
Simulation Based Parameter and 

Structure Optimisation of Discrete Event 

Systems 
 

 

Olaf Hagendorf 

 

 

 

 

A thesis submitted in partial fulfilment of the 

requirements of Liverpool John Moores University 

for the degree of Doctor of Philosophy 

 

 

 

May 2009



Abstract 

Modelling and simulation based on discrete event systems is used routinely in research and 

industrial applications e.g. in the design, planning and real time control of manufacturing 

systems. An advanced, but now well established, technique is modelling and simulation with 

integrated parameter optimisation to improve system performance. In using these established 

approaches model structure is considered to be fixed as the relationships between model 

elements are defined during model development. As model performance is optimised it may 

be necessary to redesign the model structure, normally carried out manually by an analyst 

using previous simulation results, observations or decisions based on previous experience. 

With increasingly complex, flexible and reconfigurable discrete event systems such 

as manufacturing systems, modelling and simulation methods are becoming more 

challenging. As the number of possible structure variants increases the potential benefit of 

automatic model structure optimisation becomes significant. The research reported in this 

thesis details a new approach providing automatic reconfiguration and optimisation of both 

model structure and model parameters. This is achieved through a combination of 

simulation, optimisation and model management methods. Simulation is used to determine 

current model performance and an optimisation method, assisted by model management, 

searches for an optimal solution with repeated model parameter and model structure changes. 

In contrast to conventional modelling and simulation methods this approach employs a meta-

modelling method. It defines a set of model structure variants and includes a model base 

with pre-defined basic components. With this meta-modelling method the model 

management can determine specific model structures and create executable models. 

To validate the simulation based optimisation approach a prototype was 

implemented. Several variants of a Photofinishing Laboratory part were modelled. In 

different experiments the introduced approach and the prototype were validated. 

This research project extends the work of Pawletta et al. [35]...[46], supports other 

projects of the Research Group Computational Engineering and Automation at Hochschule 

Wismar University of Applied Sciences Technology, Business and Design, Germany and 

follows another collaborative LJMU School of Engineering / Wismar research project in this 

field [23] [24]. 
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Chapter 1 

Introduction 

1.1 Preamble 

Often it is of interest to study a system to understand the relations between its components or 

to predict how a system is responsive to changes. Sometimes it is possible to directly 

experiment with the system. However, this is not always possible e.g. due to costs when a 

manufacturing system has to be stopped, changed or extended. Often the system even does 

not yet exit. A model, defined as a representation of the system in order to investigate it, can 

solve this dilemma. Generally, it is sufficiently to abstract the system with a view to the 

analysing the issues under investigation. In terms of modelling and simulation this abstract is 

named the simulation model. 

 A system can be classified into discrete or continuous: “Few systems in practice are 

wholly discrete or continuous; but since one type of change predominates for most systems, 

it will usually be possible to classify a system as being either discrete or continuous.” [25]. 

The analysing issue also plays a decisive role. An analogue printer in a photofinishing lab is 

a typical example. It is possible to analyse the machine at a very low level with the 

continuous movements of machine components and analogue film material when the 

objective is to optimise the component interaction. Another, discrete viewpoint could be the 

number of pictures and the length of photographic paper handled in a specific amount of 

time when the objective is to plan throughput and the necessary staff. 



Chapter 1. Introduction 

 

[2] 

 Simulation models as a particular type of mathematical system models can be 

classified too, e.g. as being static or dynamic, deterministic or stochastic, and discrete or 

continuous. A static simulation model represents a system at a particular time whereas a 

dynamic simulation model represents system changes over time. A deterministic simulation 

model does not contain any random variables whereas a stochastic simulation model has in 

minimum one random variable as an input. Discrete and continuous models can be discrete 

and continuous systems as described above. One specific type of discrete systems is the 

discrete event system (DES) where state variables change at discrete points in time during 

simulation. 

One of the most important applications of modelling and simulation based on 

discrete event systems are manufacturing systems. These systems have been modelled since 

the origins of manufacturing. From the civilisations of the ancient world to the first 

industries through to current high-technology production, managers and engineers have 

thought about the complexities of manufacturing systems [27]. As computers developed they 

became an increasing important means of modelling and simulation. The expanding 

capability of computing systems and the increasing demands of engineers and managers 

planning, implementing and maintaining manufacturing systems have been pushing the 

boundaries of modelling and simulation research. With the decreasing costs of computing 

systems, modelling and simulation applications have become an integral part of industrial 

practice. 

Simulation has been used widely and successfully to support the design of new 

production facilities and material handling systems and to evaluate variants of existing 

systems. Applications for production, warehouse-management and material handling control 

can incorporate simulation techniques to evaluate staffing and operating rules, changes of 

material handling and system layout or the effect of capital investment. An important 

advantage in using modelling and simulation techniques is the possibility of evaluating 

changes before making investment decisions and without disturbing the existing system. 
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Recently, with increasing globalisation, the competition conditions for 

manufacturing have been changing fundamentally. A key shift is the need to move from 

increasing product quantity to a combination of increasing quantity and a drive for 

manufacturing flexibility. As the number and the speed of product innovations increase, the 

time to market and the marketing life of a product decreases. As a consequence 

manufacturers have to extend the general objective “cost saving” to “time and cost saving” 

[29]. To support this market trend manufacturing systems will increase in complexity with 

increasing automation, flexibility and degree of computerisation. This also implies increased 

requirements for production planning. For many companies modelling and simulation 

together with a combined optimisation is a strategy to fulfil these requirements. Because of 

the increasing production planning requirements modelling and simulation environments 

have to meet these increasing needs. 

1.2 Rational for Simulation based Optimisation 

Successful systems have been stable over a long time, solved real problems and 

demonstrated return-on-investment (ROI). New, identical copies of such systems are not 

risky because they are proved. However, it is not possible to guarantee that innovative 

system changes will ever generate their ROI. Simulation enables system analysis with time 

and space compression, provides a robust validation mechanism under realistic conditions 

and can reduce the risk of implementing new systems. Validation is achieved using a series 

of qualitative and quantitative experiments with changes of system variables and structures. 

Pilot projects using real systems with reduced size and/or implemented in a low-risk 

laboratory environment, can provide analysis results. Such real experiments take time and 

cost. Hence, a large number of alternatives imply an initial pre-selection. Modelling and 

simulation can lower the number of alternatives analysed in real experiments as the final step 

[8]. 
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One reason for system changes is the search for a better overall performance. Under 

the focus of simulation this means the search for a set of model specifications e.g. input 

parameters and/or structural assumptions, that leads to an optimal model performance. For 

all possible variants the range of parameter values and the number of parameter 

combinations may be too large to implement and simulate manually. A method to automate 

this is needed. The example described in chapter 6 demonstrates this problem. Even though 

only a fraction of the complete manufacturing system is modelled the number of possible 

variants is overwhelming. 

Many real word systems are too complex to be expressed by mathematical models. 

But mathematical models are a precondition of optimisation methods. This leads to a 

contradiction [2]:  

• Pure optimisation models are not able to handle the complexity of both system 

behaviour and structure. 

• Pure simulation cannot find an optimal solution.  

⇒ Simulation based optimisation resolves this contradiction through a combination 

of both methods. 

Research and application of simulation based optimisation has seen a significant 

development in recent years. A Google search on ‘Simulation Optimisation’ in 2006 found 

ca. 4.000 entries [2] in comparison to a search in 2008 with almost 80.000 entries among 

others articles, conference presentations, books and software. 

 Until a relative short time ago, the simulation community was resistant to the use of 

optimisation tools. Optimisation models seem to over-simplify the real problem and it was 

not always clear why a certain solution was the best [8]. The situation changed at the end of 

the 90s. An ACM Digital Library [57] search on ‘Simulation Optimization’ found 16.000 

articles between 1960 and 2008. A significant number (15.500) of articles has been 

published during the last 20 years and only 500 articles in the 28 years before. Two reasons 
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for this change may be the advances in modelling and simulation methods and increase of 

computing power over the last two decades that has enabled simulation based optimisation. 

 Currently there are several algorithms to change simulation model parameters to 

establish solutions with good performance and methods to compare different solutions in 

terms of quality. Many commercially available discrete event or Monte Carlo simulation 

software packages contain optimisation methods to search for optimal input and system 

parameter values [3] e.g. WITNESS with the optional optimisation packages WITNESS 

Optimizer, ARENA with the additional package OptQuest for Arena [7], SIMPROCESS and 

SIMUL8 with OptQuest optimisation technology [8]. 

1.2.1 A Context for Simulation in Manufacturing Systems 

The application of manufacturing simulation focuses on modelling the behaviour and the 

structure of manufacturing organisations, processes and systems. Simulation in a 

manufacturing system can be used at different phases of manufacturing system lifetime and 

at different system levels as depicted in figure 1.1. Traditionally, simulation has been used in 

the planning and design phase dating back to the beginning of the 1960’s [26]. Today 

simulation models are used in all phases of life cycle and at all system levels (see figure 1.1) 

[19]. Recent developments indicate approaches that also use simulation as an integral part of 

real time machine control [23] [24] [28].   
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Figure 1.1 Modelling and simulation of Manufacturing Systems (source [19]) 

A broad variety of simulation tools are available for manufacturing systems. Historically 

they can be classified into two major types: simulation languages and application-oriented 

simulators [26]. Simulation languages are very general. Models are created by coding their 

behaviour and structure and are similar to a general computer language. Simulation 

languages provide very high flexibility in model creation but are complex in use for non-

scientists and non-engineers. Application-oriented simulators specialise in a given 

application class. Models are often developed with a graphical user interface based on 

components, dialog boxes, context menus etc. This eases model development for non-

technical users but could lead to reduced flexibility for specific problems [26]. Recent 

developments indicate that both types are adapting typical characteristics of the other e.g. a 

simulation language can use a graphical modelling user interface to internally produce code 

which can be manually altered later. 

 In summary it is possible to differentiate between general purpose and application-

oriented simulation packages. The first are general packages but may have special features 

for certain application. Examples of general-purpose simulation packages are Arena, 
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AweSim, Extend, GPSS/H, Micro Saint, MODSIM III, SIMPLE++, SIMUL8, SLX and 

Taylor Enterprise Dynamics Developer. Examples of application-oriented simulation 

packages for manufacturing  are Arena Packaging Edition, AutoMod, AutoSched, Extend + 

MFG, ProModel, QUEST, Taylor Enterprise Dynamics Logistics Suite and WITNESS. 

Short overviews about the above packages and their main feature can be found e.g. in [7] 

[25] [26]. 

 Other classifications of simulation packages exist, e.g. the differentiation between 

continuous and discrete simulation. Few systems are completely discrete or continuous but in 

many systems one is dominant or analysis objectives require the use of a specific simulation 

type. Due to the stochastic nature of systems continuous processes can be approximated by 

stochastic distributions with start and stop events. Hence, a continuous system or sub system 

can be described by a discrete event system. For example, in an automobile assembly line 

simulation discrete events dominate but of course it would be possible to continuously 

describe sub systems e.g. work piece movements. In contrast in a chemical plant continuous 

state changes prevail but the switch of a valve could be modelled discretely. 

 In this research a general, theoretical established, discrete modelling and simulation 

approach is used. Hence the research results are general statements and applicable to generic 

simulation approaches and application specific systems respectively. The Discrete Event 

System Specification (DEVS), used in this research, is a formalism based on discrete event 

models. It supports a modular, hierarchical model construction and claimed to be a general 

and powerful approach in the field of discrete event simulation. The formalism can describe 

models with a formal specification and simulation model execution with generic simulation 

algorithms. 

1.2.2 Aims and Objectives 

The research addresses a fundamental problem of simulation based optimisation. The 

technique is well established but is restricted to the optimisation of system parameters. In 
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using these established techniques model structure is considered to be fixed as the structure 

of model elements is defined during model development before an optimisation experiment.  

As model performance is optimised it may be necessary to redesign the model structure. This 

would conventionally be done manually by an analyst using previous simulation results, 

observations or decisions based on previous experience. This manual process cannot 

guarantee the global optimal solution. The aim of this research is to develop an approach to 

discard the manual changes i.e. to develop a combined, simulation based parameter and 

structure optimisation. 

The objectives are: 

• Carry out a literature analysis on simulation based optimisation and search methods  

• Carry out a literature analysis on the specification and simulation of modular, 

hierarchical discrete events systems, particularly the Discrete Event System 

Specification (DEVS) and DEVS extensions  

• Advance the established approach of a simulation based parameter optimisation to a 

simulation based parameter and structure optimisation 

• Develop a modelling and simulation method based on DEVS and DEVS extensions 

to create a merging formalism which combines advantages of different approaches 

• Investigate model management and model generation methods 

• Investigate appropriate optimisation and search algorithms 

• Validate the research and developed approach using an industrial application 

• Publish the results in peer reviewed journals, at conferences or in other research 

publications 

1.2.3 Cost Reduction with the Aid of Simulation based Optimisation 

The results of this research enable two different possibilities for cost reduction: 

1. With increasingly complex, flexible and reconfigurable manufacturing systems the 

number of possible structure variants increases.  In using established approaches it 
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may be necessary to redesign the model structure between two parameter 

optimisation runs, normally carried out manually by an analyst using previous 

simulation results, observations or decisions based on previous experience. This is 

time consuming and potentially error prone. With this new approach providing 

automatic reconfiguration and optimisation of both model structure and model 

parameters the process becomes shorter and the ability to find an optimal solution 

increases. 

2. Many manufacturing systems have the potential to be optimised. Using existing 

machines, facilities and processes, optimisation could be used to find a new layout 

and system dimension with improved performance. 

The application of this research described in the thesis demonstrates both aspects.  

1.3 Methodology and Structure of the Research 

The four main areas investigated in this research are: 

1. Introduction of simulation based optimisation approaches with regard to an 

extension to a structure optimisation method 

2. Modelling and simulation method based on the Discrete Event System Specification 

(DEVS) 

3. Model management and model generation method using the System Entity 

Structure/Model Base (SES/MB) framework 

4. Employing  the approach with a real life manufacturing problem 

A new approach was established based on the methods 1, 2 and 3. Through the linking of the 

methods and the definition of appropriate interfaces between them they constitute a new 

approach to a combined and automatic simulation based parameter and structure 

optimisation. Figure 1.2 depicts the connections between the investigated areas. 
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Figure 1.2 Research area structure 

1.3.1 Simulation based Optimisation 

Modelling and simulation with integrated parameter optimisation to improve model 

performance is an established technique. In using these established approaches model 

structure is considered to be fixed as the relationships between model elements (machines, 

facilities, conveyors etc.) are defined during model development before the optimisation 

experiment. As model performance is optimised it may be necessary to redesign the model 

structure after the optimisation experiment. This is normally carried out manually and 

repeatedly by an analyst with subsequent optimisation experiments. 

 In established parameter optimisation methods the number of parameters and their 

domains specify the search space. Depending on the optimisation method the search space is 

traversed i.e. the optimisation method needs a specific knowledge about the search space 

bounds. Certain points of the search space are analysed. Each point defines a certain 

parameter value set. The model is initialised with this parameter value set and subsequently 

simulated. 
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 The extension using a structure changing facility means broadening the technique to 

a parameter and structure optimisation. Additional variables with their associated domains 

are describing possible model structure variants. The combination with the set of parameters 

defines the new search space of the extended optimisation problem. Methods to transform 

the set of parameters and structures to a search space definition and vice versa a search space 

point to a model structure and model parameter values are an integral part of the broadened 

technique.  

1.3.2 Modelling and Simulation 

Many different concepts and methods of modelling and simulation exist. This research is 

restricted to the discrete event system specification formalism, characterised by continuous 

time and discrete state changes and modular, hierarchical modelling and simulation. The 

investigated und further developed discrete event system approach is based on DEVS 

introduced by Zeigler [66] [67] [68]. This approach is one of the most developed, theoretical 

well-founded discrete event approaches. DEVS supports the definition of modular, 

hierarchical systems and incorporates well-defined simulator algorithms. 

 A crucial part of the research is the analysis of the discrete event system 

specification and the existing extensions with regard to simulation based parameter and 

structure optimisation and its application in a prototype implementation. Based on the 

Classic DEVS formalism [66] a broad range of publications with several extending 

approaches are available. For the application of this research within the manufacturing 

systems domain certain Classic DEVS extensions were incorporated to establish the 

Extended Dynamic Structure Discrete Event System specification formalism (EDSDEVS). 

Consequently a formal concept for this unified specification was developed. The formalism 

was verified with examples from [66], a benchmark application [18] and industrial 

applications [16] [17]. 
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 This research is a key element of a major search project of the Research Group of 

Computational Engineering (RG CEA), Hochschule Wismar University of Applied Sciences 

Technology, Business and Design1. 

1.3.3 Model Management and Model Generation 

In a further crucial area of the research the following key features of a model management as 

part of a simulation based structure optimisation were developed:  

• Declarative specification of different model structures 

• Definition of a method for external controlled model structure selection  

• Definition of an interface between model selection and model generation 

To specify a set of modular, hierarchical models an approach has to be able to describe three 

relationships: (i) decomposition, (ii) taxonomy and (iii) coupling [52] [66] [69]. 

(i) Decomposition means the approach has to be able to decompose a system called entity 

into sub-entities. 

(ii) Taxonomy means the ability to represent several, possible variants of an entity called 

specialisations.  

(iii) To compose an entity from sub-entities these have to be connected. This is the meaning 

of a coupling relationship. 

The System Entity Structure/Model Base (SES/MB) approach is able to describe these three 

relationships [52], [66], [69]. The original SES/MB approach was developed to assist a 

manual model design process for modular, hierarchical models using a tree like definition 

with different node and edge types and a model base containing basic components. An 

essential demand for an appropriate model management method is the external 

controllability. The SES/MB approach has to be changed to comply with this demand. 

 Based on the adapted SES/MB approach three interfaces around the model 

management method were designed. The first interface is a model set definition based on a 

                                                      
1 Research Group Computational Engineering and Automation, http://www.mb.hs-wismar.de/cea/ 
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XML file structure. This interface is deployed to create a specific SES/MB structure. In 

future extensions the development of a graphical SES/MB modeller based on this interface 

would be possible. The second interface delivers model generation information to a model 

generator. It is based on a XML file structure definition. This interface represents the 

connector to the modelling and simulation method. The third interface communicates with 

the optimisation methods during the initialisation and the optimisation phases:  

1. In the initialisation phase it delivers information about the search space defined by 

the set of all possible model structure and model parameter variants to the 

optimisation method. 

2. During the optimisation phase it receives information from the optimisation method 

about the currently investigated search space point. This information is used to select 

the corresponding model structure and initialises the model parameters. A 

subsequent model structure validation is a crucial part of the model structure 

selection. 

1.3.4 Implementation and Employment 

In this research methods and algorithms were implemented using the MATLAB Scientific 

Computing Environment [58]. 

1. The modelling and simulation toolbox was not started from scratch. A pre-release of 

the modeller and simulator published in [41] was the starting point. These sources 

were adapted to the current MATLAB version with a new object-oriented 

programming principle and were extended step-by-step. Each extension was 

validated with test models for example those introduced in [66]. Each important 

stage of the research was published and subject to peer review [16] [17] [18] [34]. 

A simulation model was implemented as a basis for later optimisation. This 

model uses results, observations, structures, parameter etc. gathered by the author of 

this thesis during several projects which were realised by the supporting company 
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Syntax Software2. The company is a leading production and machine control 

software developer for the photofinishing industry. The final model was validated 

with original production data taken from photofinishing applications implemented 

by the author. 

2. The model management toolbox was developed and tested using conventional 

software engineering techniques. 

3. The optimisation method used the commercial available Genetic Algorithm Toolbox 

[59]. 

4. The research application is based on industrial experience of the author. The germ of 

the idea to optimise structure comes from a project enquiry made by the Kodak 

Photofinishing Department to Syntax Software 6 years ago. The project was not 

realised because Kodak closed their European photofinishing business. 

 To validate the new approach all possible model variants were simulated. The 

simulation results are compared with the result of the automatic structure and parameter 

optimisation. This procedure and its results are described and discussed in chapter 6.   

1.4 Research Outcomes 

The outcomes of this research can be divided into four parts: 

1. Development of an approach for a combined, simulation based model parameter and 

model structure optimisation 

The extension of the established simulation based parameter optimisation by a 

controllable model management is the fundamental idea behind this research. 

Through this inclusion of a model management the optimisation method can 

simultaneously control parameter changes as well as model structure changes to find 

an optimal system configuration. 

2. Development of an Extended Dynamic Structure DEVS Formalism 

                                                      
2 SyntaX Software Inh. Jörn Satow formerly SyntaX Software O.Hagendorf J.Satow GbR, 
Schweinsbrücke 9, 23966 Wismar, www.syntaxsoft.de 
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Classic DEVS and DEVS extensions has been a research topic since more than 30 

years. The extensions have one joint attribute: they are based on the Classic DEVS 

formalism. Hence, the decision on one DEVS extension inhibits the use of 

advantages of another one. In this research selected extensions are combined to 

create to a merging formalism to combine the advantages of different approaches. 

3. Validation of the new approach 

The approach was successfully validated with a simulation based optimisation 

experiment using an industrial application. All variants of the application were 

calculated and the results compared with the optimisation experiment. The global 

optimal result was found with a probability of 47%. With an error of 3% of the 

system performance an optimal result was found with a probability of 68%. To find 

an optimal result, on an average 70% of the search space were analysed. With a 

second experiment the dependency of optimisation results on search method 

configuration was shown. However, the finding of an optimal search method 

configuration was not within the scope of this research. 

4. Publication of results 

Results and intermediate steps have been published in a peer-reviewed journal and 

as a book chapter and have been presented at international conferences. 

1.5 Contribution to Knowledge 

This research has resulted in two novel formalisms: 

1. an approach to extend the established simulation based parameter optimisation to a 

combined simulation based parameter and structure optimisation which 

automatically change system structure and parameter values to improve the overall 

system performance 

2. an Extended Dynamic Structure Discrete Event System Specification (EDSDEVS) 

as an enhancement and combination of the Discrete Event System Specification and 
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some of its different extensions. The EDSDEVS formalism is used as one 

component of the simulation based parameter and structure optimisation approach.  

The contribution and the advantages of this approach are: 

• The approach establishes a structure and parameter optimised model based on the 

definition of a set of model variants. The previous manual steps of changing 

structure to find an optimal system model are now incorporated into an optimisation 

algorithm and thus are automated. 

• Through automation the probability of finding the optimal solution grows 

significantly in comparison to a manual search. 

The contribution and the advantages of the EDSDEVS approach are summarised as follows: 

• fusion of different extensions of the Classic Discrete Event System Specification 

• implementation of modelling and simulation environment for research and teaching 

1.6 Contents of this Thesis 

The thesis is organised into three main sections as depicted in figure 1.3. In chapter 2 the 

simulation based optimisation is introduced, limitations are outlined and the idea of an 

extension of the established technique is developed. Based on this new concept of a 

simulation based parameter and structure optimisation the requirements of several 

algorithms, methods and interfaces are brought out. Essential components of the optimisation 

concept are appropriate model management and modelling and simulation methods.  

 Chapter 3 starts with a short presentation of simulation and simulation model 

taxonomy. The Classic DEVS formalism with the associated formal modelling concept and 

simulation algorithms is introduced. Concepts of selected extensions of the DEVS formalism 

are subsequently shown. The last part of chapter 3 introduces the EDSDEVS formalism as it 

was developed in the scope of this research. The formal concept of EDSDEVS, the dynamic 

behaviour of its components in different situation and simulation algorithms are shown. 
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 Chapter 4 introduces the System Entity Structure/Model Base framework as an 

approach to organise a set of model structure variants based on meta-modelling. In chapter 5 

all aspects of this approach for a simulation based parameter and structure optimisation are 

described in detail. 

1. Introduction

3. Discrete Event 

System Specification
4. Model Management

5. Framework for 

Modelling, Simulation 

and Optimization

6. Application of the 

Research

7. Conclusion

2. Simulation based 

Optimisation 

 

Figure 1.3 Structure of the main sections of the thesis 

 Chapter 6 demonstrates application of the approach with an optimisation example. 

