 5 shows our

concluding remarks.

2 Optical MIMO System Model

An optical MIMO system can be formed by feeding different sources of light into the fibre,
which activate different optical mode groups. This can be carried out by using centric and
eccentric light launching conditions and subsequent combining of the activated different
mode groups with a fusion coupler as show in Fig. 1 [8,9]. The different sources of light lead
to different power distribution patterns at the fibre end depending on the transmitter side
light launch conditions. Fig. 2 highlights the measured mean power distribution pattern
at the end of a 1.4 km multi-mode fibre. At the end of the MMF transmission line a
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Figure 1: Transmitter side fusion coupler for launching different sources of light into the
MMF

Figure 2: Measured mean power distribution pattern when using the fusion coupler at
the transmitter side (left: centric mode excitation; right: eccentric mode excitation); the
dotted line represents the 50 ym core size.

similar fusion coupler is used for splitting the different mode groups. The measurement
setup depicted in Fig. 3 shows the testbed with the utilized devices for measuring the
system properties of the optical MIMO channel in form of its specific impulse responses
needed for modelling the MIMO data transmission. A picosecond laser unit is chosen
for generating the 25 ps input pulse. This input pulse is used to measure separately the
different, Single-Input Single-Output (SISO) channels within the MIMO system. Since the
used picosecond laser unit doesn’t guarantee a fully flat frequency spectrum in the region
of interest, the captured signals have to be deconvolved. The obtained impulse responses
are forming the base for modelling the MIMO transmission system. Fig. 4 highlights the
resulting electrical MIMO system model.

3 Measurement Campaign and Signal Deconvolution

Since the process of signal deconvolution is critical in noisy environments, different filtering
processes such as Wiener and parametric filtering are studied in order to guarantee a high
quality of the deconvolution process defined by the mean square error (MSE) and the
imaginary error parameter introduced by Gans [6].

A linear time-invariant system is defined uniquely by its impulse response, or its Fourier
transform as the corresponding transfer function. For the determination of the impulse
response gx(t) (see also Fig. 5) an appropriate formed input signal w,(¢) is needed. Un-
fortunately, an ideal Dirac delta pulse with a frequency independent transfer function is
practically not viable. In real systems adequate impulses compared to the Dirac delta
pulse must be used. For the determination of the impulse response in optical transmis-

sion systems impulses as specified in [10] have proven to be useful. Additionally, when
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Figure 3: Measurement setup for determining the MIMO specific impulse responses.
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Figure 4: Electrical MIMO system model (example: n = 2)

analysing the characteristics of any practical system, the measured impulse u3(t) is af-

fected by noise. The resulting transmission system model is depicted in Fig. 5. The
n(t)
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[——-O

i) ) gh)

Figure 5: Transmission system model.

measured impulse u3(t) can be decomposed into two parts, namely, the low-pass filtered

output signal us(t) and the noise part n(t) resulting in
us(t) = ui(t) * gi(t) + n(t) . (1)

In the absence of the noise term, i.e. n(t) = 0, the system characteristic gi(t) can be

easily obtained by inverse filtering and is given as

gk(t) o—e Gi(f) = : (2)



Unfortunately, the measured impulse wus(t) is affected by the noise term n(t). Under
these conditions inverse filtering is not working properly anymore. In order to improve
the quality of the signal deconvolution different filter functions h(t) are applied and the

filtered signal results in
ug(t) = up(t) * gi(t) *x h(t) +n(t) = h(t) . (3)

This filter operation affects both the low-pass filtered output signal us(¢) and the noise
term n(t). With an appropriate selected filter function the estimation of the impulse

response gy(t) yields to

a0 o= Gulr) = g (@

Hereinafter, two different filter functions types are studied to estimate the impulse
response gi(t) based on the measured impulse u3(t). Commonly, the mean square error
(MSE) between the impulse response gi(t) and the estimated impulse response gy (t) is

chosen as a quality indicator. It is expressed as
Fuse = E{[g(t) — ()}  —  min. | (5)

where E{-} denotes the expectation functional.

