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Zusammenfassung

In the paper the proposition a fractional order, robust, discrete PID controller

dedicated to minimum-energy control an interval - parameter, oriented PV system

is presented. A tuning of robust controller with use of different cost function is also

proposed. Results are by an example depicted.

1 An Introduction

An application of fractional order calculus in modeling and control of dynamic systems

has been considered by many Authors, for example Podlubny (see [13],[14]) , Das (see

[3]), Kaczorek [4], Pan and Das [11] .

In many situations the use of non integer order controller assures the better control

performance, that integer order control. This is caused by the fact, that fractional orders

of integration and derivative actions are additional tuning parameters of controller. These

paramaters make possible very precise fitting the dynamics of the controller to a controlled

plant. The use of fractional order controllers was presented for example by Podlubny in

[13] or Petras in [12].

In the paper a propostion of use the fractional order, discrete PID controller to control the

elevation angle in the moving part of an experimental oriented PV system. The control

plant is described with the use of interval transfer function. The use of interval model is

determined by the fact, that the PV works all the year outdoor in extremally different

atmospheric conditions.

It is is well known, that an important control problem for oriented PV systems is a minimal

energy control. Generally, for integer order control this problem has been considered by

many Authors for years, classic solutions of it are well known,but the use of fractional order

controllers generates a number of new problems, particularly for uncertain-parameter

systems.

In the paper the following problems will be discussed:



• An oriented PV system and its interval model,

• A fractional order PID controller and its discrete approximation,

• A digital closed-loop control system,

• Tuning method for the considered controller

• An Example

2 An oriented PV system and its interval model

Let us consider a moving part of an oriented PV system shown in figure 2. The most

simple scheme of this plant is a DC motor with gearbox, considered by many Authors, for

example Athans and Falb in [1], Petras [12], p. 121). The simplified scheme of it is shown

in figure 1.
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Abbildung 1: A DC electric drive as a model of moving part of the oriented PV system

Abbildung 2: An experimental oriented PV system

The exact description of the plant we deal with can be found in [8], [5], . [6], [7]. Exact

parameters of the PV preseted in figure 2 are given in paper [9]. The most simple model



of the plant shown in figure 1 has the form of an interval transfer function:

G(s, q) =
k

Tis
(1)

where: k > 0 and Ti > 0 denote interval parameters of the PV, assembled in vector q ∈ Q
defined as follows:

Q = {q = [k, Ti] : k ≤ k ≥ k Ti ≤ Ti ≥ Ti} ⊂ I(R2) (2)

Vertices (corners) of the set Q are defined as underneath:

qll = [k, Ti]

qlh = [k, Ti]

qhh = [k, Ti]

qhl = [k, Ti]

(3)

Vector q ∈ Q describes parameters of the plant, changing during work of the system

outdoor in extremally different atmospheric conditions (summer and winter, with and

without snow, etc.). Additionally - these parameters have different values for moving up

and moving down the PV. Exemplary values of these parameters are given in the example.

3 A fractional order PID controller and its discrete

approximation

A continuous fractional order PID controller is described with the use of the following,

continuous, fractional order transfer function:

Gc(s, p) = kP + kIs
−α + kDs

β (4)

where kP , kI and kD denote coefficients of proportional, integral and derivative actions of

the controller, α and β denote fractional orders of the integral and derivative actions. All

these parameters can be assembled in a vector p:

p = [kP , kI , kD, α, β] (5)

All the vectors p build the set of permissible controller parameters P , defined as under-

neath:

P = {p = [kP , kI , kD, α, β] : kP , kI , kD > 0, α < 0, β > 0} ⊂ R5 (6)

The discrete, fractional order PID controller can be obtained after discretization of time-

continuous controller described by (4). The translation can be done with the use of the

elementary dependence between continuous and discrete Laplace transforms (see for ex-



ample [12]):

(
ω(z−1)

)γ
=
(

1 + a

Ts

)γ ( 1− z−1

1 + az−1

)γ
=
(

1 + a

Ts

)γ
CFE{...} (7)

In (7) a is the coefficient depending on approximation type, Ts denotes the sample time,

CFE... is a Continuous Fraction Expansion:

CFEγ{
1− z−1

1 + az−1
} =

vγ0 + vγ1z
−1

wγ0 + wγ1z−1
(8)

Coefficients of discrete transfer function (8) are equal:

vγ0 = wγ0 =
2

a+ γ + γa− 1
; vγ1 =

a− γ − γa− 1

a+ γ + γa− 1
; wγ1 = 1 (9)

In (9) the value of the coefficient a depends on the approximation type, for example,

a = 1 for Tustin approximation, a = 0 for Euler approximation. In further consideration

the Euler approximation will be applied. This implies, that coefficients (9) turn to the

following simplier form:

vγ0 = wγ0 =
2

γ − 1
; vγ1 =

−γ − 1

γ − 1
; wγ1 = 1 (10)

In (10) γ = α for integral part of the controller and γ = β for derivative part respectively.