The problem is taken from the industrial experience of the author. The general structure of a 

photofinishing lab i.e. a company for industrial production of photos and related products is 

described together with a daily problem and how this could be solved with the new approach 

of a simulation based optimisation. 

 The thesis concludes with a summary and suggestions for further work. 
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Chapter 2 

Simulation based Optimisation  

Optimisation is an important research topic and has the potential for significant commercial 

application. At the ACM Digital Library [57] the first publications on optimisation were 

published in the early 1950s, ca. 118.000 to date. They cover a very broad range of 

optimisation methods and optimisation applications. In general, the aim of an optimisation 

method is to find an optimal problem solution in a given search space whereas the often 

multidimensional search space defines the complete set of possible problem solutions.  

 Research and application of simulation based optimisation has seen a significant 

development in recent years. A Google search on ‘Simulation Optimisation’ in 2006 found 

over 4.000 entries [2] in comparison a search in 2008 found almost 80.000 entries among 

others articles, conference presentations, books and software. 

 The integration of optimisation techniques into simulation packages has been an 

important requirement for commercial modelling and simulation tools, shown for example in 

comparing two popular simulation textbooks [7] and [25] with previous editions. The third 

edition of Law and Kelton [25], published in 2000, lists five commercial available simulation 

based optimisation tools which did not exist at the time of the second edition of the book, 

published 1991 [15]. 

 The following chapter introduces the ideas of combining modelling and simulation 

with optimisation methods. It concludes with the introduction of the new simulation based 

parameter and structure optimisation approach developed in this research. 
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2.1 Introduction  

In retrospect a disadvantage of modelling and simulation is the missing optimisation 

capability. For many years, simulation experiments as shown in figure 2.1 have been state of 

the art. An analyst creates a model e.g. based on a real system, transforms the model to an 

executable model and executes a simulation with it. After a review of simulation results the 

model configuration, i.e. model parameters and/or model structures has to be manually 

changed by an analyst, when necessary. Using a manual procedure only a relative small 

number of system configurations can be examined until a suitable solution is chosen. It is not 

possible to guarantee the detection of an optimal or near optimal system configuration and 

the manual effort to find a solution can be considerable. 

 

Figure 2.1 An example of an conventional simulation experiment 

Through the combination of modelling and simulation with optimisation methods to a 

simulation based optimisation method this manual procedure can be partly automated. 

Mathematical optimisation generally means establishing a function minima or maxima. 

Simulation based optimisation means finding the best model configuration by minimising a 
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function of output variables estimated with a simulation method [56]. Important prerequisites 

are the availability of: 

• suitable modelling and simulation methods 

Modelling and simulation as well as model and model parameter have to be strictly 

separated. With the combination of optimisation and simulation an optimisation 

method needs capabilities to influence the model configuration.  

• suitable optimisation methods 

Figure 2.2 shows a classification of optimisation methods, identified during this 

research, many others and more completed classifications exists in the optimisation 

literature. Enumerating or calculus based optimisation methods are suitable when the 

search space is small enough and the problem is analytically solvable respectively. If 

the problem complexity is large, often search based algorithms are more appropriate. 

Problem descriptions with a stochastic component are another crucial reason to use a 

search based optimisation method. Because of the typical stochastic character of a 

simulation calculus based optimisation methods are not appropriate for a simulation 

based optimisation. 

• sufficient computing power 

Simulation based optimisation is typically used when the number of different model 

configurations is large. This is often accompanied with complex model structures. 

Both results in considerable quantity of computing time while searching for the 

optimal model configuration. 

Descriptions of established and new simulation based optimisation approaches follow in 

sections 2.2 and 2.3. 
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Figure 2.2 Classification of optimisation methods 

2.2 Parameter Optimisation 

An established approach to simulation based optimisation is simulation based parameter 

optimisation. The overall goal of this optimisation approach is the identification of improved 

settings of user selected model parameters under control of performance measures. There is a 

extensive and varied body of literature on this topic that includes several tutorials, reviews 

and summaries of the current state of the art (e.g. [4], [6], [14], [32], [55], [56]). Law and 

Kelton describe in [25] commercial available simulation tools with integrated optimisation 

techniques using this approach of simulation based parameter optimisation. Figure 2.3 shows 

a principle example of a simulation based parameter optimisation experiment. The procedure 

to create an executable model follows the procedure described in figure 2.1. A crucial 

difference is the detachment of model and model parameters. Based on this detachment the 

optimisation method is able to alter the model parameter set to improve the result of an 

objective function. The objective function measures the model performance with current 

model parameters i.e. improving the objective function result means improving the model 

performance. Model parameter adjustments are carried out in a loop until a stop criteria is 

fulfilled. Examples of stop criteria are (i) going below a minimum alteration rate or (ii) 

exceeding the maximum number of optimisation cycles. The result of a successful 

optimisation experiment (example criterion (i) fulfilled) is a parameter optimised model. 
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Figure 2.3 An example of a simulation based parameter optimisation experiment 

  

According to [56], a simulation based parameter optimisation problem O with a set of m 

deterministic model parameters X = {x1, ... xm} can be formally described as follows: 

• A parameter set X = {x1, ... xm}   has the domain set D = {d1 … dm} 

• The multidimensional (one for each parameter) search space S is defined by  

S = {s = {v1 . . . vm} | vi ∈ di} 

• A set Y is the output set defined by Y = {y1 . . . yn} = Y(X) and estimated by 

simulation. Simulation experiments are often based on stochastic model properties. 
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Hence the output set Y is stochastic. 

• The objective function F establishes a single stochastic value from stochastic output 

set Y : F = F(Y(X)) → ℜ+. The result of the objective function is a measure of the 

current model performance. 

• Because of the stochastic nature of Y and consequently of F, an estimation function 

R, the simulation response function defined by R(X)=E(F(Y(X))), is optimised, i.e. in 

the scope of this approach it is minimised. 

• Depending on optimisation problem and analysis required the exchange of the last 

two steps, evaluation of objective function F and simulation response function R, 

can save computational effort. Hence, the simulation response function is defined by 

R(X) = E(Y(X)) and subsequently the objective function by F(X) = F(R(X)). 

Each parameter set Xi ∈ S can be seen as a possible solution of O. The optimisation method 

has to search the search space S to find the parameter set Xopt ∈ S with E(F(Y(Xopt))) ≤ 

E(F(Y(Xi))) ∀ Xi ∈ S. The resulting parameter set Xopt is considered the global optimum of O.  

This approach is restricted to automated parameter optimisation. It is important to 

note that automatic structure changes during optimisation are not possible with this 

approach. Instead, structure changes are carried out manually by an analyst and each manual 

structure change requires a repetition of the automated parameter optimisation.  

2.3 Parameter and Structure Optimisation 

The extension of the optimisation approach with the ability to also change model structures 

to improve system performance is a development of the idea introduced in section 2.2. This 

extension is mainly directed towards a simulation based structure and parameter optimisation 

as presented in figure 2.4. The approach of a simulation based parameter and structure 

optimisation differs in the following extensions or modifications from the simulation based 

parameter optimisation depicted in figure 2.3: 



Chapter 2. Simulation based Optimisation 

 

[24] 

• An analyst does not generate a single model of the real system. In this case he has to 

organise a set of models. One way of achieving this is to define a model that 

describes a set of model variants instead of one single model of the system under 

analysis. Models that define the creation and interpretation of a set of models are 

named meta-models. If a model is the abstraction of an aspect of the real world, a 

meta-model is yet another, super-ordinate abstraction of the model itself. That is 

when a model describes the behaviour and structure of a real system then a meta-

model describes the behaviour and structure of different models that all describe the 

behaviour and structure of the same real system in a slightly different way. 

• The model management organises the set of model structures and provides a model 

selection method. 

• The model selection is controlled by a superior optimisation. The selection method 

delivers the selected model structure information to a model generator which 

generates an executable model. The parameter transfer and the simulation match the 

simulation based parameter optimisation depicted in figure 2.4. 

• The objective function receives simulation results to estimate the performance of 

current model structure and parameters similar to the approach depicted in figure 

2.4. Information generated by the model selection method can be additionally used 

to establish the model performance. 

• The optimisation method investigates the search space with simultaneous model 

parameter and model structure changes without a manual involvement. The intention 

of the optimisation method is the finding of a model structure and model parameter 

set where the objective function delivers the global optimum value, in most instances 

the global minimum. 



Chapter 2. Simulation based Optimisation 

 

[25] 

 

Figure 2.4 Components and steps of a simulation based parameter and structure optimisation 

experiment 

A prerequisite for an optimisation is the definition of a search space. In the approach 

presented here, the search space is multi-dimensional as a result of the combination of model 

structure and model parameter variants. During the optimisation loop several points of the 

search space are examined. Each point defines a model structure with an appropriate 

parameter set. The extension of the formal description of a simulation based parameter 

optimisation problem O, defined in section 2.2, to a combined simulation based structure and 

parameter optimisation leads to O*: 

• The model parameter set XP and its domain set DP, in section 2.2 defined as X and D, 

are extended by structure parameter set XS and its domain set DS. The extended set 
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definitions are: X*
 = XP ∪ XS = {xP1 . . . xPm, xS1 . . . xSn} and 

D
*
 = DP ∪ DS = {dP1 . . . dPm, dS1 . . . dSn} with m model parameters in set XP and 

n structure parameters in set XS. The sets XP and DP are defined by the current model. 

The model management has to provide the sets XS and DS by analysing the meta-

model. 

• The multi-dimensional (one for each parameter) search space S = SP ∪ SS is spanned 

by sets of model parameter and structure variants. 

• The objective function F* is defined by F*
(Y(X

*
),P(XS)) with simulation results 

Y(X
*
)=Y(XS ∪ XP) and results based on structure related variables P(XS) which are 

established during the model selection. Because of the stochastic nature of the 

simulation results Y(X
*
) an estimation function R, the simulation response function, 

is calculated. The results based on structure related variables P(XS) are not 

stochastic. Hence, the simulation response function is defined by R(Y(X
*
)) and 

subsequently the objective function by F
*
(R(Y(X

*
)), P(XS)). 

Figure 2.5 depicts the above formal description of a simulation based parameter and 

structure optimisation framework O* in a schematic diagram. 
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Figure 2.5 Schematic diagram of a simulation based parameter and structure optimisation 

framework 

Further prerequisites of the introduced approach are: 

• The modelling and simulation method with support of modular or modular, 

hierarchical models and a flexible simulation engine are essential parts of the 

framework. A powerful modelling and simulation method is fundamental in two 

different aspects: (i) A strict separation between model and simulator are necessary 

due to the crucial management of a model structure set with a downstream model 

generator and a model parameter transfer. (ii) A flexible and modular, hierarchical 

modelling and simulation method can incredible enlarge the application field and 

ease its use. 

• The cooperation between optimisation, model management, and modelling and 

simulation modules has to be comprehensive. The aim of the cooperation is to 

establish control of both model parameters and model structures by an optimisation 

method. The objective function evaluates simulation results but can also incorporate 
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further information, generated by model management, into the evaluation. The 

additional parameters can be provided by optional variables, summarised during 

model selection as described in section 4.2. The search space definition used by the 

optimisation module is established by the model management module. These 

information exchanges require comprehensive cooperation between the above 

modules.  

• Using combined simulation based structure and parameter optimisation the number 

of variants of different system configurations can be considerable higher than in a 

pure simulation based parameter optimisation and will need more computing power 

than the approach described in section 2.2. 

Through the inclusion of a model management method, the optimisation method can 

simultaneously control parameter changes as well as model structure changes to find an 

optimal system configuration. This new approach significantly enhances the application of 

simulation based optimisation. The extension of the simulation based parameter optimisation 

by a controllable model management and subsequent automatic model generation is a 

fundamental idea behind this research. 

 The modelling and simulation and model management methods take a crucial role in 

this approach. The description of a discrete event modelling and simulation method, and a 

model management method based on meta-modelling follow in the next two chapters. 
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Chapter 3 

Discrete Event System Specification and Simulation 

After a short, general introduction to modelling and simulation this chapter explains the 

DEVS formalism. The Classic DEVS formalism will be introduced together with several 

extensions which are combined to form an Extended Dynamic Structure DEVS (EDSDEVS) 

approach. The chapter concludes with the introduction of the EDSDEVS formalism. The 

EDSDEVS modelling and simulation approach with its advanced, modular, hierarchical 

model definitions and flexible simulation algorithms plays a major role in the new simulation 

based optimisation approach. 

3.1 Introduction 

A simulation is the imitation of the behaviour and the structure of a real-world system. The 

behaviour and the structure of the system are studied by developing a simulation model and 

performing experiments with it. During an experiment the model is executed within a 

simulation environment by a simulator. The model is usually created by taking assumptions 

concerning the function of the system, its attributes and structures. The complete system is 

split into several entities with relationships defining connections between them. A more 

complex system can be split in a hierarchical manner i.e. an entity can be segmented into 

sub-entities which themselves can be again segmented into sub-entities. The entities are 

expressed in a mathematical, logical or symbolic form. Once developed and validated a 

model can be used to perform a variety of analysis concerning the real-world process or 
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system. Analysing experiments can change the behaviour or the attributes of a certain entity, 

the relationship between entities or sending changed inputs to the model. 

It is possible to summarise as follows and as shown in figure 3.1: 

• Modelling and simulation is the imitation of a real-world system. 

• The model tries to describe real-world behaviour through states, state-transitions and 

attributes. 

• The model tries to describe the real-world structure throughout partitioning into sub-

entities. Subject to the modelling formalism, the structure can be defined 

hierarchically. 

• The model interacts with its environment based on inputs and outputs. 

 

Figure 3.1 A real-world process or system and its model (source [1]) 
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 Under some circumstances, a model can be developed based on mathematical 

methods only e.g. by the use of differential equations, algebraic methods or other 

mathematical techniques. However, many real world systems are to complex to be modelled 

using mathematical expressions. In these cases, numerical, computer based modelling and 

simulation can be used to analyse the behaviour and the structure of real word systems [7]. 

 Many different concepts and methods for modelling and simulation exist. Ören [33] 

classifies different types of simulation models with several criteria. One of the various 

possible classifications is to use the two criteria - time change and state change [48]. Discrete 

event models are a combination of continuous time and discrete state changes as shown in 

figure 3.2. The choice of whether to use discrete state changes, continuous state changes or a 

combination of both depends on the characteristics of the system under investigation and the 

objectives of the study.  

 

Figure 3.2 Simulation model taxonomy (source [48]) 

The Discrete Event System Specification (DEVS) is a formalism based on discrete event 

models. It supports a modular, hierarchical model construction and claimed to be a general 

and powerful approach in the field of discrete event simulation [66] [67]. 

 For modelling and simulation and particularly with DEVS the term formalism is 

used with a specific meaning. A modelling formalism can be described by two parts: (i) 

formal model specification and (ii) simulation algorithms to execute the model [53]. The 
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formal mathematical specification describes model structure and behaviour. The simulation 

algorithms specify methods to execute any model that is described in accordance with the 

formal model specification. 

3.2 Discrete Event System Specification 

The DEVS formalism was first introduced by Zeigler [68] in the 1970s. In [66] the authors 

classify this formalism, position and compare it with other, more established modelling and 

simulation formalisms. Several international research groups are working on the DEVS 

formalism and are regularly publishing results at the annual DEVS Symposium at Spring 

Simulation Conferences. Wainer [62] maintains a list of available DEVS tools. The DEVS 

formalism is, in contrast to other modelling and simulation formalisms, not very widely used 

in industrial practice. This situation exists despite the fact that the theory is a well-founded, 

general formalism. It can only be assumed that one reason of the marginal acceptance is the 

type of available software tools [34].  

 Since its first publications, in [68] the formalism has been enhanced and many 

extensions have been introduced. To differentiate among them the original formalism is 

termed Classic DEVS.  

3.2.1 Classic DEVS Modelling 

DEVS is a modular, hierarchical modelling and simulation formalism. Every DEVS model 

can be described by using two different model types, atomic and coupled. Both model types 

have an identical, clearly defined input and output interface. An atomic model describes the 

behaviour of a non-decomposable entity via input/output events and event driven state 

transition functions. A coupled model describes the structure of a more complex model 

through the aggregation of several entities and their couplings. These entities can be atomic 

models as well as coupled models. Due to the identical interfaces and the complete 

encapsulation of a model, a coupled model cannot differentiate between the different model 
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types of its sub components. A coupled model does not need and does not even have any 

information about the type of its sub-entities. The internal structure of each sub model is 

completely encapsulated and separated from its parent. Due the possibility that several 

entities together create a new entity which itself can be again part of another super-ordinate 

entity the formalism is termed ‘closed under coupling’. Thus, the construction of modular, 

hierarchical models is possible [66]. 

 

Figure 3.3 DEVS model example 

Figure 3.3 shows a DEVS model example:  

• Structure description: 

The structure of the real-world system is depicted by the structure of the DEVS 

model i.e. the aggregation of entities and sub-entities and their directed coupling 

relations. The top most model i.e. the root model depicts the real-world system with 

an interface to its environment. This external interface is defined by the input and 

output ports of the root model. The environment is modelled in an Experimental 

Frame as described in [11] [66]. An Experimental Frame makes the analysis of the 

modular, hierarchical model possible, generates input events and analyses the output 

events. The sub-entities input and output ports are connected over directed couplings 
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with other sub-entities input and output ports and with the output port of the super-

ordinate coupled model, respectively. Each atomic and coupled model has one input 

and one output port. Depending on source and destination port the coupling relations 

are named: 

o external input coupling (EIC) with the input port of a super-ordinate coupled 

model as source and one or more sub-entities as destination 

o external output coupling (EOC) with the output port of a sub-entity as 

source and the output port of a super-ordinate coupled model as destination 

o internal coupling (IC) with output and input port of sub-entities as source 

and destination 

Example: 

The coupled model CM1 in figure 3.3 is the top most model i.e. the root model. 

The root model has an external interface with input and output ports to handle or 

create external input and output events received by or sent to the experimental 

frame. It contains one atomic model am1 and one coupled model CM2. The 

coupled model CM2 consists of two atomic models am2 and am3. As an EIC the 

input port of CM1 is connected to the input port of am1. As an EOC the output 

port of CM1 forwards events sent from the output port of am1. ICs are the 

connections between the output port of am1 and the input port of CM2, output 

port of CM2 and the input port of am1 and output port of am3 and the input port 

of am2. 

• Behaviour description: 

The behaviour of a real-world system and sub system, respectively, is depicted by an 

atomic model and its internal states, input/output events and event driven state 

transition functions. At its input port it can receive external input events. An input 

event is handled by an external state transition function. This function can 

immediately but indirectly induce an internal event and subsequently an internal 
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transition. With time controlled internal transitions an atomic model can react to 

time events. Internal events are scheduled by a time advance function and their state 

transitions are handled by an internal state transition function. After each external 

and internal event the time advance function is called to schedule the next internal 

event. With output events send from an output port the atomic model can influence 

other entities connected to this port or create the output event of the super-ordinate 

coupled model. Output events are created by an output function which is firstly 

executed during internal event handling before calling the internal state transition 

function. 

Example: 

The atomic model am1 in figure 3.3 executes the external state transition function 

δext when it receives an input event. After initialisation and after each event 

handling the next internal event is scheduled with the time advance function ta. 

During the internal event handling by model am1 the internal state transition 

function δint is called. Before the function δint is called an output event can be 

created by executing the output function λ. 

• Event handling: 

All input events are received over the input port regardless of event source and type. 

All output events are sent over the output port regardless of event type. An event 

received at an input port of a coupled model is forwarded to the connected sub-

entity(s). An event send to an output port of a coupled model by a sub-entity is 

received and handled by the super-ordinate coupled model. An event send by a sub-

entity to one or more sub-entities of the same coupled model is routed by this 

coupled model from sending output to receiving input port.  

Example: 

When CM1 in figure 3.3 receives an event at its input port it is forwarded over 

the EIC to am1. When CM2 forwards an output event to its output port, the event 
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is forwarded to the input port of am1 over the IC. When am1 generates an output 

event at its output port this event is forwarded to CM2 due to an IC and 

simultaneously it represents an output event of CM1 due to an EOC. 

3.2.2 Formal Concept of Classic DEVS Modelling 

The Classic DEVS formal description defines coupled and atomic models as a combination 

of sets and functions. The description of an atomic model is a 7- tuple [66]:  

AM = (X, Y, S, δext, δint, λ, ta) 

• X, Y and S specify the sets of discrete inputs, outputs and internal states. 

• δext: Q × X → S where Q = {(s,e) | s ∈ S, 0<e<tnext ,
 
elapsed time e = t - tlast} 

The external state transition function δext handles external input event at time t. It can 

induce an internal transition with a rescheduling of the time of the next internal 

event. The time of the external input event is stored in tlast. 

• δint: S → S  

The internal state transition function δint can establish a new internal state. The 

execution of output function λ and internal state transition function δint is induced by 

a time driven internal event. The time of an internal event is established by the time 

advance function ta. The time of the internal event is stored in tlast. 

• λ: S → Y 

The output function λ can generate an output event. If and which output event is 

generated depends on the internal state S.  

• ta: S → ℜ�
�

 ∪ ∞ 

The time advance function ta schedules the time of the next internal event after each 

state transition.  

Figure 3.4 shows the dynamic behaviour of an atomic model. Listing B.1 in appendix B 

shows a pseudo code skeleton of an atomic model. 
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Figure 3.4 Dynamic behaviour of an atomic model 

The description of a coupled model is a 9-tuple [66]:  

CM = (dn, X, Y, D, { Md }, EIC, EOC, IC, SELECT) 

• dn specifies the name of the coupled model. 

• X and Y specify the sets of discrete inputs and outputs. 

• D specifies the set of sub component names. 

• Md
 
| d ∈ D 

Md is the model of the sub component d 

• EIC, EOC and IC are the sets of external input, external output and internal 

couplings. 

• The SELECT function prioritises concurrent internal events of sub components. 

The figure 3.5 depicts the relations of the elements of a Classic DEVS coupled model. 

Listing B.2 in appendix B shows a pseudo code skeleton of a coupled model. 
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Figure 3.5 Coupled model elements 

The Classic DEVS approach supports the specification of behavioural system dynamics in 

atomic systems and the specification of static component aggregations in coupled systems. It 

is not possible to describe structural system dynamics at the coupled model level, i.e. the 

deletion or creation of components and couplings or changes of interfaces, although all 

necessary structural information is also available during simulation time as is described in 

section 3.2.3. The only possibility to realise a structural system dynamic is to specify it with 

logical constructs at the atomic model level. However, this removes the advantages of 

reusability and model clarity and increases modelling complexity. 

3.2.3 Classic DEVS Simulation 

Beside the formal definition the second part of the Classic DEVS formalism is the 

description of abstract simulator algorithms for the execution of DEVS models. The 

algorithms are named abstract because they are implemented as a general pseudo code. The 

abstract simulator has a modular, hierarchical structure matching exactly the modular, 

hierarchical structure of a DEVS model. A DEVS model can be directly transformed into an 

executable simulator model using abstract simulator elements e.g. as in [48] [66] [67] shown. 

The abstract simulator approach consists of three different elements namely root coordinator, 

coordinator and simulator. The structure corresponds to the hierarchical DEVS model 
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structure except the root coordinator added as the topmost entity. Each atomic model is 

associated with a simulator element and each coupled model is associated with a coordinator 

element.  

 Figure 3.6 shows the transformation of a DEVS model to an executable simulation 

model using associated abstract simulator elements. The two coupled models CM1 and CM2 

are mapped to two coordinator elements. The three atomic models am1...am3 are mapped to 

simulator elements. 

 

Figure 3.6 An example of a Classic DEVS model with associated abstract simulator elements 

The communication between root coordinator, coordinator and simulator instances is 

message based. On top of the hierarchy the root coordinator initiates, controls and ends a 

simulation cycle with different messages. It holds the simulation clock. Each coupled model 

is associated to a coordinator instance. The coordinator instance forwards messages to its 

subordinated coordinator and/or simulator instances. It holds the minimum time of the next 
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internal transition event of its sub components in tnext. Each atomic model is associated with a 

simulator instance. It holds the time of its own next internal events in tnext. It is important to 

note that both coordinator and simulator instances have the same interfaces and receive the 

same messages. Hence, a super-ordinate coordinator does not have to distinguish the type of 

subordinate instances.  