Firstly, the Wiener filter hy(t) is investigated. It is based on finding the optimal
solution for minimizing the MSE when comparing the signal uy(¢) with the filter output

signal uy(t). It is calculated as
E{[ua(t) — us(t) * hy(t)]?} — min. , (6)

Assuming the signal us(t) and the noise n(t) are uncorrelated, the Wiener filter transfer
function results in [11, pp. 191-194]

Saa(f)

= )+ 5m) ™)

Hy(f)

where Sao(f) is the power spectral density (PSD) of the signal us(t) and Sy, (f) is the
noise PSD of the signal n(t).

A more simple filter choice when estimating the impulse response gy(t) is represented
by predefined parametric filter functions. Two one-parametric filters with the transfer

function structure

e
FAGEE=T G

H(f) 7eR (8)
are analysed. The regularisation filter presented in [12] and studied more closely in [13]
is given by

He(f) = H(f) with X(f) =C(f) , (9)



where:

|C(f)]? =6 — 8cos(2nfT,) + 2 cos(4m fT,) (10)

and T, is the sampling period. The second one-parametric filter described by Nahman

and Guillaume is of the same structure and expressed as follows

Hx(f) = H(f) with X(f) = D(f) , (11)

where:
ID(/)P = @rTf)* . (12)

The regularisation filter Hg(f) and the Nahman-Guillaume filter Hy(f) are low-pass fil-
ters with the parameter v influencing the sharpness of the filters and hence determining
the cutoff frequencies. The amplitude density spectrum U;(f) and the v parameter have
the unit Vs. Hereinafter, the unit of v is not mentioned explicitly. Fig. 6 shows that

the transfer function of both filters look consimilar. In order to appropriately select the

Hg(f) : Regularisation filter

— — - Hn(f) : Nahman-Guillaume filter

Figure 6: Comparison between the Regularisation filter Hg(f) and the Nahman-
Guillaume filter Hy(f) with the parameters U;(f) =1 Vs, v = 1 and T, = 50 us.

v-parameter the MSE criterion (5) can be applied for the optimisation. In practical
measurements the knowledge of the original impulse response gx(t) is not given. There-
fore, another criterion is needed in order to properly select the v-parameter for practical
measurements. A promising criterion was introduced by Gans [6], where the root mean
square of the deconvolved imaginary part of g, (¢) is used for finding the parameter of the

regularisation function. This optimisation criterion can be expressed as
FGans = E{[Im{gk(t, 7)}]2} — min. . (]_3)

Using this criterion multiple local minima can occur and therefore another criterion de-
scribed by Nahman and Guillaume in [12, pp. 22| should be taken into consideration when
choosing the v value of the regularisation filter. This error criterion is defined as the MSE

between the measured receive signal ug(t) and the simulated receive signal u; (t) * gi (¢, ),



filter filter equation  used optimization criterion  signal knowledge necessary  practically applicable

Wiener filter (7) E{[ua(t) — us(t) * hw(t)]?} uz(t), ui(t), ua(t) X
Hgr(f) & Hx(f) (9), (11) Fuse = B{[gk(t) — gx(t)]*} ug(t), u(t), gi(t) X
HR(f) & HN(f) (9)9 (11> FGans = E{[Im{gk(tv ’Y)}]Q} u3(t)a ul(t) v

Table 1: filters and optimisation criteria at a glance

where u;(t) is the measured input impulse. It is described as follows

Fiuvor (7) = B{ [ua(t) — ua(t) = gic(t,7)]*} - (14)

Table 1 gives an overview of all filters and criteria.