Consequently, the discrete fractional order PID controller can be described with the use

of the following discrete transfer function G+
c (z−1, p), which is also a function of vector p

defined by (5):

G+
c (z−1, p) = kP + kI

(
1

Ts

)α
CFEα + kD

(
1

Ts

)β
CFEβ (11)

In (11) kP , kI , kD denote gain of proportional, integral and dervative actions of the con-

troller, α < 0 denotes the non integer order of integration, β > 0 denotes the non integer

order of the derivation, CFE.. is described by (9) and (10). Notice, that the controller

(11) can be directly implemented at each digital platform (PLC or microcontroller).

G+
c (z−1, p) =

a2 + a1z
−1 + a0z

−2

b2 + b1z−1 + b0z−2
(12)

where:

a0 = kPwα1wβ1 + kIvα1wβ1 + kDpβ1wα1

a1 = kP (wα0wβ1 + wα1wβ0) + kI(vα0wβ1 + vα1wβ0) + kD(vβ0wα1 + vβ1wα0)

a2 = kPwα0wβ0 + kIvα0wβ0 + kDvβ0wα0

(13)



b0 = wα1wβ1

b1 = wα0wβ1 + wα1wβ0

b2 = wα0wβ0

(14)

The whole closed loop control system containing both plant and controller will be descri-

bed in the next section.

4 The digital closed loop control system

The digital closed loop control system for the plant we deal with is shown in figure 3.

The uncertain-parameter plant is described by (1)-(3), the digital fractional order PID

controller is described by (11). The problem during tuning the considered control system

we deal with is to find such a vector p0 ∈ P for which the energy consumption will be

minimal or close to minimal in the whole set of uncertain plant parameters Q, defined by

(2) and (3). The transfer function of the whole closed-loop control system G+
cl(z) = Y +(z)

R+(z)

Abbildung 3: A digital closed-loop control system

is described by (15).

G+
cl(z) =

G+
c (z)G+(z)

1 +G+
c (z)G+(z)

(15)

where G+
c (z−1) denotes the discrete transfer function of the controller, described with

the use of (11)-(14) and G+(z−1) denotes the discrete transfer function of the plant with

the zero-order hold at the input:

G+(z−1, p, q) = c
z−1

1− z−1
(16)

where:

c =
kTs
Ti

(17)

Finally, with respect to (12) and (16) the discrete, closed-loop transfer function (15) is



equal:

G+
cl(z

−1, p, q) =
c (a2z

−1 + a1z
−2 + a0z

−3)

b2 + (b1 − b2 + ca0)z−1 + (b0 − b1 + ca1)z−2 − (b0 + ca0) z−3
(18)

where a..., b... and c are described by (13), (14) and (17) respectively.

Furthermore, the relationship between ′z′ trasform of control signal U+(z−1) and ′z′

trasform of a reference signal R can be also given. It has the following form:

U+(z−1) =
G+
c (z−1)

1 +G+
c (z−1)G+(z−1)

R (19)

After any simple trasformations the equation 19 turns to the following form:

U+(z−1) =
a2 + (a1 − a2)z−1 + (a0 − a1)z−2 − a0z−3

b2 + (b1 − b2 + ca2)z−1 + (b0 − b1 + ca1)z−2 + (ca0 − b0) z−3
R (20)

Consequently, the discrete control signal, calculated as inverse z trasform from U+(z−1)

described by (20) is equal:

u+(n) = Z−1
(
U+(z−1)

)
(21)

Notice, that:

• The parameters of the transfer function (18) are interval numbers, because the

coefficient c is the interval number (see (1) - (3)),

• The discrete transfer function (18) is the integer order trasfer function, because non

integer orders α and β were replaced by integer order approximation CFE.

The both above remarks allow us to test the properties of the considered digital con-

trol system with the use of approach dedicated to discrete, interval, integer order systems.

5 Tuning method for the considered controller

The main goal of use the proposed controller is to minimize an energy consumption during

moving the PV from initial to final position.

The energy consumption during moving the PV is described by the following cost function:

I(p, q) = Ts

Nf∑
n=n0

(u+)2(n) (22)

where Ts denotes the sample time, u+(n) denotes the discrete control signal described by

(21), n0 and Nf denote the initial and final time moments of moving the PV system.

In the considered case the problem of optimal tuning the considered fractional order,

discrete, robust PID controller consists in finding such a vector p0 ∈ P (where P denotes



the set of permissible controller parameters described by (6) which keeps the cost function

(22) minimal or close to minimal in the whole set of uncertain plant parameters Q.