 With this concept one prerequisite of a parameter and structure optimisation 

approach as introduced in section 2.3 is fulfilled. The modular modelling and flexible 

simulation play a crucial role in model management and subsequent model generation.  

Furthermore this concept enables that the modular hierarchical structure of a model 

remains an unchanged part of the computational model during simulation runtime. The 

preservation of the model structure is an essential prerequisite to the dynamic structure 

modelling and simulation concept introduced later in this chapter. This dynamic structure 

modelling and simulation concept fulfils another prerequisite of parameter and structure 

optimisation approach. 

 Figure 3.7 depicts the structure of a Classic DEVS model with the corresponding 

abstract simulator instances. Moreover, the figure presents the different messages types 

passed between the several instances of abstract simulator elements and the subsequent 

DEVS model function calls. Because of complexity and clarity selected situations are shown 

in sections: 

i. (Figure 3.7a) initialisation phase with i-message handling: 

During the initialisation phase model component’s init functions are called because 

of an i-message handling.   

ii. (Figure 3.7b) *-message handling created due to internal event of model am3 with a 

subsequent x-message within the same coupled model: 

The root coordinator advances the simulation clock and a *-message is firstly 

created. The message is sent to the successor coordinator instance of coupled model 

CM1. This coordinator instance determines that the sub component CM2 is 
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responsible for handling this event. Hence, the event is forwarded to the successor 

coordinator instance of CM2. The coordinator instance determines that one of its sub 

components scheduled the event.  The simulator instance of model am3 initiates the 

internal message handling. Due to the current internal state of am3 an output 

message is generated. With the internal coupling am2-am3 the message is received 

as an x-message by simulator instance/model am2. 

iii. (Figure 3.7c) *-message handling created due to an internal event of model am1 with 

a subsequent x-message at different model levels: 

The beginning of the message handling is similar to ii except the generated output 

message is forwarded to another model level over internal and external input 

couplings. 

iv. (Figure 3.7d) *-message handling created due to concurrent internal events of 

models am2 and am3: 

The root coordinator advances the simulation clock and a *-message is firstly 

created. The message is sent to the successor coordinator instance of coupled model 

CM1. This coordinator instance determines that the sub component CM2 is 

responsible for handling this event. Hence, the event is forwarded to the successor 

coordinator instance of CM2. The coordinator instance determines that two sub 

components scheduled the event. The coordinator instance will then call the select() 

function to decide which sub components has a higher priority and forward the 

message to the appropriate simulator instance. The simulator instance calls the 

model functions λ and δint. A result of calling λ could be a y-message sent back to 

the subordinate coodinator instance of CM2. 
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Figure 3.7 An example of a Classic DEVS model with associated abstract simulator 

elements, messages and model function calls during initialisation and simulation phases 

The execution of the simulation model can be subdivided into two phases: initialisation 

phase and simulation phase. Each phase is started and proceeded by several messages passed 

between root coordinator, coordinator and simulator instances:  

• The initialisation phase starts with an initialisation message (i-msg) generated by 

the root coordinator. This message is redirected and handled by each coordinator 
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instance and handled by each simulator instance, respectively. Each simulator 

instance initialises the internal states S of the associated atomic model and 

estimates the time of the first next internal event tnext. Each coordinator estimates 

the minimum time of the first next internal events of all sub components. Due to 

the hierarchical structure of the simulation model the root coordinator instance 

gets the minimum time of the first internal event of all model components from 

its direct successor coordinator after a complete i-msg handling.  

• The simulation phase is started with the first *- message (*-msg) at the minimum 

time of next internal event tnext estimated by the root coordinator as described 

above. The consequence of a *-message are subsequent input and output 

messages (x and y-msg). All simulator instances which received a *- or x-

message can change the time of their next internal event tnext. All coordinator 

instances redirecting a *-, x- or y-message estimates the minimum time of next 

internal events of their sub components. Due to the hierarchical structure of the 

simulation model the root coordinator instance gets the minimum time of next 

internal events after a complete *-message handling. The root coordinator 

instance advances the simulation clock to that time and repeats the complete 

process by sending the next *-message. Advancing the simulation clock and 

message handling is repeated in a loop until the simulation end time tend is 

reached or exceeded. 

The different message types created and handled during initialisation and simulation phase 

have the following characteristics: 

• start-msg(tend) 

The start-message is created and sent only once. It starts the simulation model 

execution with the generation of an i-message.  

• i-msg() 

The i-message starts the model component initialisation at time t=0. The root 

coordinator instance sends one i-message to its direct successor coordinator 
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instance to initialise all model and simulation components. Each coordinator 

instance sends further i-messages to its sub components. 

• *-msg(t) 

A *-message received by a simulator instance starts the processing of an internal 

event by calling the output function λ, internal state transition function δint and 

time advance function ta of the corresponding atomic model. The time of the *-

message is stored in tlast of the simulator instance. The output of function λ is 

sent up to the parent coordinator instance as a y-message. The final execution of 

function ta can cause a new time of the next internal event depending on the 

internal state S of the atomic model and stored in tnext of the simulator instance.  

A *-message received by a coordinator instance is sent to the successor 

simulator or coordinator instance with the appropriate time tnext. For this purpose 

the coordinator instance compares the actual simulation time with a list of tnext-

instance pairs.  The time-instance-pairs of all next internal events of all sub 

components are stored in an event chain of the coordinator instance. Concurrent 

internal events i.e. different sub components have the same tnext are resolved by 

the select function of the parent coupled model. After a complete handling of the 

*-message the coordinator instance estimates the minimum time of next internal 

events of all sub components and stores it in tnext. 

• x-msg(t, x) 

An x-message received by a simulator instance calls the external state transition 

function δext and time advance function ta of the corresponding atomic model. 

The time of the x-message is stored in tlast of the simulator instance. The final 

execution of function ta can cause a new time of next internal event stored in tnext 

of the simulator instance. 

An x-message received by a coordinator instance is redirected to all sub 

components with an appropriate EIC. After a complete x-message handling the 
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coordinator instance estimates the minimum time of next internal events of all 

sub components and stores it in tnext. 

• y-msg(t, y) 

The y-message is created by an atomic model/simulator instance. It is routed by 

the super-ordinate coordinator instance according the coupling relations to other 

successor simulator and/or coordinator instances or to the parent of the super-

ordinate coordinator instance. Receiving simulator or coordinator instances get 

this message as an x-message. 

Listings B.3, B.4 and B.5 in appendix B show pseudo codes of Classic DEVS root 

coordinator, coordinator and simulator. 

3.3 DEVS Extensions 

Extensions of the Classic DEVS formalism expand the classes of system models that can be 

represented by DEVS. Several DEVS extension are introduced e.g. in [9] [38] [48] [60] [62] 

and [66]. At the regular DEVS symposium held at the annual Spring Simulation Multi 

Conferences the current development of DEVS, DEVS extensions and DEVS related 

developments are published. An incomplete list of DEVS extensions recently presented are: 

• DEVS with Ports 

The port extension adds additional input and output ports to atomic and coupled 

models. The approach is introduced later in more detail. 

• Parallel DEVS 

Parallel DEVS (PDEVS) considers concurrent transition events. The approach is 

introduced later in more detail. 

• Dynamic Structure DEVS 

Dynamic Structure DEVS (DSDEVS) enables model structure changes during a 

simulation run. Several partial very different approaches exist. Dynamic structure 

extensions introduced by Barros [9] and Pawletta et.al. [38] preserve the general 



Chapter 3. Discrete Event System Specification and Simulation 

 

[46] 

structure of Classic DEVS modelling and simulation with additions to coupled 

model definitions but unchanged atomic model definitions. Other dynamic structure 

extensions e.g. Uhrmacher with an agent based DEVS [60] introduce more extensive 

modifications. The approach of Pawletta et.al. is introduced in more detail in section 

3.3.3. 

• Symbolic DEVS 

It represents occurring events in a symbolic definition [12]. In conventional DEVS, 

the time base, its operations and relations are performed with real numbers. In 

Symbolic DEVS, the objective is to explore multiple model behaviours 

simultaneously e.g. with a symbolic result of the time advance function [66]. 

• Real Time DEVS 

The DEVS model is developed in a conventional simulation environment. But it is 

executed in real time rather than in model time. The time advance function delivers 

time intervals rather than single values. The interval allows uncertainty when an 

internal event has to take place. 

• Fuzzy DEVS 

Provides another possibility to enable uncertainty into the model set and model 

function definitions. 

The next sections introduce three DEVS extensions in more detail. The chosen extensions 

are used as a basis of the subsequent unifying DEVS formalism introduced as a key element 

of this research. 

3.3.1 DEVS with Ports 

The introduction of ports into the Classic DEVS formalism makes modelling easier and the 

representation of information flow more clearly [66]. In Classic DEVS each model has only 

a single input and a single output port. All events are received and sent over these ports. 

With the port extension, a model has several input and output ports each dedicated for a 
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specific employment i.e. event type. A model can have several output ports which can be 

connected to input ports of other models as shown in figure 3.8. Hence, each event can use a 

dedicated, well defined routing path. The modelling becomes more structured; a model can 

become clearer and better understandable through differentiated interfaces. 
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Figure 3.8 Models with multiple input and output ports 

The formal description of Classic DEVS with Ports largely remains the same except the 

extended definitions of X, Y for atomic and coupled models [66]: 

X = {(p,v) | p ∈ InputPorts, v ∈ Xp} 

Y = {(p,v) | p ∈ OutputPorts, v ∈ Yp} 

• p is the input or output port of the model 

• v is a discrete value 

• Xp and Yp specify the sets of discrete inputs and outputs at port p 

Whereas in Classic DEVS the coupling definitions consist of a sub model name as 

destination and source, respectively, for EIC and EOC and a pair of sub model names for IC 

the port extension necessitate a coupling definition extension, too: 

• EIC = { (input_port, d.input_port) | input_port ∈ InputPorts, d ∈ D, 

d.input_port ∈ InputPorts of Md } 

The external input coupling definition of a coupled model is a set of pairs of an input 

port name of the coupled model itself and an input port name of the destination sub 

model. 
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• IC = { (di.output_port, dk.input_port) | di,dk ∈ D, di.output_port ∈ OutputPorts of 

���
, dk.input_port ∈ InputPorts of ���

, i<>k } 

The internal coupling definition is a set of pairs of an output port name and an input 

port name of sub models. 

• EOC = { (d.output_port, output_port) | d.output_port ∈ OutputPorts of Md, d ∈ D, 

output_port ∈ OutputPorts} 

The external output coupling definition of a coupled model is a set of pairs of an 

output port name of source sub component and an output port name of the coupled 

model itself. 

Listings B.6, B.7 and B.8 in appendix B show pseudo codes of an example Classic DEVS 

with Ports atomic model and pseudo codes of simulator and coordinator. Differences to the 

Classic DEVS pendants are marked in bold face type. 

3.3.2 Parallel DEVS 

Parallel DEVS (PDEVS) was introduced by Chow and Zeigler [13]. It adds new elements 

and functions to the Classic DEVS formalism. It allows all imminent components to be 

activated and enables sending their output to other components at the same time 

concurrently. Multiple outputs are combined in a bag which is sent as a whole to a model’s 

external state transition function. A bag is similar to a set, containing an unordered set of 

elements, but allows multiple occurrences of an element. In Classic DEVS by contrast events 

are handled individually. In PDEVS during the *-message handling firstly all outputs are 

established before calling external and internal state transition functions. Each receiving 

component is responsible for examining and interpreting its combined inputs in the correct 

order. PDEVS gives the atomic model more control over the handling order of concurrent 

external and internal events. In Classic DEVS a super-ordinate component, the coupled 

model, is responsible for the execution order of concurrent internal events of different sub 
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components using the select function. In PDEVS the order of simultaneous events is locally 

controllable at atomic model level with an additional, third state transition function, the 

confluent transition function δcon. Hence, it merges the decision logic of execution order of 

concurrent events with the event handling functions at same level. Apart from that, there is 

no difference in the principle of event handling to that described in section 3.2. 

According to the extensions of PDEVS an atomic model is defined by the following 8- tuple 

[13]:  

AM = (X, Y, S, δext, δint, δcon, λ, ta) 

• X, Y and S specify the sets of discrete input events, output events and sequential 

states.  

• δext: Q × X
b
 → S where X

b
 is a bag covering elements of X and Q = { (s,e) | s ∈ S, 

0<e<tnext, elapsed time e = t - tlast } 

The external state transition function δext handles a bag covering external inputs 

X
b

 = {xi | xi ∈ X}.  

• δint: S → S  

The internal state transition function δint establishes a new internal state. The 

execution of output function λ and internal transition function δint is induced by a 

time driven internal event. The time of an internal event is established by the time 

advance function ta. 

• δcon: S × X
b
 → S 

The confluent transition function δcon handles the execution sequence of δint and δext 

functions in case of concurrent external and internal events.  

o The definition δcon (s, X
b
) = δext(δint(s), 0, X

b
) with δext(s, e, X

b
) of the 

confluent transition function is equivalent to the Classic DEVS behaviour 

with a higher prioritised internal event handling. 
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o The alternative defintion δcon(s, X
b
) = δint(δext(s, ta(s), X

b
)) with δint(s) of the 

confluent function firstly handles external events.  

o The execution of the confluent function with an empty bag δcon(s, null) calls 

directly the internal transition function δint. 

• λ: S → Y
b where Y

b
 is a bag covering elements of Y 

The output function λ can generate a bag covering outputs Yb = { yi | yi ∈ Y }. The 

generated output depends on the internal state S. 

• ta: S → ℜ�
�

 ∪ ∞ 

The time advance function ta schedules the time of the next internal event after each 

state transition.  

The figure 3.9 shows the dynamic behaviour of an atomic PDEVS model in a situation with 

concurrent external and internal events. Due to the concurrent events the confluent transition 

function δcon is called. Depending on the specific implementation of function δcon sequence a) 

or sequence b) is executed. 
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Figure 3.9 Dynamic behaviour of an atomic PDEVS model  

The definition of a coupled model for PDEVS is the same as for Classic DEVS except for 

the absence of the select function [13]: 

CM = (dn, X, Y, D, { Md }, EIC, EOC, IC) 
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The generation of an executable PDEVS model is carried out similarly to Classic DEVS i.e. 

the same coupling of atomic models with simulator instances and coupled models with 

coordinator instances and the perpetuation of the original hierarchical model structure. 

Listings B.9 and B.10 in appendix B show pseudo codes of an example PDEVS atomic 

model and a PDEVS simulator. Differences to the Classic DEVS pendants are marked in 

bold face type. 

3.3.3 Dynamic Structure DEVS 

Several approaches extend the Classic DEVS to Dynamic Structure DEVS (DSDEVS). 

Barros [9] [10] and Pawletta et.al. [42] introduce two DSDEVS variants with an extension of 

the coupled model definition while the atomic model definition remains unchanged. With 

theses extensions the coupled model is able to change its structure during simulation time. 

Uhrmacher et.al. [60] introduce an agent based approach. It defines extensions for both 

atomic and coupled systems. Another approach is Cell-DEVS, a combination of cellular 

automata with the DEVS formalism where each cell consists of a single DEVS model [63].  

 The different types of extensions are carried out due to different application fields or 

problem definitions e.g. a typical Cell-DEVS application field is social and environmental 

modelling and simulation. The approaches of Barros and Pawletta are extending the classic 

formalism without changing its overall principle and thus the general application field of 

Classic DEVS. This research is restricted to and continues the research of Pawletta. This 

DSDEVS approach is introduced in detail in the following. 

DSDEVS by Pawletta enables several types of structural dynamics: 

• creation, destruction, cloning and replacement of sub components 

• exchange of a sub component between two coupled models 

• changing coupling definitions of a coupled system 

Figure 3.10 shows an example of structure changes, the creation of a sub model with an 

additional extension of the coupling definition.  
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Figure 3.10 Examples of structure changes at coupled model level 

Pawletta et.al. have introduced an extension of Classic DEVS to enable structure variability 

during simulation time [38] ... [45] firstly named Variable Structure DEVS. To avoid name 

and abbreviation confusions the name of this approach was changed to Dynamic Structure 

DEVS (DSDEVS) in later publications [34] et seqq. The approach extends the coupled 

model definition but the atomic model definition stays unchanged. During the simulation 

time a coupled model can change its structures. Each structure can be seen as a structure 

state si with s0, s1, ...,sn ∈ SDS. A single structure state si describes the structure relevant 

elements of a coupled model i.e. it defines sub components with their couplings, the sets of 

input and output events together with the concurrent internal event handling function select. 

A structural change of a coupled model means the modification of the current structure state. 

Additionally a structural state set HDS can store further structure information e.g. the number 

of structure changes at the present time or the current structure number. External or internal 

events, handled by the additional state transition functions δx&s and δint at coupled model 

level, induce structure state changes and as a result model structure changes. This dynamic 

structure extension of Classic DEVS was developed with a regard to hybrid systems, i.e. 

systems with continuous and discrete event dynamics. In the following only the relevant 

aspects for discrete event systems are taken into account. 

A DSDEVS coupled model is defined by the following 6-tuple [38]: 

CMDS = (dds , SDS , δx&s , δint , λ , ta) 

• dds specifies the name of the coupled model. 
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• According to the above definition of a coupled model, its structure consists of sets of 

sub components and coupling relations. Structure changes means modifications of 

these sets. Obviously, the sets of sub systems and coupling relations could be 

interpreted as a structure state. The set of sequential structure states 

{s0, s1, ...,sn} = SDS defines all structure variants of the variable structure coupled 

model CMDS. Structure state changes can be induced by handling external or internal 

events of the coupled model itself or by state events i.e. output events of 

subordinated components. A structure state is defined by a 9-tuple: 

si = (X, Y, HDS, D, { Md
 
}, EIC, EOC, IC, select) 

• X and Y specify the sets of discrete input and output events. The sets exactly 

match the sets X and Y in Classic DEVS.  

• The set HDS represents additional structure related state variables. They are 

equivalent to the state set S of an atomic model.  

• D specifies the set of sub component names. 

• Md | d ∈ D 

Md is the model of the sub component d of the coupled model CMDS. The set 

{ Md
 
} defines all sub components of CMDS. 

• EIC, EOC and IC are the external input, external output and internal 

couplings. 

• The function select prioritises concurrent internal events of the coupled 

model itself and its sub components. 

• δx&s: QDS × X → HDS where QDS = {(h,e) | h ∈ HDS, 0<e<tnext, elapsed time e= t-tlast} 

The external and state transition function δx&s handles external input events and state 

events i.e. output events of sub components. However it is unreasonable to make 

changes in the set of sub components or the coupling relations by this function 

directly. This could lead to ambiguous event handling because external events could 
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simultaneously influence the dynamic of sub components and the structure state. 

Consequently the δx&s function is only allowed to modify structure related state 

variables in the set HDS. However, it can induce a structure state change i.e. a change 

of the model structure by scheduling an immediate internal event.  

• δint: SDS → SDS  

The internal transition function δint can change the structure state si to si+1 and as a 

result induce a structure change of CMDS. The execution of output function λ and 

internal transition function δint is induced by a time driven internal event. The time of 

an internal event is established by the time advance function ta. 

• λ: SDS → Y 

The output function λ can generate output events.  

• ta: SDS → ℜ�
�

 ∪ ∞ 

As with the dynamic of atomic models, internal events are scheduled by the time 

advance function ta. After each state transition the next internal event is established 

by the time advance function.  

The dynamic behaviour of an atomic model is identical to the behaviour in Classic DEVS. 

Figure 3.11 shows the dynamic behaviour of a variable structure coupled model. The figure 

depicts two external input events and one internal event. Reasons for an input event handling 

can be an external input event at the input port of the coupled model itself or an external 

output event at the output port of a sub component Md of the coupled model. The handling of 

both events by the coupled model is identically. As a result of an event the structure related 

state variable set HDS can be changed and with the concluding call of the time advance 

function an immediate internal event can be induced. An internal event is handled by a 

coupled model similar to the internal event handling of an atomic model, i.e. the event 

handling can induce a change of the structure state set SDS, and in this case a change in the 

set of sub components {Md} and/or the coupling sets EIC, IC and EOC.  
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Figure 3.11 Dynamic behaviour of a coupled DSDEVS model 

Examples of sequential model structure changes are shown in figure 3.12 a-d. The following 

definitions of the structure state set describe the insert and change of sub components and 

couplings as a result of internal events and changes of the sequential structure state set 

si ∈  SDS by the function δint. The subsets X, Y and HDS and the select function of a structure 

state si ∈  SDS will not be detailed. 

 

Figure 3.12 Examples of sequential structure changes of a coupled model  

a) Figure 3.12a depicts a coupled model CM without sub components. 

D, { Md }, EIC, EOC and IC are empty sets 
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b) In figure 3.12b the coupled model contains one sub component, the atomic model 

am1, created as a result of the handling of an internal structure event i.e. the 

execution of function δint. 

D = { am1 } 

Md  = { Mam1
 } 

EIC, EOC and IC are empty sets 

c) Figure 3.12c depicts external input and output couplings created as a result of the 

handling of an internal structure event i.e. the execution of function δint. 

D = { am1 } 

Md  = { Mam1
 } 

EIC = { (CM.Input,am1.Input) } 

EOC = { (am1.Output,CM.Output) } 

IC is an empty set 

d) Figure 3.12d depicts the insert of sub component am2 and the change/creation of 

several couplings as a result of the handling of an internal structure event i.e. the 

execution of function δint. 

D = { am1, am2 } 

Md = { Mam1
 , Mam2

 } 

EIC = { (CM.Input,am1.Input) } 

EOC = { (am2.Output,CM.Output) } 

IC = { (am1.Output, am2.Input)} 

3.4 Extended Dynamic Structure DEVS 

Sections 3.2 and 3.3 introduced the Classic DEVS formalism and several DEVS extensions. 

Every extension has its advantages and widens the application field of DEVS in a different 

direction, PDEVS generalises the specification and handling of concurrent events, DEVS 

with Ports enables a more structured modelling and DSDEVS introduces dynamic structure 
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changes at coupled model level during simulation time and significantly eases the modelling 

of larger real systems. The extensions have one joint attribute: they are based on the Classic 

DEVS formalism. Hence, the decision on one DEVS extension inhibits the use of advantages 

of another one. This principle leads to the idea of a merging formalism to combine the 

advantages of different approaches and widen the application field of the resulting 

formalism. In [66] a first step into this direction is undertaken, the introduced PDEVS 

formalism is a combination of the original PDEVS and DEVS with Ports. Further steps into 

this direction are not known. The Extended Dynamic Structure DEVS (EDSDEVS) 

combines Classic DEVS with the extensions: PDEVS, DSDEVS and DEVS with Ports. The 

fusion results in a DEVS formalism with the following main characteristics: 

• Formal model description by sets and functions 

• Exact definition of simulation algorithms 

• Modular, hierarchical and dynamic structure modelling and simulation formalism 

• Dynamic behaviour description at atomic model level 

• Dynamic structure description at coupled model level 

• Exact behaviour definition at critical situations with concurrent events 

• Substantial similarity between real system and model 

The next section introduces the formal concept of EDSDEVS modelling with formal 

descriptions and dynamic behaviour of atomic and coupled models. Section 3.4.2 goes into 

detail of the EDSDEVS simulation concept with abstract simulator algorithms, message 

handling and model function calls. 

3.4.1 Formal Concept of EDSDEVS Modelling 

The EDSDEVS formal descriptions of coupled and atomic models as a combination of sets 

and functions are similar structured as the Classic DEVS formal description as introduced in 

section 3.2.2.  
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An atomic EDSDEVS model is a fusion of PDEVS with DEVS with Port atomic model 

definitions. The atomic EDSDEVS model AMEDS is defined as an 8- tuple:  

AMEDS = (X, Y, S, δext, δint, δcon, λ, ta) 

• X = {(p,v) | p ∈ InputPorts, v ∈ Xp} 

Y = {(p,v) | p ∈ OutputPorts, v ∈ Yp} 

The definitions of both sets are identical to the definitions in DEVS with Ports as 

introduced in section 3.3.1. 