In order to compare the quality of the estimated impulse responses using the one-
parametric filters to the quality achieved by the Wiener filter, the following system is
studied: The input impulse is a Dirac delta pulse with wu,(t) = Us Ty 6(t), with Uy =1V,

Ty = 1 ms and T;/T, = 20. The chosen impulse response is

a(t) = Ti rect (Ti) | (15)

In this case the filter output signal wus(¢) is an rectangular impulse with the amplitude
Us. The deconvolution quality results are depicted in Fig. 7 as a function of the signal-
to-noise-ratio Ey/Ny with the parameter Ej defining the signal energy of uy(t) and the

noise power spectral density Ny of the signal n(f). When applying the one-parametric

T
without filtering

Hg(f) with MSE Criterion
Hn(f) with MSE Criterion

Wiener filter

oo

Figure 7: Quality Fysg of the deconvolved impulse responses as a function of signal energy
to noise power spectral density using different filter functions.

filters Hg(f) and Hyx(f) the optimal vy values as well as the MSE are decreasing with
increasing F/Ny. The achievable quality of the estimated impulse responses using the
one-parametric filters together with the MSE optimisation criterion is nearly identical and
comes close to the Wiener filter results. The benefit of using a filter function is clearly
visible.

In order to determine the quality of the estimated impulse responses, which are practi-

cally obtainable using the Gans’ criterion (13), the following optical system configuration



is studied: The measured input impulse of the picosecond laser is depicted in Fig. 8 for
different operating wavelengths with a pulse width of approximately 25 ps. For the follow-

ing simulation the operating wavelength is chosen to be 1576 nm. The impulse response

Figure 8: Measured input impulses at different operating wavelengths .

is carried out as a first-order low pass filter and is described as follows

1

Gk(f):A'm ;

(16)
where 77 = Ty = 0.8 ns and T;/T, = 200. The scaling factor A is chosen to maintain
E,/T, = 1V? of the signal uy(t) and to ensure the unit s~! of the impulse response. Fig. 9
shows the quality of the obtained impulse responses using the filter functions mentioned
before. The regularisation filter and the Nahman-Guillaume filter are applied for both

optimisation criteria resulting in v values depicted in Fig. 9. The ~ values are also
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Figure 9: left: Quality Fysg of the deconvolved impulse responses as a function of signal
energy to noise power spectral density using different filters. right: Choice of optimal
~ when filtering with the regularisation filter Hg(f) and the Nahman-Guillaume filter
Hx(f) minimizing the MSE and using the Gans’ criterion.

decreasing with increasing E;/N, for both criteria. It should be noted, that the - values

using the Gans’ criterion are lower compared to the MSE criterion. This signifies that



the measured signal us(t) is filtered less when applying the filter using the Gans’ criterion
in contrast to using the MSE criterion. As expected, the deconvolved impulse responses
using the Wiener filter are showing the best quality of all applied filter functions closely
followed by the estimated impulse responses filtered with the one-parametric filters using
the MSE optimisation criterion. The quality of the estimated impulse responses using
the Gans’ criterion is still acceptable for a wide range of Es/Ny values and is a major
improvement comparing to the quality without filtering (not depicted). The obtained
results show further that both parametric filters, whose quality is nearly identical, are a
good compromise compared to the Wiener filter with its high complexity.

Applying the described deconvolution processing to the (2 x 2) MIMO testbed, the
obtained impulse responses are depicted in Fig. 10. They are calculated by applying
the regularisation filter in the deconvolution process with v values respecting the Gans’

and Error criterion. At an operating wavelength of 1326 nm the modal structure can
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Figure 10: Deconvolved measured electrical MIMO impulse responses with respect to
the pulse frequency fr = 1/Ty = 620 MHz at 1326 nm (left) and 1576 nm operating
wavelength (right) using the regularisation filter function with ~ values according to the
Gans’ criterion.

be identified. Considering the 1576 nm results the additional influence of the chromatic

dispersion is clearly visible.