The vector p0 can be found with the use of the following algorithm:

1. We calculate vectors p minimizg the cost function (22) for each vertex of set Q

separately. Denote these vectors by p0ll , p0lh , p0hl , p0hh respectively. These vectors

can be caclulated with the use of MATLAB.

2. We calculate values of cost function (22) for each vertex vector p.. calculated in

step 1. Denote these values as I(p.., q..) respectively. It is easy to notice, that total

number of combinations is equal 16. We collect all values of I(p.., q..) in a table: rows

of the table are associated to vertices q.. and columns are associated to vectors p0..

3. Finally, as the vector p0 we select such a vector p.., which minimizes one of the

following, additional cost functions:

(a) The average minimal energy consumption:

Iav(p, q) = 0.25
∑
q

I(p.., q), q ∈ {qll, qlh, qhl, qhh} (23)

(b) The maximal robustness of control system:

Ir(p, q) = |max(I(p.., q))−min(I(p.., q)| q ∈ {qll, qlh, qhl, qhh} (24)

(c) The minimum from maximal energy consumption:

Imax(p, q) = min max
q
I(p.., q), q ∈ {qll, qlh, qhl, qhh} (25)

Selection of certain criterion depends on particular situation during control. The use of

the proposed will be shown in the next section.

6 An Example

As an example let us consider the control system described above. We deal with the control

of the elevation angle for experimental, oriented PV system shown in figures 1 and 2. The

interval parameters of the control plant are given in the table 1. The identification method

for these parameters was exactly discussed in paper [9].

Parameter Value

k [0.55; 0.64]

Ti [0.57; 0.71]

Tabelle 1: Interval parameters of experimental PV system

During simulations the sample time in the system was equal 1[s]. The parameters of

robust controller were calculated with the use of the algorithm proposed in the previous
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Abbildung 4: The SIMULINK model of the considered closed-loop control system

section. The 1’st step of algorithm (The values of vectors p0.. and suitable values of cost

function 22) are presented in the table 2 and marked in bold.

The results associated to the 2’nd step of algorithm are also presented in the table 2.

vectors p.., q.. ,
Cost function (22)

p0ll=
[0.85,0.03,0.05,-

0.5,.05];

p0lh=[0.8,.03,.05,-
0.45,0.21];

p0hl
=[0.7,0.02,0.05,-

0.5,0.3]
p0hh

=[0.7,0.02,0.05,-
0.4,0.9]

qll=[0.55;0.57] 0.8767 0.7934 0.6335 0.6247

qlh=[0.55;0.71] 0.9455 0.8644 0.7066 0.6915

qhl=[0.64;0.57] 0.8657 0.7746 0.6032 0.5995

qhh=[0.64;0.71] 0.8921 0.8104 0.6527 0.6418

Tabelle 2: The 1’st and 2’nd steps of the algorithm

Next the vectors of controller parameters p0 optimal in the sense of cost functions

(23), (24) and (25) can be find with the use of table 2. It is easy to see, that:

1. The minimum of cost function (23) describing the minimum average energy con-

sumption is achieved for vector p0hh , the cost function is equal: Iav(p0hh , q)=0.6394.

2. The maximal robustness of the control system, described by cost function (24) is

achieved for vector p0ll , the cost function is equal: Ir(p0ll , q)=0.0798.

3. The minimum value of cost function (25) is achieved also for vector p0hh , the cost

function is equal: Imax(p0hh , q)=0.6915.

The exemplary set of step responses of the control system with controller parameters

assembled in the vector p0hh=[0.7,0.02,0.05,-0.4,0.9] and all vertex vectors describing the

plant are shown in figure 5.
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Abbildung 5: The exemplary step responses of control system for all vertices the set Q
and vector p0hh .

Notice, that the set of controller parameters assures the good control performance in

sense another cost functions also: the step response does not have any overshooting and

the settling time is resonable.

7 Final conclusions

Final conclusions from the paper can be formulated as follows:

• Results of simulations show, that the proposed robust, fractional order, discrete

PID controller assures the good control performance for the considered uncertain

parameter oriented PV system.

• The proposed controller can be easily implemented at each digital platform (micro-

controller, PLC/PAC). The proposed in this paper fractional order PID controller

is recently implemented at SIEMENS PLC, results will be presented soon.

• An another important problem is to propose the analytical method of tuning the

proposed PID controller. This also will be considered.

Acknowledgments

This paper was sponsored by NCN grant no 6693/B/T02/2011/40



Literatur

[1] Athans , M, Falb P.L: Optimal Control. An Introduction to the Theory and Its

Applications, Dover Edition, 2007.

[2] Caponetto R., Dongola G., Fortuna L. PetrÃ¡Å¡ I.: Fractional Order Sys-tems:
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