• S specifies the set of internal states and is identical to internal state set S of an atomic 

Classic DEVS model. 

• δext: Q × 	 

 → S with X

b
 = {xi | xi = (p,v), p ∈ InputPorts, v ∈ Xp } and 

Q = {(s,e) | s ∈ S, 0 < e < tnext
 
, elapsed time e = t - tlast } 

The external state transition function δext handles a bag covering external inputs. 

Each input consists of a pair of a discrete input v ∈ Xp and an input port p ∈ 

InputPorts. The set XP is the set of discrete inputs at port p and InputPorts is the set 

of input ports of model AM.  The function δext can induce an internal event with a 

rescheduling of the time of the next internal event. 

This extended definition of δext is a fusion of the δext definitions of PDEVS and 

DEVS with Port. 

• δint: S → S  

The internal state transition function δint can establish a new internal state. The 

execution of output function λ and internal state transition function δint is induced by 

a time driven internal event. The time of an internal event is established by the time 

advance function ta. 

The definition is identical to definition in Classic DEVS. 

• δcon: S × 	 

  
→ S 
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The confluent transition function δcon handles the execution order of δint and δext 

functions during concurrent external and internal events. In spite of the same 

function signature δcon(s, X
b
) the parameter X

b is different to that in the PDEVS 

definition as described in section 3.3.2. Anyhow the three δcon definitions also apply 

here. 

This extended definition of δcon is based on the PDEVS δcon function definition. 

Unlike in PDEVS the function has to handle a bag covering inputs. Each input 

consists of a pair of discrete input and input port. 

• λ: S → Y
b
 with Y

b = {yi | yi = (p, v),  p ∈ OutputPorts, v ∈ Yp} 

The output function λ can generate a bag covering outputs Yb
. In spite of the same 

function signature Yb
 = λ (s) the function result Yb is different to that in the PDEVS 

definition as described in section 3.3.2. The function result is a bag covering outputs 

Y
b
={ yi | yi = (p, v) } each consisting of a pair of discrete output v ∈ Yp and output 

port p ∈ OutputPorts. The set YP is the set of discrete outputs at port p and 

OutputPorts is the set of output ports of model AM.  If and which outputs are 

generated depends on the internal state S. 

This extended definition of λ is based on the PDEVS λ function definition. Unlike in 

PDEVS the function generates a bag covering outputs each consisting of pairs of 

discrete output and output port as introduced in DEVS with Ports. 

• ta: S → ℜ�
�

 ∪ ∞ 

The time advance function ta schedules the time of the next internal event after each 

state transition. The definition is identical to the definition in Classic DEVS as 

introduced in section 3.2.2. 

The figure 3.13 shows the dynamic behaviour of an atomic EDSDEVS model amEDS. At time 

tu the confluent transition function δcon handles two concurrent events. The first event 

contains a bag covering external inputs received by the atomic model amEDS. The figure 
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depicts an example bag covering three external inputs received at two different input ports. A 

concurrent internal event at tu was scheduled by the previous execution of the time advance 

function ta. Depending on the specific implementation of function δcon sequence a) or 

sequence b) is executed. The execution of the output function λ creates a bag covering 

outputs. The depicted example bag ��

 covers two outputs at two different output ports. 

amEDS

ttu

concurrent 

external and 

internal

event at tu

tlast

. 

. 

.

. 

. 

.

},...{ 00 minport xxX = },...{ 00 poutport yyY =

},...{ 0 qoutport yyY
j

=

i,j number of input and output ports

m,n,p,q number of different X and Y events per port

r number of internal states

X
b bag of input events

Yb bag of output events

X
b
u bag of input messages at tu

tu time of concurrent external and internal message

su state at time tu

su,su+1,su+2 ∈ S = {s0, ...sr}

inport0

inporti

Xb={xk | xk = (v,p), 

v Xp, 

p InputPorts}

},...{ 0 ninport xxX
i

=

Yb={yk | yk = (v,p), 

v Yp, 

p OutputPorts}

)},(),,(),,{( 100 inportxinportxinportxX cba

b

u =

a)

b) su+1 = δint(su, tu)

su+2 = δext(X
b
u, su+1, e)

su+1 = δext(X
b
u, su, e) 

with e = (tu - tlast)

su+2 = δint(su+1, tu)

outport0

outportj

example input bag:

su+2 = δcon(su, X
b
u, e) 

calling a) or b) depends on 

specific implementation of δcon

)},(

),,{(

1

0

outporty

outportyY

e

d

b

u =

example output bag:
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Figure 3.13 Dynamic behaviour of an atomic EDSDEVS model 

Listings B.11 in appendix B shows pseudo code of an atomic EDSDEVS model. 

 

A coupled EDSDEVS model is defined by the following 7-tuple: 

CMEDS = (dEDS, SEDS, δx&s, δint, δcon, λ, ta) 

• dEDS specifies the name of the coupled model. 

• In the EDSDEVS formalism the coupled model structure consists not only of sets of 

sub components and coupling relations as in DSDEVS, introduced in section 3.3.3, 
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but also of additional interface definitions i.e. input and output port definitions. The 

set of sequential structure states {s0, s1, ...,sn} = SEDS has to define all structure 

variants of the coupled model CMEDS. Two model structure variants can vary in 

different interface definitions, in contrast to DSDEVS where each model has a non-

variable interface with a single input and a single output port. Hence, a structure 

state has to incorporate interface definitions with sets of input and output ports 

additionally to the structure state definition as introduced in section 3.3.3. An 

EDSDEVS structure state is defined by a 10-tuple: 

si = (X, Y, HEDS, D, { Md
 
}, InputPorts, OutputPorts, EIC, EOC, IC) 

• X and Y specify the sets of discrete input and outputs. The sets exactly match 

the extended definitions of X and Y as introduced in section 3.3.1 with the 

introduction of DEVS with Ports. 

• The sets HEDS, D and Md exactly match the sets HDS, D and Md of the 

DSDEVS formalism introduced in section 3.3.3.  

• InputPorts and OutputPorts specify the sets of input and output port names 

of the coupled model CMEDS. These two elements of the structure state si are 

introduced by the EDSDEVS formalism.  

• EIC, EOC and IC are the external input, external output and internal 

couplings of CMEDS. The definition of the coupling relations exactly match 

the definition as introduced with the DEVS with Ports extension in section 

3.3.1. 

• δx&s: Q × X
b
 → HEDS where Xb

 is a bag covering input, input port pairs and 

Q = {(h,e) | h ∈ HEDS, 0<e<tnext, elapsed time e = t - tlast } 

The external and state transition function δext handles a bag covering inputs. Each 

input consists of a pair of: 
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o a discrete input v ∈ Xp and an input port p ∈ InputPorts. The set XP is the set 

of discrete inputs at port p and InputPorts is the set of input ports of model 

CMEDS.   

o a discrete output v ∈ Md.Yp and an output port p ∈ Md.OutputPorts where Md 

is the model of the sub component d of the coupled model CMEDS. The set 

Md.YP is the set of discrete outputs at port p and Md.OutputPorts is the set of 

output ports of model Md. 

o a discrete input v ∈ Md.Xp and an input port p ∈ Md.InputPorts where Md is 

the model of the sub component d of the coupled model CMEDS. The set 

Md.XP is the set of discrete inputs at port p and Md.InputPorts is the set of 

input ports of model Md. 

This extended definition of δext is a fusion and extension of the δext definitions of 

DSDEVS, PDEVS and DEVS with Ports. In DSDEVS only state events induced by 

output events of sub components are handled. However, an output port can have 

coupling relations to multiple input ports. In this case there is a difference in the 

handling of a single output event of a single source sub model or multiple input 

events of different destination sub models. Hence, the external and state transition 

function of EDSDEVS can handle both output and input events. However, the 

functionality is in accordance with the description of the DSDEVS external and state 

transition function δx&s introduced in section 3.3.3. 

• δint: SEDS → SEDS  

ta: SN → ℜ�
�

 ∪ ∞ 

The internal state transition function δint, and the time advance function ta exactly 

match the functions of the DSDEVS formalism introduced in section 3.3.3. 

• δcon: SEDS × 	 

  
→ SEDS 
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The confluent transition function δcon handles the execution sequence of δint and δext 

functions during concurrent external and internal events.  

The EDSDEVS formalism introduces the confluent transition function also at 

coupled model level due to the fusion of PDEVS and DSDEVS. A coupled 

EDSDEVS model handles external, state and internal events itself instead of only 

forwarding them as in PDEVS. Hence and in contrast to PDEVS, in EDSDEVS 

concurrent external and internal events can occur also at coupled model level. 

Consequently, a confluent transition function to handle concurrent events is also 

necessary at this level. The functionality is in accordance with the description of the 

confluent transition function δcon for atomic model in this section. 

• λ: SEDS → Y
b  

The output function λ can generate a bag covering outputs Yb = {yi}. An output yi 

consists of a pair of discrete output v ∈ Yp and output port p ∈ OutputPorts. The set 

YP is the set of discrete outputs at port p and OutputPorts is the set of output ports of 

model CMEDS.  If and which output event is generated depends on the internal state 

SEDS. 

The output function λ in the EDSDEVS formalism merges three sources: 

o The output function λ at coupled model level is introduced by DSDEVS. 

o The definition of the function creating a bag covering outputs is based on 

PDEVS.  

o The output event structure with pairs of output/output port is introduced by 

DEVS with Ports.  

The figure 3.14 shows the dynamic behaviour of a coupled EDSDEVS model CMEDS. At 

time tu the confluent transition function δcon handles concurrent external and internal events. 

The first event is a bag covering inputs received at input ports by the coupled model CMEDS. 

The figure depicts an example bag covering three external inputs received at two different 

input ports. A concurrent internal event at tu was scheduled by the last execution of the time 
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advance function. Depending on the specific implementation of function δcon sequence a) or 

sequence b) is executed. The execution of the internal state transition function δint can change 

the structure state su to su+1 or su+1 to su+2  and therefore the model structure of CMEDS to 


����
∗ . The execution of the output function λ creates a bag covering outputs ��


. The 

depicted example bag ��

 covers two outputs at two different output ports. 

 Listings B.12 in appendix B shows pseudo code of a coupled EDSDEVS model. 
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Figure 3.14 Dynamic behaviour of a coupled EDSDEVS model 
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3.4.2 EDSDEV Simulation  

The simulation engine for EDSDEVS models is a combination and extension of the 

simulation algorithms of Classic DEVS, PDEVS and DSDEVS. The message handling of 

coordinators are largely similar to simulators. Each coordinator holds its own time of next 

internal event in tnext_c and searches the minimum time of next internal event in tnext of sub 

components and in its own tnext_c. 

 Figures 3.15 and 16 depict an EDSDEVS model example with the associated 

simulation model components i.e. root coordinator, coordinator and simulator instances and 

the message handling. The figure is based on and extends figure 3.7 depicting a Classic 

DEVS model example with associated simulation model components and message handling. 

The overall structure is very similar to the Classic DEVS simulation model execution except 

for additions at the levels of coordinator and associated coupled model. Because of 

complexity and clarity selected situations are shown in sections: 

i. (Figure 3.15a) initialisation phase with i-message handling: 

During the initialisation phase model component’s init functions are called because 

of an i-message handling similar to Classic DEVS. Additionally, after structure 

changes i.e. modification of the sub component set during the simulation phase the 

init function is called too. 

ii. (Figure 3.16b) *-message handling created due to an internal event of model am2: 

The root coordinator advances the simulation clock and a *-message is firstly 

created. The message is sent to the successor coordinator instance of coupled model 

CM1 (not depicted). This coordinator instance compares the actual simulation time t 

with its own next internal event time stored in tnext_c and determines that it is not 

responsible for handling this event. Hence, the event is forwarded to the successor 

coordinator instance of CM2. The coordinator instance is again not responsible for 

handling the message itself but knows that a sub component scheduled the event. 

The coordinator instance will then forward the message to the appropriate simulator 
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instance associated with am2. The simulator instance of am2 calls the model 

functions λ and δint. A result of calling λ could be a y-message sent back to the 

subordinate coodinator instance of CM2. This coordinator instance reacts with the 

call of the model function δx&s of CM2 and a messge forward to the simulator 

instance of am3 due to an appropriate IC coupling. 

iii. (Figure 3.16c) *-message handling created due to an internal event of model CM2: 

The depicted situation is similar to 3.16b except that the coordinator instance of 

CM2 determines that simulation time t and its tnext_c are equal. Hence, it has to handle 

the *-message itself with calling λ and δint model functions of CM2 with the 

possibility of generating a y-message sent to a sub component and/or superordinated 

coordinator instance and of changing its sequential structure state SEDS. 

iv. (Figure 3.16d) concurrent event handling with the confluent transition function δcon: 

The figure depicts the handling of concurrent external and internal messages by the 

coodinator instance of CM2. The confluent function of CM2 is called to handle the 

concurrent messages. Depending on the specific implementation of δcon the external 

transition function δx&s and internal transition/output functions δint, respectively, are 

firstly called.The external message is concurrently handled by the function δcon and 

forwarded to the simulator instance of sub component am2 as a x-message due to an 

appropriate EIC. Calling the output function λ could cause a y-message sent to a sub 

component and/or superordinated coordinator instance. 

v. (Figure 3.16e) x-message handling: 

(i) x-message at input0 of CM2 and due to an appropriate EIC at input0 of am2: 

The first x-message is received by the coordinator instance of CM2. This 

message is handled by the function δx&s of the coupled model itself and 

concurrently forwarded to the simulator instance am2 due to an appropriate 

EIC. Because no concurrent internal event exists the function δcon is not called.  
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(ii) y-message at output0 of am2 and due to an appropriate IC forwarded as x-

message to input0 of am3: 

Due to an internal event the model am2 generates a y-message. This y-message 

is handled by the super-ordinate coordinator instance which calls the function 

δx&s of its associated model CM2. The coordinator instance concurrently 

forwards the y-message as an x-message to the simulator instance of am3 

because an IC exists between the output port output0 of am2 and the input port 

input0 of am3. 

 

Figure 3.15 An EDSDEVS model example with associated abstract simulator elements, 

messages and model function calls during initialisation phase 
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Figure 3.16 An EDSDEVS model example with associated abstract simulator elements, 

messages and model function calls during simulation phase 

 



Chapter 3. Discrete Event System Specification and Simulation 

 

[69] 

Listings B.13 and B.14 in appendix B show pseudo codes of EDSDEVS coordinator and 

simulator algorithms. 

 The EDSDEVS formalism developed from this research is a fusion of Classic DEVS 

with several extensions. It widens significantly the application area. This part of the research 

is an as generic as possible modelling and simulation formalism based on DEVS. Further 

extensions are desirable and essential. To establish a widely accepted modelling and 

simulation approach extensions for parallel computing and graphical modelling are 

necessary. There are also approaches for hybrid DEVS extensions i.e. the support of 

continuous state changes. These proposals are recommended as further research. 
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Chapter 4 

Model Management – Model Set Specification and 

Organisation  

Zeigler introduced in [66] a simulation based system design approach. It is a plan –

 generation – evaluation process. The plan phase organises design alternatives with different 

model structures and model parameters within defined system boundaries to satisfy given 

design objectives. During the generation phase a specific model design is chosen and the 

corresponding model is generated. This model is simulated during the evaluation phase using 

an experimental frame derived from the design objectives. 

 The System Entity Structure/Model Base framework (SES/MB) [52] [66] is such a 

simulation based system design approach. It is specifically configured to define, organise 

and generate modular, hierarchical models and was developed to assist an analyst in model 

organisation and generation. To represent a set of modular, hierarchical models, the SES/MB 

framework is able to describe three relationships: decomposition, taxonomy and coupling. 

Decomposition means the formalism is able to decompose a system object called ‘entity’ into 

sub-entities. Taxonomy means the ability to represent several possible variants of an entity 

called ‘specialisation’. To interconnect sub-entities the definition of a coupling relationship 

is necessary.  

 The literature e.g. [52], [65] [66] and [69] describes slightly different specifications 

of the SES/MB framework. Hence, section 4.1 defines a classic SES/MB framework 

according to [52] and [66] as a basis for further extensions introduced in section 4.2. 
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4.1 Classic System Entity Structure/Model Base Framework 

The SES/MB framework approach is [52] [66]: 

• The framework consists of two parts: (i) the system entity structure and (ii) the 

model base. 

• A modular, hierarchical model is constructed based on: (i) the declarative system 

knowledge coded in a SES and (ii) predefined basic system models stored in a MB. 

• The partitioning of a modular, hierarchical model is highly dependent on the design 

objectives. Model parameters are a typical example. They are not really a part of the 

model composition structure but nevertheless they can become a part of the system 

entity structure if they are crucial for describing design alternatives.  

• The model generation from a SES/MB is a multistage process. The first step is a 

graph analysing and pruning process to extract a specific system configuration. 

Based on this information a modular, hierarchical model is generated. 

The SES is represented by a tree structure containing alternative edges starting at decision 

nodes. With the aid of different edge types and decision nodes a set of different model 

variants can be defined. To choose a specific design and to create a specific model variant 

the SES has to be pruned. The pruning process decides at decision nodes which alternative(s) 

to chose as a consequence of specified structure conditions and selection rules. The result of 

this process is a Pruned Entity Structure (PES) that defines one model variant. A 

composition tree is derived from a PES. The composition tree contains all the necessary 

information to generate a modular hierarchical model using predefined basic components 

from the model base (MB). Figure 4.1 shows the principal organisation and the 

transformation process: SES → PES → Composition Tree + MB → Modular, Hierarchical 

Model. 
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Figure 4.1 SES/MB formalism based model generation 

The used SES definition is based on definitions published in [52] and [66]. A SES is a 

labelled tree consisting of different nodes with optional properties and different edge types. 

Figure 4.2 depicts a SES example which is referenced by the definition.  

 

Figure 4.2 A SES example 

The SES formalism differentiates four types of nodes: (i) entity, (ii) specialisation, (iii) 

aspect and (iv) multi-aspect. An entity node represents a system object. There are two 

subtypes of entity nodes – (v) atomic entity and (vi) composite entity. An atomic entity 

(figure 4.2 (v)) cannot be broken down into sub-entities. The model base contains a 

corresponding model for each atomic entity. Atomic models (described in chapter 3) and 

atomic entities must not be mixed at this point i.e. an atomic entity can also correspond to a 

coupled model in the model base. A composite entity (figure 4.2 (vi)) is defined in terms of 

other entities, which can be of type atomic or composite entity. Thus, the root node of a tree 

is always of type composite entity, while all leaf nodes are always of type atomic entity. The 

root node and each composite entity node of the tree has at least one successor node of type - 
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specialisation (figure 4.2 (ii)), aspect (figure 4.2 (iii)) or multiple-aspect (figure 4.2 (iv)). 

That means there is an alternate mode between entity nodes and the other node types. The 

definition of the different node types can be briefly summarised as follows: 

 
atomic entity node = (name, {av1,… avn},selection constraints} 

composite entity node = (name, successors, {av1,… avn}) 

An entity node is defined by a name and is of type atomic or composite. Both node types 

may have attached variables av. A composite entity node can have a single successor node of 

type specialisation or multi-aspect or multiple successor nodes of type aspect. An atomic 

entity node can have attached selection constraints when it is a successor of a specialisation 

node. 

 
specialisation node = (name, successors, selection rules)  

A specialisation node is defined by a name and a set of successor nodes. In the tree it is 

indicated by a double-line edge. A specialisation node defines the taxonomy of a 

predecessor entity node and specifies how the entity can be categorised into specialised 

entities. A specialisation node always has successor nodes of type atomic entity to represent 

the possible specialisations. A specialisation node can define additional selection rules to 

control the way in which a specialised entity is selected during the pruning process. Selection 

constraints are added to successor entity nodes of a specialisation node. The specialisation 

node A in figure 4.2 has two specialisations defined by the nodes A1 and A2. During the 

pruning process one of these specialisations is chosen. Due to the selection rule at node A2 it 

is mandatory to chose node Bdec1 when node A2 is chosen. 

 
aspect node = (name, successors, coupling specification) 

An aspect node is defined by a name, a set of successor nodes and coupling information. It is 

indicated by a single-line edge in a SES tree. An aspect node defines a single possible 

decomposition of its parent node and can have multiple successors of type atomic and/or 
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composite entity. The coupling specification is a set of couplings and describes how the sub-

entities, represented by the successor nodes, have to be connected. Each coupling is defined 

by a 2-tuple.  Each tuple consists of sub-entity source and destination information, e.g. 

(SourceEntity.outputport, DestinationEntity.inputport). The composite entity B in figure 4.2 

has two decomposition variants defined by the aspect nodes Bdec1 and Bdec2. During the 

pruning process one of the decomposition variants has to be chosen. 

Using SES/MB to describe a DEVS model an aspect node defines the composition of a 

coupled model. 

 
multiple aspect node = (name, successor, coupling specification, number range property) 

The definition of a multiple aspect node is similar to an aspect node. However, it defines 

additionally a number range property and has only one successor node of type atomic entity. 

It is indicated by a triple-line edge in a SES tree. A multiple aspect node also defines a 

decomposition of a composite entity, but all sub-entities have to be of the same entity. Only 

the number of sub-entities is variable according to the attached number range property. The 

multiple aspect node Cmaspec in figure 4.2 illustrates the decomposition of composite entity C 

that may be composed by one, two or three sub-entities L.  

A multiple aspect node also defines the composition of a coupled model. 

 

In figure 4.3 a SES/MB example points up the complete process of model generation from a 

SES/MB to a modular hierarchical model. The SES tree defines a coupled model CM1 with 

two structure variants. The two variants are defined by the specialisation node CM2_spec 

and specialisations CM2.1 and CM2.2. The model base contains several basic components 

which are referenced by the SES. The different possible pruning results are PES variant1 and 

variant2. After a transformation to a composition tree and a model generation, with the basic 

components taken from the model base, the final results are the modular hierarchical model 

variant1 and variant2, respectively. The SES tree does not define selection rules or selection 
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constraints. Hence, an analyst has to use other, external criteria to decide which alternative 

structure should be chosen during the pruning process. 

 

Figure 4.3 Detailed pruning and model generation example 

4.2 Extension of the System Entity Structure/Model Base Framework 

Originally the SES/MB framework was developed to assist an analyst during the model 

variant selection and a subsequent model generation. Pruning as a part of these processes is a 
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stepwise procedure with decisions at decision nodes under the control of selection rules and 

structure constraints. Both rules and constraints represent supplementary 

structure-knowledge as an addition to the structure-knowledge coded in the SES tree. The 

supplementary structure-knowledge is used to support the selection of design alternatives 

and to avoid invalid structures. This knowledge representation is customised to its usage 

during the pruning. The upper part of figure 4.4 depicts the steps of the original pruning 

process.  An analyst initialises attached variables and makes decisions as long as unpruned 

decision nodes exist. A decision at a specific decision node can cause the pruning at other 

nodes according selection rules and structure constraints. The pruning in classic SES is a 

n-step procedure (n is equal or less than the number of decision nodes) with the goal to 

synthesise one valid model configuration. 

 In this research a new pruning principle is introduced. The lower part of figure 4.4 

depicts the steps of the new pruning process. The new process is based on information 

delivered by the optimisation method as depicted in figure 2.5 and is carried out in a single 

step. A structure validation based on structure-knowledge is carried out after the pruning  - 

not during - as in the original SES/MB framework. This important development means that  

the new pruning procedure requires another representation for structure-knowledge 

originally coded in selection rules and structure constraints. The new pruning of a SES tree is 

carried out in one step based on the structure parameter set XSi. The model structure is 

verified in a second, following step. The new pruning algorithm is a 2-step procedure. Figure 

4.4 identifies the differences between the original and new principle. A detailed description 

of the new approach is given in chapter 5. 

 Structure conditions as a new, alternative structure-knowledge representation are 

added to composite entity nodes. They are used as the alternative to selection rules and 

structure constraints as defined in [52] and [66]. During the pruning sub trees are removed. 

The remaining structure conditions are evaluated to verify the PES. Only if all structure 

conditions are true the PES is valid.  
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Figure 4.4 Comparison original pruning – new pruning principle 

Figure 4.5 shows an example SES with a structure condition added to the composite entity 

node ROOT. The SES defines 12 different design variants whereas not all variants are valid 

according the structure condition. The figure depicts two variants, one valid and one invalid. 