4 MIMO Equalisation and Simulation Results

In this section the MIMO baseband transmission system is constructed as illustrated in
Fig. 11. It uses the deconvolved (2 x 2) MIMO specific impulse responses g; ;(t) (for
i = 1,2 and for j = 1,2) depicted in Fig. 10 at 1576 nm operating wavelength. In this
baseband system model the transmitter forms a rectangular pulse train and hence the
transmit filter gs(¢) and the receive filter g.¢(¢) are considered to be matched filters and

are described in its non causal notation with

) = clt) = - rect (1) (17



The total transmit power is normalised to P, = 1V? and a symbol pulse frequency of
fr = 1/T5 = 620 MHz per data channel is used resulting in a total bit rate of 1.24 Gb/s
for both channels. Both transmit signals us ;(¢) are launched onto the (2 x 2) MIMO
channel. The filtered receive signals u.;(t) are sampled with k7, where k € Z. The

ny(t) kT,
alld, | T » gt ua® gu(t) D :é} -l ger(t) ba(t) 7l ik :F )
]
—»= g12(t)
F
- g(t)
KT,
e, | P = a0 ) e el ~? o el [r2 lﬂL LN g Y
na(t)
transmitter MIMO — channel receiver

Figure 11: (2 x 2) MIMO baseband transmission system model with discrete zero—forcing
equaliser.

system can be simplified by introducing the cumulative channel impulse response h; ;(¢)

and the filtered noise w;(t) expressed as follows

hi(t) = g:() * 93 () * g 1) hig(k) = his (1) (18)

kT

wi(t) = ni(t) * ger(t), wi(k) = wi(t)] (19)

By utilising a data block transmission model [14,15] a vectorial notation can be applied

as follows

e=(c[] o2 - C[K])T

T (20)
hij = (hz‘,j[l] hig[2] -+ hig [L]> :
Using the convolution matrices H; ; the transmission model can be described as
U, :H11~01+H12-62+’LU1
(21)

Uy = Hy - ey + Hy - o+ wy .
Written in matrix notation
u H,, H c w
1) _ 11 12| 1 n 1 _ (22)
U2 H, Hs Ca wo
Simplifying this equation results in

u=H c+w, (23)



where the channel matrix H contains the ISI as well as the crosstalk information. For

obtaining the transmitted symbols unaffected from the channel
F-H=1 (24)

has to be fulfilled, where I is a identity matrix and thus the equaliser matrix F' can be

obtained as follows
F=H"H)'H" . (25)

Hereinafter, the equaliser matrix F' is applied to the received data vector u

y=c+F w.

The benefit of applying this zero—forcing (ZF) equaliser is the orthogonalisation of the
transmission channels. Thus, the resulting equalised MIMO system can be described
by two independent SISO channels. The disadvantage of using the ZF equaliser is the

weighting of the noise term.

t/Ts — ' . t/Ts —

Figure 12: Eye diagram patterns of both received signals when applying zero—forcing
equalisation.

Eye diagrams of both received signals in the MIMO system after equalisation are shown
in Fig. 12. Using the ZF equaliser both eyes are fully opened confirming its functionality.
The MIMO bit-error rate (BER) simulation results are depicted in Fig. 13 and underline

the functionality of the equaliser.

5 Conclusion

In this contribution a (2 x 2) optical MIMO communication system, consisting of a 1.4
km multi-mode fibre and optical couplers attached to both ends, has been analysed. The
estimations of the MIMO specific impulse responses have been obtained for operating
wavelengths of 1576 nm and 1326 nm using optimized signal deconvolution by applying
the parametric regularisation filter. It has been shown that the quality of the estimated
impulse responses significantly improves and is comparable to Wiener filtering. These
estimated impulse responses have been used for modelling a baseband MIMO data trans-

mission system. In order to receive the transmitted data unaffected from the data send
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Figure 13: (2x2) MIMO BER probability as a function of bit energy F}, to noise PSD with
and without applying the zero—forcing equalising method using the deconvolved MIMO

impulse responses at 1576 nm operating wavelength and transmitting with a bit rate of
1.24 Gb/s.

on the neighbouring channel zero—forcing equalisation has been investigated. The suc-

cessful implementation has been shown by the bit-error curves as well as by the open

eye-diagram.
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