If the generated model structure contains the atomic entity nodes A2, D, E, F, L, it would be 

valid because the structure condition p1+p2+1*p3=3+3+1*3<12 is true. The second model 

structure variant contains the atomic entity nodes A2, D, E, F, L, L. It is not valid because the 

structure condition p1+p2+2*p3=3+3+2*3<12 is false. 
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Figure 4.5 SES example with a structure condition 

 Chapter 5 provides the description of the application of the extended SES/MB 

framework. The chapter describes the combination of the introduced EDSDEVS formalism 

and SES/MB approach with an optimisation method to the simulation based parameter and 

structure optimisation as introduced in principle in section 2.3. The descriptions of the 

pruning and the terminal model generation processes, as a part of the SES/MB framework 

description, are provided in the context of other algorithms in chapter 5. 
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Chapter 5 

A Framework for Modelling, Simulation and 

Optimisation 

Chapter 2 introduced the key research concept - simulation based parameter and structure 

optimisation as a merging framework of three methods, optimisation, model management, 

and modelling and simulation. Chapter 3 introduced EDSDEVS as a modular, hierarchical 

modelling and flexible simulation formalism as applied in the framework, and chapter 4 

defines the SES/MB approach as a suitable model management framework. In this chapter a 

complete framework for combined parameter and structure optimisation experiments is 

proposed. After a brief description of the general framework structure, its methods are 

discussed in detail and the entire algorithm is summarised. Finally implementation details to 

describe a SES/MB structure with XML are introduced.  

5.1 General Framework Structure 

A fundamental overview of a simulation based parameter and structure optimisation 

experiment is shown in figure 2.5. A more detailed structure of the framework with concrete 

elements and information flow is depicted in figure 5.1. The interface definitions between 

the three modules are a fundamental part of this approach. They bind the named methods 

together to synthesise a simulation based parameter and structure optimisation.  

On closer examination of the framework it is crucial to divide an optimisation experiment 

into two phases: 
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1. Initialisation phase 

The model management reads and analyses a meta-model. Results of the analysis 

are information about the multidimensional search space (XS, XP, DS ,DP). The 

optimisation module is initialised with this information.  

2. Optimisation phase 

During the optimisation phase the optimisation method explores the search space 

within a loop. Each examined search space point i.e. an ordered set of values 

(	��
, 	��

) is delivered to the model management module. This module starts up the 

processes: structure synthesis, model generation, model simulation and performance 

estimation. The optimisation loop ends when a stop criterion is fulfilled. Examples 

of stop criteria are (i) going below a minimum alteration rate or (ii) exceeding the 

maximum number of optimisation cycles. The result of a successful finished 

optimisation phase is a parameter and structure optimised model. 

 

Figure 5.1 Structure of the simulation based optimisation framework 
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The simulation based optimisation framework is segmented into the following modules, 

methods and interfaces as depicted in figure 5.1: 

1. Model Management Module: meta-model specification 

A meta-model definition is read and interpreted by the model management during 

the initialisation phase. A meta-model is defined in the form of a platform and 

implementation independent XML file. The basic components of a MB are regular 

EDSDEVS model components. They are referenced by the XML file with a model 

name and a model instance name. The result of this step is a data structure with an 

SES tree and references to a MB. 

2. Interface Model Management Module – Optimisation Module: meta-model analysis 

In a second step during the initialisation phase the model management module 

analyses the SES tree and establishes the search space. The search space is defined 

by a set of variables with their domains. These sets XS, DS, XP and DP are sent to the 

optimisation module.  

3. Interface Optimisation Module – Model Management Module: transformation of a  

search space points into a model configuration 

The model management module receives a search space point (XSi XPi) within the 

optimisation loop. The sets XSi and XPi are used to prune the SES, to synthesise the 

model structure and to parameterise the model. The selected model structure and 

model parameters are sent to a model generator as a platform and implementation 

independent XML files. 

4. Model Generation Method 

Based on the received XML file with model structure information and references to 

basic components the model generator creates an EDSDEVS model.  

5. Simulation Method 
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The EDSDEVS model is executed by an EDSDEVS simulator. In this research the 

modelling and simulation method is based on the EDSDEVS formalism. Principally 

this approach is not limited to EDSDEVS or DEVS formalisms exclusively. 

6. Interface Model Management and Simulator – Objective Function 

In this approach the objective function gets both simulation results from the 

simulator and model structure selection results from the model management module 

to establish the performance of the current model structure and parameter set. 

7. Optimisation Method 

The optimisation method establishes the next search space points to examine in a 

loop until the stop criterion is fulfilled. The search space points are chosen based on 

the search space definition and on previous objective function results. 

5.2 Interface: Optimisation Module – Model Management Module 

During the initialisation phase, the Model Management Module has to analyse the SES tree 

to transform formal meta-model structure information into numerical data useable by the 

Optimisation Module. Together with the model parameters the information is sent as 

initialisation data to the Optimisation Module. The information, coded in the four sets XS, DS, 

XP and DP is used to build the set X
*
 = XP ∪ XS and the corresponding domain set 

D
*
 = DP ∪ DS. During the optimisation phase repeated in each optimisation loop cycle the 

optimisation method calculates a numerical data set 	�
∗= XPi ∪ XSi. The set 	�

∗ is sent to the 

Model Management Module, which determines based on this information a new model 

configuration, i.e. a new model structure and initial model parameters. Both transformations 

are described by an example illustrated in figures 5.2 and 5.3.  

 The main task of the first transformation is to convert SES structure information to a 

structure parameter set XS and the corresponding domain set DS. This is done by a tree 

analysis starting at the root node, traversing the tree in a defined direction and considering 

every node. If a node is a decision node, i.e. it is a specialisation node, multiple aspect node 
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or composite entity node with alternative successor nodes, a structure parameter xSi is added 

to the structure parameter set XS and a corresponding domain dSi to the domain set DS. The 

domains of specialisation node and composite entity node are {1, ..., number of variants}. 

The domain of a multiple aspect node is defined by its attached number range property.  

 Two general principles can be applied to traverse the tree: (i) depth-first and (ii) 

breadth-first analysis. An advantage of the breadth-first analysis is the arrangement of the 

variables. If it can be assumed that variant decisions at a higher level of the SES tree have 

larger effects on the overall model structure than decisions near the leafs, a breadth-first 

analysis should be preferred. The breadth-first analysis sorts the elements of XS and DS as 

follows: elements on the left hand side of the ordered set correspond to higher levels of the 

SES; elements on the right hand side correspond to decision nodes nearer the leafs. An 

optimisation method could take this into account. Figure 5.2 illustrates the algorithm for 

creating structure parameter set XS and the corresponding domain set DS based on SES tree 

information. The analysis and XS, DS set build-up order is marked with small sequence 

numbers. 

 

Figure 5.2 Transformation SES → set XS and set DS 
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The breadth-first analysis starts at the root node A, a non-decision node. Next nodes are non-

decision nodes Adec and B. The composite entity node C is the first decision node. It has two 

alternative successors. A first parameter xS1 is added to set XS with the domain dS1 = {1, 2}. 

The next examined nodes are Bdec, Cdec1, Cdec2, D, E, F, G, H and I - they are non-decision 

nodes. The next examined node, the multiple aspect node Dmaspec is a decision node. The 

value of its number range property is {2, 3, 4}. A second parameter xS2 is added to XS with 

the domain dS2 = {2, 3, 4}. The next node, the specialisation node Espec is again a decision 

node. It has three alternative successor nodes. A third parameter xS3 is added to XS with the 

domain dS3= {1, 2, 3}. The last nodes analysed K, E1, E2 and E3 are non-decision nodes. The 

example SES has three decision nodes. The resulting structure parameter set is 

XS = {xS1, xS2, xS3} with the corresponding domain set DS = {dS1, dS2, dS3} with the above 

determined domains. On the basis of the combination of these sets XS, DS, the model 

parameter set XP and its corresponding domain set DP the optimisation method is able to 

search the search space. Additional SES tree information e.g. the structure condition at node 

A and the attached variables p1 and p2 in figure 5.2 are irrelevant during the initialisation 

phase. 

 The second transformation is the reverse of the first. The Model Management 

Module receives a point in the search space from the Optimisation Module i.e. the numerical 

data set 	�
∗= XPi ∪ XSi, where set XSi codes a specific model structure and set XPi codes its 

model parameters. It has to synthesise the corresponding model structure and has to infer the 

model parameters. The transformation has to traverse the tree in the same direction as during 

the first in the initialisation phase. At each decision node the next element of current 

structure parameter set XSi is used to decide: (i) which successor of a composite entity node 

with alternative successors nodes is chosen, (ii) which specialisation of a specialisation node 

is chosen or (iii) how many successors of a multiple aspect node are incorporated into the 

PES. After pruning the model structure is verified with the evaluation of all structure 

conditions. If a structure is invalid the specific set 	�
∗ will be refused and this information is 
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sent to the Optimisation Module. It marks this point in the search space as prohibited and 

determines a new one. Figure 5.3 illustrates the principle of this transformation. The analysis 

and pruning order is marked again with small sequence numbers. 

 

Figure 5.3 Transformation XSi + SES → PES 

The breadth-first analysis starts at the root node A and continues as already described before. 

The first decision node of the SES tree in figure 5.3 is composition entity node C. The first 

element in XSi is xS1=1, i.e. the first aspect node Cdec1 is chosen for the PES. The next 

decision node is the multiple aspect node Dmaspec and the corresponding set element is xS2=4, 

i.e. the PES contains four nodes K. The last decision node is specialisation node Espec and the 

corresponding set element is xS3=2, i.e. the PES contains the second specialisation of node 

Espec. After pruning, the attached variables are calculated and the PES is verified by 

evaluating the relevant structure conditions. In the example in figure 5.3, the aspect node 

Cdec1 and four atomic entity nodes K were chosen. Therefore, the structure condition at node 



Chapter 5. A Framework for Modelling, Simulation and Optimisation 

 

[86] 

A is evaluated as follows: p1 + ∑p2i = 4 + 8 < 13 and from this it follows that the PES is 

valid. 

5.3 Interface: Model Management Module – Modelling and 

Simulation Module 

Each optimisation cycle requires a change and adaptation of the simulation model. If the 

structure parameters in XSi are changed, a new simulation model structure has to be 

generated. Otherwise, if just the model parameters in XPi are changed, it is adequate to re-

initialise the model parameters. As illustrated in figure 5.1 all necessary information is sent 

from the Model Management Module to the Model Generator of the Modelling and 

Simulation Module. The Model Management Module creates XML files describing the 

model structure. EDSDEVS basic components, predefined in the MB, XML files and current 

model parameters coded in set XPi are used by the Model Generator to generate the entire 

EDSDEVS model. 

 The use of a standardised XML model description for information exchange 

decouples the two modules. It is based on W3C XML schema Finite Deterministic DEVS 

Models introduced in [30] and [31]. The XML interface uses the atomic and coupled model 

interface descriptions with model and port names. The coupled model description described 

in [31] is currently work in progress and does not contain all necessary description elements 

for this approach. Therefore, the composition description of coupled models additionally 

defines sub model names and coupling specification. The coupling specification defines 

external input (EIC), external output (EOC) and internal coupling information (IC). An 

example with corresponding XML files is illustrated in figure B.1 and listings B.17 and B.18 

in appendix B. 

 The decoupling of Model Management Module and Modelling and Simulation 

Module using XML files eases the modelling and verification of the basic components 
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without the Model Management Module. Additionally it will enable and ease the use of 

different simulator implementations; however this will be the subject of future work. 

5.4 Interface: Modelling and Simulation Module – Optimisation 

Module 

The objective function, defined in the Optimisation Module, (figure 5.1), estimates the 

performance of the current model structure and parameter values.  The function gets its input 

parameters from the Modelling and Simulation Module. These are the simulation results 

Yi(XSi, XPi) and simulation response function results R(Yi(XSi, XPi)) respectively. Further input 

parameters are delivered by the Model Management Module. These are the model structure 

results Pi(XSi), which are based on evaluation of attached variables after pruning the SES. An 

example is illustrated in figure 5.2. The aspect nodes Cdec1 and Cdec2 and the atomic entity 

node K define the attached variables p1 and p2i. After the pruning process illustrated in figure 

5.3 the values of p1 and p2 are calculated as follows: Pi(XSi) = {p1;∑p2i} = {4;8}. These 

values may be used as further objective function parameters. 

 The result F
*
(R(Yi), Pi) of the objective function is evaluated by the optimisation 

method. As a consequence of the often stochastic nature of simulation problems, a random 

based optimisation method is preferable. Two established random based algorithms inspired 

by the principle of the evolution of life are the Genetic Algorithm (GA) introduced by 

Holland [20] and the Evolutionary Strategy (ES) introduced by Rechenberg [50]. The origins 

of ES are continuous parameter problems whereas current GAs support hybrid problems. 

There is an extensive and varied body of literature on this topic. Genetic algorithms have 

delivered robust solutions for various simulation based optimisation problems e.g. in [47] 

and [49]. Experiments realised within the scope of this research have shown that a GA is 

applicable as an optimisation method for the simulation based optimisation approach.  

 The methods of the simulation based parameter and structure optimisation 

framework described in this chapter are integrated into a general GA algorithm (listing B.19 



Chapter 5. A Framework for Modelling, Simulation and Optimisation 

 

[88] 

in appendix B). The resulting algorithmic summary of the whole framework is introduced in 

the next section. 

5.5 Algorithmic Summary of the Framework 

As described in the preceding sections, the proposed simulation based parameter and 

structure optimisation framework is composed of different methods that form a uniform 

optimisation approach. The following algorithm, based on the general description in [54], 

summarises the fundamental operations using a GA as optimisation method. 

Initialisation Phase: 

0. Analyse the SES and establish X*
 = XP ∪ XS  and D*

= DP ∪ DS  

1. Initialise a population of  individuals (generation 0) with different 	�
∗ = XPi ∪ XSi  

Optimisation Phase (repeat until stop criterion is fulfilled): 

2. Estimate the fitness of all individuals of the current generation 

Repeat for each individual 

2.1. Prune SES with XSi 

2.2. If structure condition is valid, establish Pi(XSi) or otherwise mark current 

individual as invalid and continue with next individual 

2.3. Generate EDSDEVS model 

2.4. Simulate EDSDEVS model and get result Yi(XSi, XPi)  

2.5. Evaluate the simulation response function R(Yi(XSi, XPi)) by repeating step 2.4 

2.6. Evaluate the objective function F*
(R(Yi), Pi) 

3. Select pairs with m individuals and create descendants using crossover 

4. Mutate the descendants 

5. Exchange individuals of the current generation with descendants based on a 

substitution schema to create a new generation 

A disadvantage of a conventional GA is the missing memory. It is possible that in different 

generations the same individual is repeatedly examined. Because of the time consuming 
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fitness estimation of one individual in simulation based optimisation, the addition of a 

memory method is vitally important. It has to store already examined individuals with their 

resulting F*
(R(Yi), Pi). This extension leads to the following, final algorithm summarising the 

fundamental operations of the simulation based parameter and structure optimisation 

approach using a GA as optimisation method:  

Initialisation Phase: 

0. Analyse the SES and establish X*
 = XP ∪ XS  and D*

= DP ∪ DS  

1. Initialise a population of  individuals (generation 0) with different 	�
∗ = 	��

∪ 	��
 

Optimisation Phase (repeat until stop criterion is fulfilled): 

2. Estimate the fitness of all individuals of the current generation 

Repeat for each individual 

2.1. Check memory if current individual is known. In case of ‘true’: continue with 

next individual 

2.2. Prune SES with XSi 

2.3. If structure condition is valid, establish Pi(XSi) or otherwise mark current 

individual as invalid and continue with next individual 

2.4. Generate EDSDEVS model 

2.5. Simulate EDSDEVS model and get result Yi(XSi, XPi)  

2.6. Evaluate the simulation response function R(Yi(XSi, XPi)) by repeating step 2.5 

2.7. Evaluate the objective function F*
(R(Yi), Pi) 

2.8. Store 	�
∗ and F*

(R(Yi), Pi) in memory 

3. Select pairs with m individuals and create descendants using crossover 

4. Mutate the descendants 

5. Exchange individuals of the current generation with descendants based on a 

substitution schema to create a new generation 
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5.6 Definition of a Model Set with XML SES/MB  

In chapter 4 the extended SES/MB framework for the simulation based optimisation 

framework was formally introduced. This section describes the meta-model definition with 

the framework in detail. In this approach an SES/MB meta-model definition is based on 

XML [64]. Therewith the definition is platform and implementation independent. The usage 

of XML has the potential to enable the development of further extensions e.g. a graphical 

model designer. Figure 5.4 depicts the UML 2.0 [61] class and composition structure 

diagram of the XML schema and listing B.15 in appendix B contains the document type 

description (DTD [64]). Both the schema and the DTD are describing the structure of an 

SES/MB XML file.  

The structure is divided into three main sub structures (i) SES tree, (ii) MB, (iii) properties: 

1. The SES tree sub structure is defined within the ses sub tree of the XML structure. 

The six nodes (i) composite, (ii) atomic, (iii) multiaspect, (iv) aspect, 

(v) specialisation and (vi) specialisation-entity correspond to the different entity 

types of the formal SES/MB description as introduced in chapter 4. An exception is 

the specialisation-entity node which matches an atomic node. It is introduced to 

eases the SES XML file verification. The connections within the UML class and 

composition diagram defines the container class/contained class relationship and the 

m:n relations between both components. Each component has one attribute, the 

entity name esname. This name is used to logically connect XML elements within 

the XML SES, MB and property sub structures e.g. an atomic entity definition from 

the ses sub tree with the mb_atomic model implementation definition from the 

modelbase sub tree. 

2. The MB is defined within the modelbase sub structure. The sub structure references 

(a) model implementations and defines (b) model interfaces: 

a. Nodes of the type mb_atomic and mb_specializationentity references basic 

components. The models are not directly defined within an SES/MB XML 
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file. The above nodes refer to a model implementation. The attribute 

classname refers to the model implementation class name and the attribute 

modelname names the specific model instance name. Both class and instance 

names are necessary to enable multiple usage of a component. The node 

mb_aspect is not a reference to a model implementation but is used to 

synthesise a model during model generation. 

b. Nodes of the type atomic, specialization and aspect have attached coupling 

information. Hence the corresponding modelbase nodes mb_atomic, 

mb_aspect and mb_specialization define interfaces with input and output 

ports. Each model i.e. the corresponding structure in the modelbase can have 

several inports and outports named with the attribute name and combined in 

list structures inports and outports. Even though a specialisation node does 

not have a model implementation it has a definition in the modelbase sub 

tree. All child nodes of a specialisation share the same interface description 

which is defined once at parent node level.  

3. To avoid scattered node property definitions all properties are defined in the 

properties sub structure. An aspect node defines a coupled model i.e. besides the 

sub components defined within the ses sub structure additional coupling information 

are necessary. A modelcouplings sub structure with a corresponding name in the 

esname attribute describes the coupling information in eic, eoc and ic lists. The 

number of possible children of a multiple aspect node is defined by the 

varNumberOfComponent structure. Nodes can have attached variables defined 

within the var structure and coupled with the esname attribute to the corresponding 

ses sub structure. Optional structure conditions are defined within the constraint 

structure. 
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Figure 5.4 UML Diagram of SES/MB XML Schema 

The example SES in figure 5.5 defines two structure variants through two different 

specialisations A1 and A2 at Aspec. With the structure condition at the ROOT entity the PES 

can be verified after pruning. Figure 5.5 depicts the structure variants after pruning and 

model generation. Due to the structure condition only one model variant is valid. The listing 

B.16 in appendix B shows the corresponding meta-model definition with an SES/MB XML 

file. The three sub structures ses, modelbase and properties are separated with an empty line, 

XML elements, attributes and values are highlighted with different colours. 
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Figure 5.5 An SES/MB XML example – SES tree with both valid and invalid model 

structure variants 

 

The next chapter starts with an overview of modelling and simulation of manufacturing 

systems and demonstrates the application of the introduced framework with a project from 

industry. 
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Chapter 6 

Parameter and Structure Optimisation of 

Manufacturing Systems 

This chapter demonstrates the application of the introduced framework for a simulation 

based parameter and structure optimisation with a real industrial project. It starts with a short 

review of types, components and complexity of manufacturing systems in the context of 

modelling and simulation. Current manufacturing system planning concepts and a range of 

modelling and simulation concepts for manufacturing system simulation are presented in an 

overview.  

 A broad choice of modelling and simulation packages is commercially available, 

developed to reflect the changing requirements of manufacturing applications. As discussed 

in chapter 2 not all demands of manufacturing modelling and simulation are satisfied 

optimally. A real life example using the approach developed in this research demonstrates 

how this can be accomplished. 

6.1 Manufacturing Systems 

The focus of manufacturing is the combination and transformation of raw material to a 

product with a market potential using industrial machines [21] [22]. This is a very simple 

principle but is difficult to achieve and maintain. The challenge is that the market potential 

and the requirements of manufacturing system are changing continuously. A manufacturer 

who does not adapt will lose competitiveness and vice versa a company that handles these 
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changes most effectively will succeed. A major issue for managers and engineers is the 

continuous analysis of manufacturing system performance and the use of methods to 

improve operations and adapt to new market situations. Analysis using modelling and 

simulation is potentially a powerful management method. 

 Depending on the point of view it is possible to differentiate between several types 

of manufacturing systems. Two widely used, described in more detail in [5] are the 

following: 

• serial system 

An assembly line as a typical example of a serial system is a sequential set of 

workstations connected by material handling systems. Component parts are 

assembled or machined to produce a finished product in a line. The assembly 

activity can be divided into work elements as the smallest unit of productive work. A 

subset of work elements are assigned to each workstation. A work piece passes the 

complete line in a sequence. After leaving the final workstation the product is 

complete. Such systems are often used to produce a high volume of a small number 

of similar products. Figure 6.1 shows an example of a serial system with several 

lines with sub assembly manufacturing and a final end product assembly line. 

 

Figure 6.1 General assembly system layout (source [5]) 
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• shop scheduling system 

In contrast to a serial system a job scheduling system manufactures a variety of 

different products. Work pieces can follow different routes with significant different 

processing time at a workstation. Regularly work pieces are combined in batches or 

jobs of one or more parts which are manufactured on the same route i.e. with the 

same production sequence and similar processing time. If all batches are processed 

in the same sequence of workstations the system is named flow shop. In contrast, in a 

job shop each batch type has the same production sequence. With a growing 

flexibility and pressure to decrease manufacturing cost the complexity of job shop 

systems is increasing considerably. Hence the planning of job shop systems is 

making greater than ever demands. 

6.2 Modelling and Simulation of Manufacturing Systems 

The simulation of manufacturing and material handling systems is one of the most important 

applications of discrete event modelling and simulation techniques [7]. These techniques 

have been successfully used as an aid in the design of new systems as well as an evaluation 

tool for improvements to existing systems, as a daily staffing, material and operation 

planning tool and so on. 

 Even though both the types of manufacturing systems and the analysis issues vary 

substantially the different modelling and simulation techniques share some common 

characteristics as described in the following sections. 

6.2.1 Simulation Model Level of Detail 

In principle every model is an approximation of the real world. Depending on the analysis 

objectives irrelevant characteristics and details can be omitted when creating a model. In 

simulation literature this principle is called level of abstraction [51] because the model is an 

abstraction or approximation of the real system. The appropriate level of detail can 
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distinguish between valid and invalid or successful and unsuccessful simulation experiments. 

It is claimed that a good rule is to add details step by step during a model validation process 

because starting with a low level of detail usually leads to fewer simulation results to be 

validated [51]. The analyst stops the process when the model is close enough to real system 

behaviour to provide results for analysis. This validation approach is an iterative process that 

results in a sufficiently accurate model. Figure 6.2 depicts the correlation between model 

detail and validation time [51]. The asymptotic behaviour of the relationship may mean more 

effort to increase the level of detail from 95% to 100% than creation of the initial model with 

95% accuracy. 

 

 

Figure 6.2 Model detail during model validation (source [51]) 

6.2.2 Fundamental Components 

Manufacturing systems produce a wide range of products with many types of production 

methods using many different system layouts. Nevertheless there are common components 

that can describe many manufacturing operations. These common components are the basis 

elements of a simulation model [51]. Table 6.1 depicts these basic elements. 
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Product Resource Demand Control 

Parts/pieces Equipment layout Customer orders Warehouse management 

Routings Equipment costs Start date Inventory control 

Process time Number of machines Due date Shop floor control 

Setup time Failure WIP inventory WIP tracking 

Bill of material Maintenance  Restricted resources 

Yield Number of operators  Station rules 

Rework Shift schedules   

 
Table 6.1 Fundamental components of manufacturing systems (source [51]) 

Product. Parts or pieces are the products manufactured. Products may be handled as a 

single item or production unit or combined to batches depending on the manufacturing 

process named batch or job. A batch can be described as a production unit in a subsequent 

process. Products are manufactured in a defined sequence, the routings. Depending on the 

manufacturing process and on the product the routing can be sequential e.g. in an automobile 

assembly line i.e. a serial system or complex e.g. in a semiconductor production process i.e. 

a job scheduling system. For each manufacturing step the setup and processing time 

determine the total cycle time. These times depend on the machine and/or product and can be 

deterministic or stochastic. 

 A product can be assembled from several items, i.e. sub assemblies, defined by the 

product structure file or bill of material (BoM). Each item in the BoM can be the result of a 

production process. During the manufacturing process all BoM items must be available at a 

defined point of time relative to the final product assembly or product due date. The 

modelling of manufacturing systems with a delivery or production of sub assemblies Just-In-

Time to minimise waste and inventory is an important manufacturing paradigm today. The 

typical example of this principle is the automobile industry. 

 Yield and rework are found in many manufacturing processes. The reasons are 

imperfect processes and operations. Both factors influence the process throughput and other 
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characteristics e.g. the costs. With a lower level of detail both characteristics can also be 

omitted. 

 

Resources. Resources include machines and human operators, mobile and immobile 

equipment, material and storage systems etc. They are used to manufacture a product. The 

equipment layout and the number of machines have an effect on the production flow and the 

speed of operation. The equipment costs influence amongst others the manufacturing cost of 

a product. Staff number can be a restricted resource, e.g. the number of machines and with 

these the necessary number of operators is higher than the available number of operators. In 

this context shift schedules have to be possibly considered. 

 The equipment has unplanned and planned down times, random failures or regular 

maintenance. During these times production has to stop or product flow has to be rerouted 

when alternatives are available.  

 

Demand. Costumer orders define the demands on a manufacturing process. Start and due 

dates are determined by these customer orders for products. An important question of 

production management is the determination of the latest start date for BoM items to 

complete the order before the due date. 

Normally production does not start from an idle state instead there is some work-in-

process (WIP) e.g. in buffers, on conveyors or in machines. The modeller can decide to 

accept an initialisation phase until the model contains a certain amount of WIP to start the 

real experiment or initialise the model with work-in-process data.  

 

Control. Control systems determine how products flow through the manufacturing 

processes, collect status information about products and/or resources, inspect the compliance 

of resource or demand constraints and decide about the use of the restricted recourses. A 

control algorithm can influence a simulation with changes of input data e.g. a changed 
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semi finished part order in an assembly line or changes in inwards and outwards goods 

movements in a warehouse management system. A shop floor or/and an inventory control 

algorithm can change model properties and model structure e.g. a storage area extension or 

reduction or an equipment layout modification of a manufacturing system. A WIP tracking 

system can deliver current process status information for control strategies. Station rules 

define local scheduling decisions, e.g. the working sequence in a manufacturing cell from 

simple first in, first out control strategy to a more complex such as a custom order dependant 

priority control strategy.  

6.2.3 Measures of Performance 

The methods to evaluate the performance of a real system and model have to be the same 

otherwise it will be difficult to have confidence in simulation and analysis results. Because 

both the real system and its model are based on random events the performance measure is a 

statistical analysis of real system and simulation system results. The following measurements 

are typical for a manufacturing system [51]: 

• Throughput of sub model (such as a machine or process) or the complete model 

• Cycle time at a process or overall 

• Queueing time or length 

• Response time of material handling equipment 

• WIP 

• Resource utilisation 

• System specific performance measures (scrap rate, waiting time at a process etc.) 

Due to the fact that a manufacturing system is a complex system it is important to note that 

model changes to improve one measure usually change other measures, for optimisation this 

is an important issue. 
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6.2.4 Analysis Issues 

Using the measures described in chapter 5 an analyst experiments with a model to 

understand coherences of model elements and the behaviour of the whole system using input 

value, model parameter and model structure changes. Among others the following are typical 

analysis questions [51]: 

• Determining bottlenecks 

• Determining required staffing levels 

• Evaluating the scheduling of staff 

• Evaluating the scheduling of tasks 

• Evaluating the control system 

• Recovering strategies for random events 

The identification of bottlenecks is often an analysis issue. The problem is the direct 

influence of the experiment on the bottleneck. With changes of anything in the model the 

primary bottleneck can move to other elements of the model. So the identification of a 

bottleneck can be a complex task and requires the examination at both local and global 

model levels. 

 A second important analysis issue is the determination of resource levels. 

Manufacturing systems with a fluctuating production volume, e.g. with seasonal 

dependencies, require such an analysis. An example is the staff requirement. It can change 

constantly and has to be planned regularly. An associated issue is the scheduling of staff 

between manufacturing system elements. With intelligent scheduling strategies it may be 

possible to employ fewer staff and still maintain sufficient throughput or to increase the 

throughput without increasing staff costs. 

6.3 Introduction to the Photofinishing Industry 

The application in this research uses developments and problems in the photofinishing 

industry and investigates a small part of a production process to validate the key research 
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concept. The photofinishing industry specialises in high volume production of thousands to 

millions of pictures per day but has nevertheless a relatively broad range of different 

products. As a consequence of significant changes in the photography market, notably the 

introduction of digital cameras with a considerable reduction of analogue and an increase of 

digital orders during recent years, a mix of analogue and digital production facilities are 

used. The change of the main production material from analogue to digital material has lead 

to concentration from many, local working, smaller laboratories to few, large, nationwide 

working laboratories and fierce competition between them. The situation is driving an urgent 

need to be as cost effective as possible.  

 Figure 6.3 shows general structure and product flow through the different 

departments of a typical photofinishing laboratory. It is possible to differentiate between 

three main production departments to depict the production flow analogue film/digital image 

– photographic picture: 

I. The material arrives in several forms at the login process. After sorting the product 

mixes, some 10 to some 100 single orders are combined into batches. Each batch 

contains only one production material and one product type, e.g. undeveloped 

analogue film and specific paper width and surface. The batch creation is done with 

different machine types: (i) a splicer combines undeveloped film rolls onto a large 

film reel, (ii) a universal reorder station (URS) combines analogue reorders to a strap 

of film strips, (iii) a digital URS scans the analogue reorders and creates a digital 

batch, (iv) a digital splicer handles digital data carriers (CDs, flash cards etc.) and (v) 

software applications combine digital images collected by a web server. Steps (i) and 

(ii) creates analogue and steps (iii)...(v) digital batches. 

II. Undeveloped analogue batches have to be developed. Analogue material can be 

scanned for the next steps which could be CD production and digital printing. As an 

alternative, the analogue batches are printed at an analogue printer. The result of 

both printer types is a huge reel of exposed photographic paper.  
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III. After the development of a photographic paper reel the final step is cutting. 

Regarding paper cutting both cutter and digital cutter are comparable. A DigiCutter 

is specialised for paper cutting without a film cutter but possibly equipped with 

several paper cutters each able to cut different paper widths. Finally items are 

packed and identified for delivery to customers. 

 

Figure 6.3 General product flows of a photofinishing lab 

Figures C.1 ... C.4 in appendix C show a selection of photofinishing machines. 
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 The product flow splicer/URS – development – analogue printer – development – 

cutter was the common production flow before the digital era and is typical serial 

manufacturing system. Nowadays there are several possible material routes through 

production with the same end product but different processing time, machine and operator 

requirements and costs i.e. a photofinishing lab now appears more as a job scheduling 

system. It is possible to employ fewer operators than available workstations and produce on 

time if an appropriate production structure and effective organization method are used to 

manage production. In a typical company with staff of some 10 to some 100, possibly more 

than one employee is necessary to organise the complete production. 

6.4 Photofinishing Lab – An Optimisation Application 

The validation is based on developments and problems in the photofinishing industry and 

investigates a small part of a production process to demonstrate the approach. The germ of 

the idea to this example comes from a project enquiry made by the Kodak Photofinishing 

Department (closed down) to Syntax Software [58] 6 years ago. 

6.4.1 Problem Description 

For this project the login and splicer departments are studied in detail with a structure as 

depicted in figure 6.4. 

 

Figure 6.4 Product flow of the considered example 
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• System description 

The source materials, unsorted, single orders, are sorted by product type manually or 

automatically into boxes. These sorted orders are combined to batch reels at splicers. An 

automatic sorter is handled by one or two operators, whereas manual sorting is done by 

the number of available operators without the need of a machine. A splicer is handled 

by one operator. Operators can be moved between machines. The handling time of the 

machines is listed in table 6.2.  

Machine Order handling time (s) 
automatic in sorter 0.5 
manual in sorter 1.7 ≤ 2 (equal distribution) 
splicer 0.9 ≤ 1 (equal distribution) 

Table 6.2 Order handling times 

Sorting and splicing of a defined amount of orders takes a production time depending 

on type of machines, number of operators and organisation strategies. The production 

time is estimated by simulation.  

A specific production system causes costs. In this case study the costs depends on the 

number of operators as shown in table 6.3. 

# of operators Costs 
1 1 
2 2 
3 3 
4 4 
5 5 
6 6 
7 7 
8 8 

Table 6.3 Production costs 

• Simulation model level of detail and fundamental components 

Each workstation is taken as a black box with a defined processing time and resource 

utilisation. Workstations need a specific number of operators to manufacture and can be 

enabled or disabled. Further properties do not exit. 

Source material is modelled as a data structure with material type and planed end 

product type. 
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A production or department manager is modelled as a control model. The model can 

enable and disable workstations and organise material flow depending on the 

availability of operators, unhandled source material and queue lengths. 

The number of operators is a model property used by the control model. Operators are 

moved between departments and workstations to enable and disable workstations. 

Operator movements does not cost any time.  

To minimise complexity additional considerations e.g. setup time, maintenance and 

failure are not modelled. Shift schedules and other components in connection with 

operators are not modelled too. 

• Performance Measurement 

For a performance measurement the sorting and splicing of a defined number of orders 

are simulated. The simulation output of a single run delivers the production time and 

cost Y = {yproduction time, ycosts} of the current model variant.  

The simulation response function calculates the average over 50 runs. They are passed 

to the objective function that is defined by the term: 

F = F(Y) = α1 * r1 * ��production time + α2 * r2 * ��costs → minimum 

The factors α1 and α2 normalise the values of the variables, y�production time and y�costs. The 

factors r1 and r2 define the relevance of the variables, y�production time and y�costs. With the 

factors α1=1/max_production_time, α2=1/max_costs, r1=1 and r2=1 both variables are 

within the range between 0 and 1 and have the same relevance. The maximal value of 

the production time can be calculated with a minimal production system i.e. one 

operator, manual sorting and one splicer. The maximal value of the costs is defined by 

the upper bound of the parameter number of operators. In this case study for both 

variables, y�production time and y�costs the same relevance is chosen. Depending on the analysis 

objectives a different relevance of y�production time and y�costs can be used. 

The result of the funtion F is the performance of the investigated model variant. 

• Analysis issues 
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The production time and consequently the cost for a specific number of orders varies 

depending on the type and number of machines used, number of operators and the 

strategy to organise operators i.e. the initial distribution and succeeding movement of 

operators between machines and departments. The challenge for modelling is to 

minimise the combination of the production time of a given number of orders and the 

costs i.e. employing a minimal number of operators. 

6.4.2 Implementation Details 

Figure 6.5 shows the SES, describing possible model structures and the model parameter 

number of operators. Both the SES and the model parameter are the open quantities of the 

optimisation problem. The model structure variants are characterised by the use of: (i) 

automatic and/or manual sorting, (ii) one to eight splicers and (iii) one of three different 

department organisation strategies to share operators between machines and departments. 

Depending on selected alternative nodes during the pruning process several structure related 

attached variables will be initialised with different values. The SES defines 72 model 

structure variants in all. In addition there is one model parameter, the number of operators 

with a range of one to eight. The combination results in 576 model variants. Not all model 

variants define useful combinations. For example a model with four operators and eight 

splicers delivers the same result as a model with four operators and four splicers since in 

both variants only four splicers at all can be used. To exclude the useless variants the root 

node MODEL defines a structure condition that reduces the valid number of model variants 

to 275. 

The following list describes the nodes and basic components, respectively: 

• DEP_LOGIN 

The login department model can have three different sorting configurations. The first 

configuration applies only manual, the second only automatic and the third combines 

both sorting types. The number of available operators in this department is managed 
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by the controllerspec model. Decisions of the controllerspec model may be a function of 

the queue_order length. 

• DEP_SPLICER 

The splicer department model can consist of a different number of splicers. The 

number of available operators in this department is managed by the controllerspec 

model. Decisions of the controllerspec model may be a function of the queue_box2 

length. 

• controllerspec 

The specialisation node controllerspec has three successor nodes each implementing 

another staff organisation strategy: 

o ctrl1: 

The strategy starts with employing operators in the login department. If 

more staff is available than needed they are employed in the splicer 

department. After sorting is finished all staff is employed in the splicer 

department. 

o ctrl2: 

The strategy starts with employing operators in the login department. If 

more staff is available than needed they are employed in the splicer 

department. If the queue_box length is larger or equal than four all staff is 

employed in the splicer department. If the queue_box length is smaller than 

four the initial staff arrangement is recovered. 

o ctrl3: 

The strategy starts with employing half of operators in the login department 

and the other half in the splicer department. After sorting is finished all staff 

is employed in the splicer department. 
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Figure 6.5 Model parameter and SES of the application 

To solve this example, the search space has to be defined in terms of a structure parameter 

set, a model parameter set and their corresponding domain sets. Using the principle 

introduced in section 5.2 the structure parameter set and the corresponding domain set are 

defined by: 

XS = {xDEP_LOGIN, xcontrollerspec, xsplicermaspec} 

DS = {dDEP_LOGIN, dcontrollerspec, dsplicermaspec} with 

 dDEP_LOGIN = {1; 2; 3} 

 dcontrollerspec = {1; 2; 3} 

 dsplicermaspec = {1; 2; 3; 4; 5; 6; 7; 8} 

The model parameter set and the corresponding domain set are defined by: 

XP={x#_of_operators} 

DP={d#_of_operators} with d#_of_operators = {1; 2; 3; 4; 5; 6; 7; 8} 

Hence, the resulting search space is defined by: 

X = XP ∪ XS  

X = { xDEP_LOGIN, xcontrollerspec, xsplicermaspec, x#_of_operators} 
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Each model variant defines one point in the search space. With the principle introduced in 

section 5.2 a PES can be derived and a corresponding model can be generated. One point of 

the search space is X132 = {2; 2; 2; 2}. This means that the aspect node DEP_LOGINdec2 and 

the specialisation ctrl2 are chosen, the number range property value of the multiple aspect 

node splicermaspec is two and the model parameter #_of_operators is also two. Figure 6.6 

depicts the PES of model variant 132. The generated EDSDEVS model is illustrated in 

figure 6.7.  

 

Figure 6.6 PES of 132th variant 
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Figure 6.7 Model structure of 132th variant 

All model variants use intensively the dynamic structure characteristics of the EDSDEVS 

formalism. The model of the department manager (model ctrl2 in figure 6.7) activates and 

deactivates several atomic models (models sorter_auto, splicer1 and splicer2 in figure 6.7) 

and creates and destroys couplings respectively based on the department manager algorithm 

and the current model state. Figure 6.8 shows a sequence diagram section of one simulation 

run. Depending on queue lengths messages are generated and sent to the control model that 

enables/disables models and creates/destroys couplings. 
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Figure 6.8 A sequence diagram section of one simulation run 

Numerous commercial and non-commercial GA implementations exist. In this research the 

commercial toolbox MATLAB® GA toolbox [59] released by The MathWorksTM is used. 

The default MATLAB GA parameter settings were used, except for a decreased population 

size of 15 and an adjusted stop criterion:  

if the weighted average change in the fitness function value over x generations (x=20 in 

1st and x=5 in 2nd experiment) is less than 0.01, the algorithm stops.  

In the following all GA parameters and their values are listed. A description and lists of 

possible values as well as the algorithm description can be found in [59]. 

Population: 

• Population type:    Double Vector 

• Population size:    15 

• Creation function:    Uniform 

• Initial population:    [] 

• Initial scores:     [] 

• Initial range:     [0; 1] 

Fitness scaling: 
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• Scaling function:    Rank 

Selection: 

• Selection function::    Stochastic uniform 

Reproduction: 

• Elite count:     2 

• Crossover fraction:    0.8 

Mutation: 

• Mutation function:    Gaussian 

• Scale:      1.0 

• Shrink:      1.0 

Crossover: 

• Crossover function:    Scattered 

Migration: 

• Direction:     Forward 

• Fraction:     0.2 

• Interval:     20 

Algorithm settings: 

• Initial penalty:     10 

• Penalty factor:     100 

Hybrid function: 

• Hybrid function:    None 

Stopping criteria: 

• Generations:     100 

• Time limit:     Inf 

• Fitness limit:     -Inf 

• Stall generations:    20 (1st experiment) 

    5 (2nd experiment) 
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• Stall time limit:    20 

• Function tolerance:    0.01 

• Nonlinear constraint tolerance:   0.000001 

Display to command window: 

• Level of display:    Final 

Vectorize: 

• Fitness function is vectorized:   Off 

The population size and the stop criteria are adapted for this case study. It is possible that 

changes of other parameters would lead to better optimisation results but further experiments 

are not undertaken in the scope of this research. 

 Each simulation run estimates the production time of 200 orders with a random 

production type mixture. The optimisation was repeated 50 times for each stop criterion with 

different random number generator initialisations. Listing 6.1 shows a Matlab code section 

of the optimisation initialising and executing the GA. 

% ses tree is initialised outside of this function 

function example_optim_exp(ses) 
 

% function uses two parameters, the ses object (global 

variable) and a search room point 
fitnessFunction = @exec_simu; 
 

% Bounds 
% e.g. LB = [  1 1 1 1 ]; 
% e.g. UB = [  3 3 8 8 ]; 
[LB UB] = ses.generateBounds(); 
 

% Number of Variables 
nvars = size(LB,2); 

  
% Start with default options 
options = gaoptimset; 
 

% Modify some parameters 
options = gaoptimset(options,'PopulationSize' ,15); 
options = gaoptimset(options,'StallGenLimit' ,20); %1st exp. 
% options = gaoptimset(options,'StallGenLimit' ,5);%2nd exp. 
options = gaoptimset(options,'TolFun' ,0.01); 
 

% Run GA 
[X,FVAL,REASON,OUTPUT,POPULATION,SCORES] = 
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ga(fitnessFunction,nvars,Aineq,Bineq,Aeq,Beq,LB,UB,nonlconFu

nction,options); 

 

Listing 6.1 Matlab code section with GA initialisation and execution 

6.4.3 Results 

To validate the research framework the global optimum estimated through simulation of all 

system variants is compared with the result of an optimisation experiment. In both 

experiments the performance rating of a variant is established by the same objective function 

using the following function definition: 

F = F(Y) = α1 * r1 * ��production time + α2 * r2 * ��costs 

r1 =  r2 = 1  – same relevance of both paramters 

α1 = 1/566  – maximal production time with a minimal production system is 566 (1st line 

in table 6.4) 

α2 = 1/8  – maximal costs are 8 

The simulation results of all 275 variants are shown in table 6.4. The columns control 

strategy, login and # of splicers specifies the model structure and the column # of operators 

specifies the model parameter as described in subsection 6.4.2. The production time values 

are the simulation result of the production of 200 orders. The costs correspond to the number 

of operators and the fitness is calculated with the above objective function. 
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ctrl 

strat. 

login # of  

splicer 

# of  

ops 

prod.  

time 

costs fitness 

1 1 1 1 566,0 1 1,1250 

1 1 1 2 357,0 2 0,8807 

1 1 1 3 209,0 3 0,7443 

1 1 1 4 208,0 4 0,8675 

1 1 1 5 209,0 5 0,9943 

1 1 1 6 208,0 6 1,1175 

1 1 1 7 208,0 7 1,2425 

1 1 1 8 207,0 8 1,3657 

1 1 2 2 288,0 2 0,7588 

1 1 2 3 208,0 3 0,7425 

1 1 2 4 208,0 4 0,8675 

1 1 2 5 207,0 5 0,9907 

1 1 2 6 208,0 6 1,1175 

1 1 2 7 209,0 7 1,2443 

1 1 2 8 207,0 8 1,3657 

1 1 3 3 209,0 3 0,7443 

1 1 3 4 199,0 4 0,8516 

1 1 3 5 208,0 5 0,9925 

1 1 3 6 208,0 6 1,1175 

1 1 3 7 208,0 7 1,2425 

1 1 3 8 209,0 8 1,3693 

1 1 4 4 208,0 4 0,8675 

1 1 4 5 207,0 5 0,9907 

1 1 4 6 208,0 6 1,1175 

1 1 4 7 208,0 7 1,2425 

1 1 4 8 208,0 8 1,3675 

1 1 5 5 208,0 5 0,9925 

1 1 5 6 197,0 6 1,0981 

1 1 5 7 208,0 7 1,2425 

1 1 5 8 208,0 8 1,3675 

1 1 6 6 209,0 6 1,1193 

1 1 6 7 208,0 7 1,2425 

1 1 6 8 208,0 8 1,3675 

1 1 7 7 198,0 7 1,2248 

1 1 7 8 200,0 8 1,3534 

1 1 8 8 208,0 8 1,3675 

1 2 1 1 279,5 1 0,6188 

1 2 1 2 229,5 2 0,6555 

1 2 1 3 179,8 3 0,6926 

1 2 2 2 139,75 2 0,4969 

1 2 2 3 119,5 3 0,5861 

1 2 2 4 99,5 4 0,6758 

1 2 3 3 99,8 3 0,5512 

1 2 3 4 89,5 4 0,6581 

1 2 3 5 69,3 5 0,7474 

1 2 4 4 79,3 4 0,6400 

1 2 4 5 69,5 5 0,7478 

1 2 4 6 59,8 6 0,8556 

1 2 5 5 59,3 5 0,7297 

1 2 5 6 59,5 6 0,8551 

1 2 5 7 59,5 7 0,9801 

1 2 6 6 59,8 6 0,8556 

1 2 6 7 59,3 7 0,9797 

1 2 6 8 59,3 8 1,1047 

1 2 7 7 59,5 7 0,9801 

1 2 7 8 59,5 8 1,1051 

1 2 8 8 59,5 8 1,1051 

1 3 1 2 219,5 2 0,6378 

1 3 1 3 204,0 3 0,7354 

1 3 1 4 189,8 4 0,8352 

1 3 1 5 149,5 5 0,8891 

1 3 1 6 160,0 6 1,0327 

1 3 1 7 159,5 7 1,1568 

1 3 1 8 169,5 8 1,2995 

1 3 2 2 149,3 2 0,5137 

1 3 2 3 124,0 3 0,5941 

1 3 2 4 119,5 4 0,7111 

1 3 2 5 109,8 5 0,8189 

1 3 2 6 89,8 6 0,9086 

1 3 2 7 89,8 7 1,0336 

1 3 2 8 79,8 8 1,1409 

1 3 3 3 104,0 3 0,5587 

1 3 3 4 99,8 4 0,6762 

1 3 3 5 89,5 5 0,7831 

1 3 3 6 69,8 6 0,8732 

1 3 3 7 59,5 7 0,9801 

1 3 3 8 59,8 8 1,1056 

1 3 4 4 79,8 4 0,6409 

1 3 4 5 79,8 5 0,7659 

1 3 4 6 69,8 6 0,8732 

1 3 4 7 59,8 7 0,9806 

1 3 4 8 60,0 8 1,1060 

1 3 5 5 69,5 5 0,7478 

1 3 5 6 59,5 6 0,8551 

1 3 5 7 59,5 7 0,9801 

1 3 5 8 49,5 8 1,0875 

1 3 6 6 59,8 6 0,8556 

1 3 6 7 59,8 7 0,9806 

1 3 6 8 50,0 8 1,0883 

1 3 7 7 49,8 7 0,9629 

1 3 7 8 49,8 8 1,0879 

1 3 8 8 49,8 8 1,0879 

2 1 1 1 404,0 1 0,8388 

2 1 1 2 265,0 2 0,7182 

2 1 1 3 309,0 3 0,9209 

2 1 1 4 329,0 4 1,0813 

2 1 1 5 330,0 5 1,2080 

2 1 1 6 329,0 6 1,3313 

2 1 1 7 328,0 7 1,4545 

2 1 1 8 308,0 8 1,5442 

2 1 2 2 213,0 2 0,6263 

2 1 2 3 214,0 3 0,7531 

2 1 2 4 219,0 4 0,8869 

2 1 2 5 227,0 5 1,0261 

2 1 2 6 228,0 6 1,1528 

2 1 2 7 237,0 7 1,2937 

2 1 2 8 237,0 8 1,4187 

2 1 3 3 191,0 3 0,7125 

2 1 3 4 208,0 4 0,8675 

2 1 3 5 209,0 5 0,9943 

2 1 3 6 205,0 6 1,1122 

2 1 3 7 218,0 7 1,2602 

2 1 3 8 208,0 8 1,3675 

2 1 4 4 183,0 4 0,8233 

2 1 4 5 197,0 5 0,9731 

2 1 4 6 192,0 6 1,0892 

2 1 4 7 210,0 7 1,2460 

2 1 4 8 190,0 8 1,3357 

2 1 5 5 187,0 5 0,9554 

2 1 5 6 196,0 6 1,0963 

2 1 5 7 190,0 7 1,2107 

2 1 5 8 200,0 8 1,3534 

2 1 6 6 191,0 6 1,0875 

2 1 6 7 189,0 7 1,2089 

2 1 6 8 202,0 8 1,3569 

2 1 7 7 187,0 7 1,2054 

2 1 7 8 183,0 8 1,3233 

2 1 8 8 192,0 8 1,3392 

2 2 1 1 271,0 1 0,6038 

2 2 1 2 253,8 2 0,6983 
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2 2 1 3 215,8 3 0,7562 

2 2 2 2 133,5 2 0,4859 

2 2 2 3 161,0 3 0,6595 

2 2 2 4 135,5 4 0,7394 

2 2 3 3 104,3 3 0,5592 

2 2 3 4 140,3 4 0,7478 

2 2 3 5 105,0 5 0,8105 

2 2 4 4 94,0 4 0,6661 

2 2 4 5 104,8 5 0,8101 

2 2 4 6 95,8 6 0,9192 

2 2 5 5 83,8 5 0,7730 

2 2 5 6 106,3 6 0,9377 

2 2 5 7 85,3 7 1,0256 

2 2 6 6 74,0 6 0,8807 

2 2 6 7 90,8 7 1,0353 

2 2 6 8 75,3 8 1,1330 

2 2 7 7 74,3 7 1,0062 

2 2 7 8 88,5 8 1,1564 

2 2 8 8 74,8 8 1,1321 

2 3 1 2 244,3 2 0,6815 

2 3 1 3 202,3 3 0,7323 

2 3 1 4 187,0 4 0,8304 

2 3 1 5 184,3 5 0,9505 

2 3 1 6 204,0 6 1,1104 

2 3 1 7 194,8 7 1,2191 

2 3 1 8 194,0 8 1,3428 

2 3 2 2 133,8 2 0,4863 

2 3 2 3 145,0 3 0,6312 

2 3 2 4 119,8 4 0,7116 

2 3 2 5 115,8 5 0,8295 

2 3 2 6 115,0 6 0,9532 

2 3 2 7 115,0 7 1,0782 

2 3 2 8 114,8 8 1,2027 

2 3 3 3 87,3 3 0,5292 

2 3 3 4 113,5 4 0,7005 

2 3 3 5 99,3 5 0,8004 

2 3 3 6 96,0 6 0,9196 

2 3 3 7 94,0 7 1,0411 

2 3 3 8 84,8 8 1,1497 

2 3 4 4 72,5 4 0,6281 

2 3 4 5 107,5 5 0,8149 

2 3 4 6 78,5 6 0,8887 

2 3 4 7 76,5 7 1,0102 

2 3 4 8 75,0 8 1,1325 

2 3 5 5 62,8 5 0,7359 

2 3 5 6 93,8 6 0,9156 

2 3 5 7 78,0 7 1,0128 

2 3 5 8 65,3 8 1,1153 

2 3 6 6 62,8 6 0,8609 

2 3 6 7 80,5 7 1,0172 

2 3 6 8 67,8 8 1,1197 

2 3 7 7 53,8 7 0,9700 

2 3 7 8 79,0 8 1,1396 

3 1 1 1 566,0 1 1,1250 

3 1 1 2 394,0 2 0,9461 

3 1 1 3 209,0 3 0,7443 

3 1 1 4 208,0 4 0,8675 

3 1 1 5 209,0 5 0,9943 

3 1 1 6 208,0 6 1,1175 

3 1 1 7 208,0 7 1,2425 

3 1 1 8 207,0 8 1,3657 

3 1 2 2 406,0 2 0,9673 

3 1 2 3 208,0 3 0,7425 

3 1 2 4 208,0 4 0,8675 

3 1 2 5 207,0 5 0,9907 

3 1 2 6 208,0 6 1,1175 

3 1 2 7 209,0 7 1,2443 

3 1 2 8 207,0 8 1,3657 

3 1 3 3 209,0 3 0,7443 

3 1 3 4 199,0 4 0,8516 

3 1 3 5 208,0 5 0,9925 

3 1 3 6 208,0 6 1,1175 

3 1 3 7 208,0 7 1,2425 

3 1 3 8 209,0 8 1,3693 

3 1 4 4 208,0 4 0,8675 

3 1 4 5 207,0 5 0,9907 

3 1 4 6 208,0 6 1,1175 

3 1 4 7 208,0 7 1,2425 

3 1 4 8 208,0 8 1,3675 

3 1 5 5 208,0 5 0,9925 

3 1 5 6 197,0 6 1,0981 

3 1 5 7 208,0 7 1,2425 

3 1 5 8 208,0 8 1,3675 

3 1 6 6 209,0 6 1,1193 

3 1 6 7 208,0 7 1,2425 

3 1 6 8 208,0 8 1,3675 

3 1 7 7 198,0 7 1,2248 

3 1 7 8 200,0 8 1,3534 

3 1 8 8 208,0 8 1,3675 

3 2 1 1 279,5 1 0,6188 

3 2 1 2 189,0 2 0,5839 

3 2 1 3 179,8 3 0,6926 

3 2 2 2 149,5 2 0,5141 

3 2 2 3 119,5 3 0,5861 

3 2 2 4 99,5 4 0,6758 

3 2 3 3 99,8 3 0,5512 

3 2 3 4 89,5 4 0,6581 

3 2 3 5 89,3 5 0,7827 

3 2 4 4 79,3 4 0,6400 

3 2 4 5 79,5 5 0,7655 

3 2 4 6 69,8 6 0,8732 

3 2 5 5 69,3 5 0,7474 

3 2 5 6 69,5 6 0,8728 

3 2 5 7 69,5 7 0,9978 

3 2 6 6 59,8 6 0,8556 

3 2 6 7 59,3 7 0,9797 

3 2 6 8 59,3 8 1,1047 

3 2 7 7 59,5 7 0,9801 

3 2 7 8 59,5 8 1,1051 

3 2 8 8 59,5 8 1,1051 

3 3 1 2 179,0 2 0,5663 

3 3 1 3 189,5 3 0,7098 

3 3 1 4 189,5 4 0,8348 

3 3 1 5 164,0 5 0,9148 

3 3 1 6 154,3 6 1,0225 

3 3 1 7 159,5 7 1,1568 

3 3 1 8 169,5 8 1,2995 

3 3 2 2 148,5 2 0,5124 

3 3 2 3 119,5 3 0,5861 

3 3 2 4 99,3 4 0,6754 

3 3 2 5 84,0 5 0,7734 

3 3 2 6 84,0 6 0,8984 

3 3 2 7 89,8 7 1,0336 

3 3 2 8 79,8 8 1,1409 

3 3 3 3 99,5 3 0,5508 

3 3 3 4 79,5 4 0,6405 

3 3 3 5 84,0 5 0,7734 

3 3 3 6 74,0 6 0,8807 

3 3 3 7 59,5 7 0,9801 

3 3 3 8 59,8 8 1,1056 

3 3 4 4 79,5 4 0,6405 

3 3 4 5 74,0 5 0,7557 
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3 3 4 6 64,0 6 0,8631 

3 3 4 7 59,8 7 0,9806 

3 3 4 8 60,0 8 1,1060 

3 3 5 5 64,0 5 0,7381 

3 3 5 6 54,0 6 0,8454 

3 3 5 7 59,5 7 0,9801 

3 3 5 8 49,5 8 1,0875 

3 3 6 6 54,0 6 0,8454 

3 3 6 7 59,8 7 0,9806 

3 3 6 8 50,0 8 1,0883 

3 3 7 7 49,8 7 0,9629 

3 3 7 8 49,8 8 1,0879 

3 3 8 8 49,8 8 1,0879 

Table 6.4 Simulation results of all model structure and parameter variants with resulting production time, costs and fitness 
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The fitness values of all 275 model variants are shown graphically in figure 6.9.  

 

Figure 6.9 Fitness values of all variants with the optimum at X132 

The limits of the objective function parameters i.e. model generation and simulation results 

and objective function results are shown in table 6.5. The solution X132 has the minimal 

fitness value 0.4859 i.e. this solution is the global optimum. Figure 6.6 shows the PES and 

figure 6.7 the model structure of this variant. 

 min max 

production time 49,5 566 

costs 1 8 

fitness 0.4859 1,5442 
 

Table 6.5 Limits of fitness function parameters and results 

Beside the global minimum several local minima exist with a very close fitness value, as can 

be seen in figure 6.9. Table 6.6 lists the global optimum (green line) and all near optimal 

solutions with a maximal variation of 3% of the maximal fitness value of 2. The solutions 2, 

4 and 7 are identical to solutions 1, 3 and 6 due to the preferred assignment of the two 

available operators to the automatic login i.e. the manual login is not used in variants 2, 4, 7. 

The solutions 1, 3 and 6 differ in the control strategy whereas the most flexible control 

strategy 2 delivers the optimal result. Solutions 3 and 5 are based on different system 

configurations. With the used same weighting of production time and costs the solution 3 is 

the optimal solution, with a higher weighting of production time solution 5 would be a better 

variant. 
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no. ctrl 

strat. 

login 

typ 

# of 

splicers 

# of 

ops 

  prod.  

time 

costs   fittness 

1 1 2 2 2   139,8 2   0,4969 

2 1 3 2 2   149,3 2   0,5137 

3 2 2 2 2   133,5 2   0,4859 

4 2 3 2 2   133,8 2   0,4863 

5 2 3 3 3 

 

87,3 3 

 

0,5291 

6 3 2 2 2   149,5 2   0,5141 

7 3 3 2 2   148,5 2   0,5124 

Table 6.6 Optimal and near optimal solutions 

With other relevance factors r1 and  r2 the optimal system configuration is different. E.g. 

without the consideration of costs two global optima with a production time of 49.5 exist 

(X86 and X267). These solutions produce the specified number of orders in the shortest time.  

 In each of the two GA optimisation experiments the optimisation was repeated 50 

times to estimate average values because of the stochastic nature of GA. Each optimisation 

experiment uses one stop criterion as described in section 6.4.2.  

 The results with average number of investigated individuals, optimum and near 

optima found are shown in table 6.7. The results show that the number of investigated 

individuals (194 and 102) is significant less than the number of all variants (275). The 

probability to find the optimal or near optimal solution is high (68% and 50%) but the 

finding is not guaranteed. Both, the number of investigated individuals and the finding 

probability depend highly on chosen GA parameters as can be seen when comparing the 

results of optimisation experiment 1 and 2 in table 6.7. 

 Stop criterion 1 
(uses weighted average 
change over 20 generation) 

Stop criterion 2 (uses 
weighted average change 
over 5 generation) 

Average number of 
investigated individuals to 
find an optimum 

194 102 

Optimum X132 47% 21% 
Near optimal 

results with max 
3.2% error 

21% 29% 

Table 6.7 Results of 50 optimisation experiments 



Chapter 6. Parameter and Structure Optimisation of Manufacturing Systems 

 

[121] 

An example of the development of individual fitness values, best and average generation 

fitness during a single optimisation experiment is shown in figure 6.10. The diagram shows 

the fast convergence of the average fitness of the generations. After two generations each 

generation contains the optimal solution once in minimum and after the 7th generation the 

fitness value does not change anymore. 

 

Figure 6.10 Individual fitness, best and average fitness of generations of one GA run 

The results show that the optimisation approach developed in this research delivers an 

optimal solution with a high probability and with significantly less simulation runs in 

comparison to a complete simulation study of all model variants. Consequently the new 

approach of a simulation based parameter and structure optimisation is validated with a first 

real industrial example. There is a potential to increase the probability and/or decrease the 

number of simulation runs to estimate the optimal solution through adaptations of the GA 

parameters or with the use of other search methods. 

 For a potential application of the introduced approach it is necessary to extend the 

model to a complete Photofinishing Laboratory. Although the model of the case study is 

relative small the computing time of an optimisation experiment is on average between some 

10 minutes and a few hours. However, the case study is carried out with a prototypical 

implementation of the simulation method and ideal parallelisation possibilities of GAs are 

not used. Hence, it can be assumed that there is a huge potential of runtime optimisation.  
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 The introduced case study stands for many flexible production systems. It can be 

assumed that the developed framework can be applied to other, comparable systems with the 

ability of modular, hierarchical modelling.  
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Chapter 7 

Conclusions and further Work 

7.1 Conclusions 

Simulation in a manufacturing context focuses on modelling the behaviour and the structure 

of manufacturing organisations, processes and systems. Many manufacturing systems have 

the potential to be optimised and to exploit this potential simulation based optimisation 

techniques are an important step forward. The overall goal of applying of these techniques is 

the identification of improved user selected system parameters. This research deals with a 

fundamental optimisation problem in discrete event simulation. Optimisation is well 

established but restricted to the optimisation of system parameters. Model structure is 

considered to be fixed, defined during model development. In simulation based optimisation 

using automated model parameter changes and manual model structure adaptations the 

global optimal system configuration cannot be guaranteed. With the growing use of flexible 

manufacturing systems and the increasing demand for product customisation the number of 

manufacturing system variants increases consequently the demand for structure optimisation 

is becoming increasingly more important. 

 This research has developed a simulation based optimisation method to solve the 

limitations of the established techniques. A crucial difference to established simulation based 

parameter optimisation is the application of a method based on meta-modelling to manage a 

set of models. The new optimisation method can simultaneously control both model 
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parameter changes and model structure selection. The result of a successful optimisation 

experiment using this approach is a parameter and structure optimised model. The key 

research aim to develop an approach to replace conventional manual structural changes i.e. 

to develop a combined, simulation based parameter and structure optimisation has been 

achieved. 

 An essential prerequisite of the new approach is a modular, hierarchical modelling 

and simulation method with a strict separation of model and simulator. This research 

determined the DEVS formalism as a suitable method. DEVS as a two-part definition 

consisting of a formal model specification and a simulation algorithm to model execution 

was introduced in the 70s and since then has been continuously developed. Many DEVS 

extensions have one joint attribute: they are based on the original DEVS formalism and have 

not taken advantage of the potential in combining extensions. For this reason the research 

has been followed the idea of a merging formalism to combine the advantages of different 

approaches. The new EDSDEVS formalism developed from this research is a fusion of 

Classic DEVS with selected extensions. It is an as generic as possible, powerful modelling 

and simulation formalism based on DEVS. A second key research aim to develop a 

modelling and simulation method based on DEVS and DEVS extensions to create a merging 

formalism has been achieved. 

 A further prerequisite for simulation based optimisation is an appropriate model 

management method. This research determined the SES/MB approach as a suitable method. 

Originally the SES/MB framework was developed to assist an analyst during a manual 

model variant selection. Changes to the SES/MB approach and algorithms to embed it into 

the simulation based optimisation have been developed within the research. 

 The final prerequisite is a suitable search method to find the optimal model 

configuration in the general multidimensional search space. Many search algorithms exist. 

One category widely used in both research and commercial applications are genetic and 
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evolutionary algorithms. For a practical investigation of the fundamental simulation based 

parameter and structure optimisation framework a commercial GA is used. 

 Validation of the work has been achieved using an industrial problem where the 

ability to control manufacturing system structure is an important optimisation factor. The 

photo-processing industry relies on management of the process flow to achieve profitability 

and this application demonstrates both how the new framework functions and the validity of 

the GA used in a real world situation. In two optimisation experiments it has been shown that 

the results are significantly dependent on the GA parameters. However in both experiments 

the probability to find an optimal or near-optimal model configuration is equal to or greater 

than 50%. An increased probability of an optimal solution is preferable however this will be 

the subject of further work. 

 The framework is implemented as MATLAB toolboxes and uses a commercial GA 

toolbox respectively. In the prototypical implementation of the framework and the validation 

of the work it has been shown that the use of MATLAB has both advantages and 

disadvantages. It is a powerful and productive environment to solve scientific and 

engineering problems and to implement prototypical applications. A disadvantage is the 

interpretative operation method. Particularly in simulation based optimisation where 

numerous, time consuming simulation runs lead to long execution times. However, there are 

parallel computing MATLAB toolboxes which support several aspects of parallelisation. The 

algorithmic summary shown using a GA is a promising approach to improve execution time 

by parallelisation. 

 During the research project the important steps have been published in a peer-

reviewed journal, at international conferences and as a book chapter. Appendix C presents 

the publications. 
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7.2 Suggestions for further work 

This research has established an approach to simulation based parameter and structure 

optimisation. Whilst this thesis presents the ideas, principles and a first example, it also 

opens up several future research directions. Future research directions can be divided into 

two areas (i) investigations of simulation based optimisation framework (ii) EDSDEVS 

formalism. 

i. The introduced approach defines the model structure variants at the meta-model 

level as a static structure. Otherwise it uses a dynamic structure modelling and 

simulation method to execute the selected model configuration. The dynamic 

changes of the model structure during the simulation time are not considered in this 

approach i.e. the optimisation regards only the initial model structure as a static 

structure. It seems feasible to add dynamic structure changes during the model 

lifetime as an additional criterion to the optimisation. An example is the length of 

stay of a sub model. This approach considers the initial existence of the sub model 

but its lifetime may play an important role in the search for an optimal model 

configuration.  

 With the SES XML definition a platform and implementation independent 

meta-modelling definition already exists. The manual modelling based on direct 

writing a XML file is not straightforward. General XML editors can assist the 

modelling but cannot replace a dedicated SES XML editor. A graphical SES/MB 

modelling application is a reasonable extension. 

 As already shown in section 6.4.3 the optimisation results and the number of 

optimisation cycles depends on the GA parameters. There is much literature about 

GA methods and parameterisation. The experience gained in this research has shown 

that further investigations in this direction are necessary. Hence, the optimisation of 

GA parameters is a further research topic. 
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 There are also other promising search methods. Another nature analogue 

method is the Particle Swarm Optimisation (PSO) approach based on swarm 

intelligence of social groups. This group of algorithms is relative new, introduced 

around 10 years ago. The number of publications and applications is growing fast. 

The literature review has shown evidence that this algorithm group can solve 

problems like the simulation based optimisation as well as GAs. 

ii. The new EDSDEVS formalism developed from this research is a fusion of Classic 

DEVS with several extensions. This part of the research is a step to a generic 

modelling and simulation formalism based on DEVS. Further extensions are 

desirable and essential e.g. extensions for parallel computing and graphical 

modelling. There are also approaches for hybrid DEVS extensions i.e. the support of 

continuous state changes. These are proposals for further research. The last proposal, 

the hybrid DEVS, is already a current research project topic of the Research Group 

CEA. 

The importance and topicality of the idea behind this research can be seen in two brand new 

research proposals, the first currently in preparation and the second announced at 

30.03.2009:  

 A research proposal at the Deutsche Forschungsgemeinschaft (DFG German 

Research Foundation) for further developments of the simulation based parameter and 

structure optimisation approach and its application to the optimisation of energy efficiency 

of process chains and manufacturing structures is currently in preparation. The optimisation 

of energy efficiency of process chains i.e. among other things the structure optimisation of 

process chains is a planned priority programme of DFG. 

 In a call for proposal of the Federal Ministry of Education and Research of Germany 

a sponsorship is announced with the topic ‘safeguarding competitiveness by versatile 

manufacturing systems’. One matter of the proposed research is covered by the optimisation 

technique introduced in this thesis. 
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Appendix B.  Coding Examples 

atomic_model 

variables: 

  tlast time of last event 

  s internal state 

 

 function  init() 

  // initialise state variable set S and tnext with the time of the first internal event 

  end function 

   

 function δext(e, x) 

  t = tlast + e 

  // do something with x.value 

 end function 

  

 function  δint(t) 

  SK → SK+1  // calculate next internal state SK+1 from current internal state SK 

 end function 

  

 function t =  ta() 

  t = . . . // calculate next internal state event 

 end function 

  

 function  y = λ() 

  y.value = . . . // set value of y-message 

 end function 

end atomic_model 

 

Listing B.1 Pseudo code skeleton of an atomic Classic DEVS model 
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coupled_model 

 function Md* = select(imminent) 

  Md* = . . .  // choose one of the sub component from component list imminent 

 end function 

end coupled_model 

 

Listing B.2 Pseudo code skeleton of a coupled Classic DEVS model  
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variables: 

 t simulation clock 

 tend simulation end time 

  

when receive start-msg(tend) 

 send i-msg() to sub-ordinate DEVS coordinator 

 t := tnext of sub-ordinate coordinator 

 while t < tend 

  send *-msg(t) to sub-ordinate DEVS coordinator 

  t := tnext of sub-ordinate coordinator 

 

Listing B.3 Pseudo code of a Classic DEVS root coordinator 
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variables: 

 tlast time of last event 

 tnext time of next internal state event 

 am associated atomic model 

  

when receive i-msg() 

 am.init() 

 tlast := 0 

 tnext := am.ta() 

  

when receive *-msg(t) at time t 

 if t <> tnext 

  error: bad synchronisation 

 y := am.λ() 

 send y in y-message to parent coordinator 

 am.δint(t) 

 tlast := t 

 tnext := tlast + am.ta() 

  

when receive x-msg(t, x) at time t with value x 

 if not (tlast ≤ t ≤ tnext) 

  error: bad synchronisation 

  am.δext(t-tlast, x) 

 tlast := t 

 tnext := tlast + am.ta() 

 

Listing B.4 Pseudo code of a Classic DEVS simulator 
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variables: 

 tlast time of last event 

 tnext time of next internal state event 

 CM associated coupled model 

  

when receive i-msg() 

 foreach sub component Md ∈ CM.M 

  send i-msg() to Md 

 tlast := 0 

 // determine time of next scheduled internal state event of all sub components 

 tnext := min( { Md.tnext | Md ∈ CM.M } ) 

  

when receive *-msg(t) at time t 

 if t <> tnext 

  error: bad synchronisation 

 // find all sub components with a true condition tnext=t  

 imminent := { Md | Md ∈ CM.M ∧ Md. tnext= t } 

 // call select function to determin one sub component to send the *-msg 

 Md* := select(imminent) 

 send *-msg(t) to Md* 

 tlast := t 

 // determine time of next scheduled internal state event of all sub components 

 tnext := min( { Md.tnext | Md ∈ CM.M } ) 

  

when receive x-msg(t, x) at time t with value x 

 if not (tlast ≤ t ≤ tnext) 

  error: bad synchronisation 

 // get all sub components Md* with an appropriate EIC 

 receivers := subcomponents {Md | Md∈CM.M} with {coupling | coupling∈ CM.EIC} 
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 // forwards the x-msg to all appropriate sub components 

 foreach sub component Md* in receivers 

  send x-msg(t, x) to Md* 

 tlast := t 

 // determine time of next scheduled internal state event of all sub components 

 tnext := min({Md.tnext | Md ∈ CM.M}) 

  

when receive y-msg(t, y) at time t with value y 

 // forwards y-msg to super-ordinate model if an appropriate EOC exists 

 if exist coupling in CM.EOC 

  send y-msg(t, y) to parent model 

 // get all sub components Md* with an appropriate IC 

 receivers := subcomponents {Md |M d∈CM.M} with {coupling | coupling∈ CM.IC} 

 // creates from y-msg and sends it as an x-msg to all appropriate sub components 

 foreach sub component Md* in receivers 

  send x-msg(t, y→x) to Md* 

 

Listing B.5 Pseudo code of a Classic DEVS coordinator 
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atomic_model 

variables: 

  tlast time of last event 

  s internal state 

 

 function δext(e, x) 

  t = tlast + e 

  switch x.port 

   case inputport0 

    // do something with x.value received at input port inputport0 

. . . 

   case inputportn 

    // do something with x.value received at input port inputportn 

. . . 

  end switch 

 end function 

 

 function  y = λ() 

  y.port = . . .  // set output port of y-message 

  y.value = . . . // set value of y-message 

 end function 

 

Listing B.6 Pseudo code skeleton of an atomic Classic DEVS with Ports model  
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when receive *-msg(t) at time t 

 if t <> tnext 

  error: bad synchronisation 

 y := am.λ() 

 send value y.value in y-message to parent coordinator at port y.port 

am.δint(t) 

 tlast := t 

 tnext := tlast + am.ta() 

  

when receive x-msg(t, x, p) at time t with value x at port p 

 if not (tlast ≤ t ≤ tnext) 

  error: bad synchronisation 

 am.δext( t-tlast, x, p) 

 tlast := t 

 tnext := tlast + am.ta() 

 

Listing B.7 Pseudo code of a Classic DEVS with Ports simulator 
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when receive x-msg(t, x, p) at time t with value x at port p 

 if not (tlast ≤ t ≤ tnext) 

  error: bad synchronisation 

 // get all sub components Md* with an appropriate EIC 

 receivers := subcomponents {Md | Md∈ CM.M} with {coupling | coupling∈ CM.EIC} 

 // forwards the x-msg to all appropriate sub components 

 foreach sub component Md* in receivers 

  send x-msg(t, x, Md*.p) to Md* at port p 

 tlast := t 

 // determine time of next scheduled internal state event of all sub components 

 tnext := min({Md.tnext | Md ∈ CM.M}) 

 

when receive y-msg(t, y, p) at time t with value y at port p 

 // forwards y-msg to super-ordinate model if an appropriate EOC exists 

 if exit coupling in CM.EOC 

  // coupling is a structure with the elements {sub component, psource, pdestination} 

  foreach coupling in CM.EOC 

   send y-msg(t, y, coupling.pdestination) to parent model 

 // get all sub components Md* with an appropriate IC 

 receivers := subcomponents {Md |M d ∈ CM.M} with {coupling | coupling∈ CM.IC} 

 // creates x-msg from y-msg and sends it as an x-msg to all appropriate 

sub components 

 foreach sub component Md* in receivers 

  foreach coupling in CM.IC with coupling between y.source and Md*.p 

  send x-msg(t, y→x, Md*.p) to Md* at port p 

 

 Listing B.8 Pseudo code of a Classic DEVS with Ports coordinator 
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atomic_model 

variables: 

  tlast time of last event 

  s internal state 

 

 function  init() 

  // initialise state variable set S and tnext with the time of the first internal state 

event 

  end function 

 

 function  δδδδcon(t, x_bag) 

  // default implementation of a confluent function matches Classic DEVS 

functionality 

  δδδδint(t) 

  δδδδext(0, x_bag) 

 end function 

 

 function δext(e, x_bag) 

  t = tlast + e 

  foreach x in x_bag 

   // do something with x.value 

 end function 

 

 function  δint(t) 

  SK → SK+1  // calculate next internal state SK+1 from current internal state SK 

 end function 

 

 function t =  ta() 

  t = . . . // calculate next internal state event 

 end function 

 

 function  y_bag = λ() 
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  y.value = . . . // set value of y-message 

  y_bag += y 

 end function 

end atomic_model 

 

Listing B.9 Pseudo code skeleton of an atomic PDEVS model 
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when receive *-msg(t) at time t 

 if t <> tnext 

  error: bad synchronisation 

 y_bag := am.λ() 

 send y_bag in y-message to parent coordinator 

 

when receive x-msg(t, x_bag) at time t with x_bag 

 if not (tlast ≤ t ≤ tnext) 

  error: bad synchronisation 

 if t=tnext and x_bag is not empty 

  // concurrent external and internal event 

  am.δδδδcon(t, x_bag) 

 else if t=tnext and x_bag is empty 

  // internal event 

  am.δδδδint(t) 

 else 

  // external event 

   am.δδδδext(t-tlast, x_bag) 

 end if 

 tlast := t 

 tnext := tlast + am.ta() 

 

Listing B.10 Pseudo code of a PDEVS simulator 
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atomic_model 

variables: 

  tlast time of last event 

  s internal state 

 

 function  init(t) 

  // initialise state variable set S and tnext with the time of the first internal state 

event 

  // t=0 initialisation at simulation start 

  // t>0 initialisation after structure change 

  end function 

 

 function  δcon(t, x_bag) 

  // default implementation of a confluent function matches Classic DEVS 

functionality 

  δint(t)   

  δext(0, x_bag) 

 end function 

 

 function δext(e, x_bag) 

  t = tlast + e 

  foreach x in x_bag 

   // do something with x.value received at x.port 

   switch x.port 

    case inputport0 

     // do something with x.value received at input port inputport0 

    . . . 

    case inputportn 

     // do something with x.value received at input port inputportn 
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    . . . 

   end switch 

 end function 

 

 function δint(t) 

  su → su+1  // calculate next internal state su+1 from current internal state su 

 end function 

 

 function  t = ta() 

  t = . . . // calculate next internal state event 

 end function 

 

 function  y_bag = λ() 

  y.value = . . . // set value of y-message 

  y.port = . . . // set output port of y-message 

  y_bag += y 

 end function 

end atomic_model 

 

Listing B.11 Pseudo code skeleton of an atomic EDSDEVS model 
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coupled_model 

variables: 

  tlast time of last event 

  s internal state 

 

 function  init(t) 

  // initialise structure and state variable set S and tnext with the time of the first 

internal  

  //  state event 

  // t=0 initialisation at simulation start 

  // t>0 initialisation after structure change 

  end function 

 

 function  δcon(t, x_bag) 

  // default implementation similar to an atomic model  

    functionality 

  δint(t)   

  δx&s(0, x_bag) 

 end function 

 

 function δx&s(e, x_bag) 

  t = tlast + e 

  foreach x in x_bag 

   // do something with x.value received at x.port 

   switch x.port 

    case inputport0 

     // do something with x.value received at input port inputport0 

    . . . 

    case inputportn 
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     // do something with x.value received at input port inputportn 

    . . . 

   end switch 

 end function 

 

 function  δint(t) 

  su → su+1  // calculate next internal state su+1 from current internal state su 

 end function 

 

 function  t = ta() 

  t = . . . // calculate next internal state event 

 end function 

 

 function  y_bag = λ(t) 

  y.value = . . . // set value of y-message 

  y.port = . . . // set output port of y-message 

  y_bag += y 

 end function 

end coupled_model 

 

Listing B.12 Pseudo code skeleton of a coupled EDSDEVS model 
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variables: 

 tlast time of last event 

 tnext time of next internal state event 

 am associated atomic model 

 

when receive i-msg(t)at time t 

// t=0 initialisation at simulation start 

// t>0 initialisation after structure change 

 am.init(t) 

 tlast := t 

 tnext := am.ta() 

 

when receive *-msg(t) at time t 

 if t <> tnext 

  error: bad synchronisation 

 y_bag := am.λ() 

 send y_bag in a y-message to parent coordinator 

 

when receive x-msg(t, x_bag) at time t with value x_bag containing x.value und x.port pairs 

 if not (tlast ≤ t ≤ tnext) 

  error: bad synchronisation 

 if t=tnext and x_bag is not empty 

  // concurrent external and internal event 

  am.δcon( t, x_bag) 

 else if t=tnext and x_bag is empty 

  // internal event 

  am.δint(t) 

 else 

  // external event 
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  am.δext( t-tlast, x_bag) 

 end if 

 tlast := t 

 tnext := tlast + am.ta() 

 

Listing B.13 Pseudo code of an EDSDEVS simulator 
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variables: 

 tlast time of last event 

 tnext time of next internal state event of the coupled model or a sub component 

 tnext_c time of next internal state event of the coupled model 

 CM associated atomic model 

  // CM.st current, sequential structure state 

 IMM // imminent children 

mail  // output mail bag 

  

// t=0 initialisation at simulation start 

// t>0 initialisation after structure change 

when receive i-msg(t)at time t 

 CM.init(t) 

 foreach sub component Md ∈ CM.st.M 

  send i-msg(t) to Md 

 tlast := t 

 // determine time of next scheduled internal state event of coupled model 

 tnext_c := CM.ta() 

 // determine time of next scheduled internal state event of coupled model and all  

 //  sub components 

 tnext := min( tnext_c, { Md.tnext | Md ∈ CM.st.M } ) 

  

when receive *-msg(t) at time t 

 if t <> tnext & t<>tnext_c 

  error: bad synchronisation 

 // internal state transition event of the coupled model CM itself 

 if t=tnext_c 

  y_bag := CM.λ() 
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  send bag of value/output port pairs in a y-message to parent coordinator 

 // internal state transition event of a sub component of CM 

 else if t=tnext 

  // find all sub components with a true condition tnext=t  

  IMM := { Md | Md ∈ CM.st.M ∧ Md. tnext= t } 

  foreach Md in IMM 

   send *-msg(t) to Md 

 

when receive x-msg(t,  x_bag) at time t with value x_bag containing pairs of  x.value/x.port 

 if not (tlast ≤ t ≤ tnext_c) 

  error: bad synchronisation 

 if t=tnext_c and x_bag is not empty 

  CM.δcon( t, x_bag)  // concurrent external and internal event 

 else if t=tnext_c and x_bag is empty 

  CM.δint( t )  // internal event 

 else 

  CM.δx&s( t-tlast, x_bag)   // external event 

 end if 

 // get all sub components Md* with an appropriate EIC 

 receivers := subcomponents {Md | Md∈ CM.st.M} with {coupling | coupling∈ 

CM.st.EIC} 

 // forwards the x-msg to all appropriate sub components 

 foreach sub component Md* in receivers 

  CM.δx&s( t-tlast, x_bag)   // external event of sub component 

  send x-msg(t, x_bag, Md*.p) to Md* at port p 

 foreach sub component Md* in IMM and not in receivers 

  send x-msg(t, NULL, NULL) to Md*   // send empty bag, input port is ignored 
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 tlast := t 

 tnext_c := tlast + CM.ta() 

 tnext := min( tnext_c, { Md.tnext | Md ∈ CM.st.M } ) 

 

when receive y-msg(t, y_bag, d) at time t with y_bag with value/port pairs from d 

 // collect all y-messages from all sub components 

 if d is not the last not reporting d in IMM 

  add (y_bag, d) to mail 

  mark d in IMM as reporting 

 // all sub components now handled their *-message 

 else if d is the last not reporting d in IMM 

  CM.δx&s(t-tlast, mail) 

  // check external coupling to form sub-bag of parent output 

  y_bagparent = NULL 

  foreach d in mail where (y_bag and d) has an appropriate EIC 

   add y_bag to y_bagparent 

  send y-msg(t, y_bagparent,, CM) to parent model 

  // check IC to get children Md*  with an appropriate IC who receives a sub bag 

  receivers := subcomponents {Md |d in mail, M d∈ CM.st.M} with {coupling | 

coupling∈ CM.st.IC} 

  foreach sub component Md* in receivers 

   creates sub bag x_bag from mail with elements where Md* is receiver 

  send x-msg(t, x_bag) to Md* 

    mark d in IMM as sending 

   foreach sub component Md* in IMM where Md* is not sending 

    send x-msg(t, NULL) to Md* 

 tlast := t 

 tnext_c := tlast + CM.ta() 
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 tnext := min( tnext_c, { Md.tnext | Md ∈ CM.st.M } ) 

 

Listing B.14 Pseudo code of an EDSDEVS coordinator 
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<?xml version="1.0" encoding="us-ascii"?> 

<!-- 

    DTD for an SES. 

--> 

 

<!ELEMENT top (ses_mb)> 

 

<!ELEMENT ses (modelbase | ses | properties)*> 

 

<!ELEMENT modelbase ((mb_composite | mb_atomic | mb_aspect | 

mb_specialization | mb_specializationentity | mb_multiAspect)+)> 

 

<!ELEMENT ses (composite)> 

 

<!ELEMENT properties ((modelcouplings | var | varNumberOfComponent | 

constraint)+)> 

 

<!ELEMENT modelcouplings ((eic | eoc | ic)+)> 

<!ATTLIST modelcouplings 

 esname CDATA #REQUIRED> 

 

<!ELEMENT mb_composite EMPTY> 

<!ATTLIST mb_composite 

 esname CDATA #REQUIRED> 

 

<!ELEMENT composite ((aspect | specialization | multiAspect)*)> 

<!ATTLIST composite 

 esname CDATA #REQUIRED> 

 

 

<!ELEMENT mb_atomic ((inports | outports)*)> 

<!ATTLIST mb_atomic 

 esname CDATA #REQUIRED 

 classname CDATA #REQUIRED 

 modelname CDATA #REQUIRED> 

 

<!ELEMENT atomic EMPTY> 

<!ATTLIST atomic 

 esname CDATA #REQUIRED> 

 

 

<!ELEMENT mb_aspect ((inports | outports)*)> 

<!ATTLIST mb_aspect 

 esname CDATA #REQUIRED 

 classname CDATA #REQUIRED 

 modelname CDATA #REQUIRED> 

 

<!ELEMENT aspect ((entity | specialization | multiAspect | 

atomic)*)> 

<!ATTLIST aspect 

 esname CDATA #REQUIRED> 

 

 

<!ELEMENT mb_specialization ((inports | outports)*)> 

<!ATTLIST mb_specialization 

 esname CDATA #REQUIRED> 

 

<!ELEMENT mb_specializationentity EMPTY> 

<!ATTLIST mb_specializationentity 

 esname CDATA #REQUIRED 
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 classname CDATA #REQUIRED 

 modelname CDATA #REQUIRED> 

 

<!ELEMENT specialization (specializationentity+)> 

<!ATTLIST specialization 

 esname CDATA #REQUIRED> 

 

<!ELEMENT specializationentity EMPTY> 

<!ATTLIST specializationentity 

 esname CDATA #REQUIRED> 

 

 

<!ELEMENT mb_multiAspect EMPTY> 

<!ATTLIST mb_multiAspect 

 esname CDATA #REQUIRED> 

 

<!ELEMENT multiAspect (atomic)> 

<!ATTLIST multiAspect 

 esname CDATA #REQUIRED> 

 

 

<!-- 

internal var will be set internally in the ses 

external var references an external variable 

--> 

<!ELEMENT var EMPTY> 

<!ATTLIST var 

 name CDATA #REQUIRED 

 esname CDATA #REQUIRED 

 typ (internal|external) "internal" 

 external_name CDATA #IMPLIED 

 value CDATA #IMPLIED> 

 

<!ELEMENT varNumberOfComponent EMPTY> 

<!ATTLIST varNumberOfComponent 

 esname CDATA #REQUIRED 

 min CDATA #REQUIRED 

 max CDATA #REQUIRED> 

 

<!ELEMENT inports (inport+)> 

 

<!ELEMENT outports (outport+)> 

 

<!ELEMENT inport EMPTY> 

<!ATTLIST inport 

 name CDATA #REQUIRED> 

 

<!ELEMENT outport EMPTY> 

<!ATTLIST outport 

 name CDATA #REQUIRED> 

 

<!ELEMENT eic EMPTY> 

<!ATTLIST eic 

 inport CDATA #REQUIRED 

 component CDATA #REQUIRED 

 component_inport CDATA #REQUIRED> 

 

<!ELEMENT eoc EMPTY> 

<!ATTLIST eoc 

 component CDATA #REQUIRED 
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 component_outport CDATA #REQUIRED 

 outport CDATA #REQUIRED> 

 

<!ELEMENT ic EMPTY> 

<!ATTLIST ic 

 component1 CDATA #REQUIRED 

 component1_outport CDATA #REQUIRED 

 component2 CDATA #REQUIRED 

 component2_inport CDATA #REQUIRED> 

 

<!ELEMENT constraint EMPTY> 

<!ATTLIST constraint 

 name CDATA #REQUIRED 

 typ (entity|parameter) #REQUIRED 

 action (enable|valid) #IMPLIED 

 condition (gt|lt|eq|gteq|lteq|neq) #IMPLIED 

 var_name1 CDATA #IMPLIED 

 var_name2 CDATA #IMPLIED 

 destination CDATA #IMPLIED> 

 

Listing B.15 DTD describing the structure of SES/MB XML 
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<?xml version="1.0" encoding="utf-8"?> 

<!DOCTYPE ses SYSTEM "ses.dtd" []> 

<ses_mb> 

 <ses> 

  <composite esname="ROOT"> 

   <aspect esname="ROOTdec"> 

    <composite esname="A"> 

     <specialization esname="Aspec"> 

      <specializationentity esname="A1"/> 

      <specializationentity esname="A2"/> 

     </specialization> 

    </composite > 

    <composite esname="B"> 

     <aspect esname="Bdec"> 

      <atomic esname="D"/> 

      <atomic esname="E"/> 

     </aspect> 

    </composite > 

   </aspect> 

  </composite > 

 </ses> 

 

 <modelbase> 

  <mb_aspect esname="ROOTdec" classname="ROOT" modelname="root"/> 

  <mb_specialization esname="Aspec"> 

   <outports> 

    <outport name="Aout1"/> 

    <outport name="Aout2"/> 

   </outports> 

  </mb_specialization> 

  <mb_aspect esname="Bdec" classname="B" modelname="b"> 

   <inports> 

    <inport name="Bin1"/> 

    <inport name="Bin2"/> 

   </inports> 

   <outports><outport name="Bout"/></outports> 

  </mb_aspect> 

  <mb_atomic esname="D" classname="D" modelname="d"> 

   <inports><inport name="Din"/></inports> 

   <outports><outport name="Dout"/></outports> 

  </mb_atomic> 

  <mb_atomic esname="E" classname="E" modelname="e"> 

   <inports> 

    <inport name="Ein1"/> 

    <inport name="Ein2"/> 

   </inports> 

   <outports><outport name="Eout"/></outports> 

  </mb_atomic> 

 </modelbase> 

 

 <properties> 

  <modelcouplings esname="ROOTdec"> 

   <ic component1="A" component1_outport="Aout1"  

     component2="B" component2_inport="Bin1"/> 

   <ic component1="A" component1_outport="Aout2"  

     component2="B" component2_inport="Bin2"/> 

  </modelcouplings> 

  <modelcouplings esname="Bdec"> 

   <eic inport="Bin1" component="D" component_inport="Din"/> 

   <eic inport="Bin2" component="E" component_inport="Ein2"/> 
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   <ic component1="D" component1_outport="Dout"  

    component2="E" component2_inport="Ein1"/> 

   <eoc component="E" component_outport="Eout" outport="Bout"/> 

  </modelcouplings> 

  <var esname="ROOT" name="pmax" typ="internal" value="6"/> 

  <var esname="A1" name="p1" typ="internal" value="2"/> 

  <var esname="A2" name="p1" typ="internal" value="3"/> 

  <var esname="D" name="p2" typ="internal" value="3"/> 

  <constraint name="sc1" condition="lt" var_name1="p1+p2" 

      var_name2="pmax" action="valid" typ="parameter"/> 

 </properties> 

</ses_mb>  

Listing B.16 SES/MB XML example – XML file 

  



Coding Examples 

 

[159] 

 

Figure B.1 A coupled model example 

<?xml version="1.0" encoding="utf-8"?> 

<atomic modelName="server" xmlns="AtomicDevs"> 

 <inports/> 

 <outports> 

  <outport>job_out</outport> 

 </outports> 

</atomic> 

 

<?xml version="1.0" encoding="utf-8"?> 

<atomic modelName="transducer" xmlns="AtomicDevs"> 

 <inports> 

  <inport>job_in</inport> 

 </inports> 

 <outports/> 

</atomic> 

Listing B.17 Two atomic model XML files  

 

<?xml version="1.0" encoding="utf-8"?> 

<coupled modelName="MODEL" xmlns="CoupledDevs"> 

 <Models> 

  <Model><devs>server</devs></Model> 

  <Model><devs>transducer</devs></Model> 

 </Models> 

 <inports/> 

 <outports/> 

 <EIC/> 

 <IC> 

  <Coupling> 

   <SrcModel>server</SrcModel><outport>job_out</outport> 

   <DestModel>transducer</DestModel>

 <inport>job_in</inport> 

  </Coupling> 

 </IC> 

 </EOC> 

</coupled> 

Listing B.18 Coupled model XML file 
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0. Define the search space and chose an appropriate information encoding in chromosomes 

1. Initialise a population of  individuals with different chromosomes (generation 0) 

Repeat until stop criterion is fulfilled 

2. Estimate the fitness of all individuals of the current generation 

3. Select pairs with m individuals and create descendants using crossover 

4. Mutate the descendants 

5. Exchange individuals of the current generation with descendants based on a 

substitution schema to create a new generation 

Listing B.19 A general GA algorithm 

 



Photofinishing Machines 

 

[161] 

Appendix C.  Photofinishing Machines 

 

Figure C.1 Splicer (left) and URS 

 

Figure C.2 DigiURS (left) and High-speed film scanner 
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Figure C.3 Analogue (left) and digital printer 

 

Figure C.4 Manual (left) and automatic cutter 



Publications in the Course of this Research 

 

[163] 

Appendix D.  Publications in the Course of this 

Research 

 

Hagendorf O., Pawletta T. (2009) Extended Dynamic Structure DEVS. Proceedings of the 

21st European Modeling and Simulation Symposium (submitted and accepted). 

 

Hagendorf O., Pawletta T. (2009) A Framework for Simulation Based Structure and 

Parameter Optimization of Discrete Event Systems. book project by CRC Press, editor: G. 

Wainer and P. Mosterman, 30 pages (submitted and accepted 2008/2009) . 

 

Hagendorf O. Pawletta T. (2008) An Approach for Simulation Based Structure Optimisation 

of Discrete Event Systems. Proceedings of the 2008 Spring Simulation Conference. 

 

Hagendorf O., Pawletta T., Pawletta S., Colquhoun G. (2006) An approach for modelling 

and simulation of variable structure manufacturing systems. ICMR 2006 Liverpool/UK. 

 

Pawletta T., Deatcu C., Pawletta S., Hagendorf O., Colquhoun G. (2006) DEVS-Based 

Modeling and Simulation in Scientific and Technical Computing Environments. Proceedings 

of the 2006 Spring Simulation Conference DEVS/HPC/MMS 2006 Huntsville/Al USA. 

 

Hagendorf O., Colquhoun G., Pawletta T., Pawletta S. (2005) A DEVS - Approach to 

ARGESIM Comparison C16 ‘Restaurant Business Dynamics’ using MatlabDEVS. 

Simulation News Europe, no.44/45, (December). 

 



 

 

EXTENDED DYNAMIC STRUCTURE DEVS 
 

 

Olaf Hagendorf 
(a)

, Thorsten Pawletta 
(b)

, Christina Deatcu 
(c)

 
 

 
(a)

 Liverpool John Moores University, School of Engineering, UK 
(a, b, c)

 Hochschule Wismar, University of Applied Sciences: Technology, Business and Design, Germany 

 
(a)

 oh@ibhagendorf.de, 
(b) 

thorsten.pawletta@hs-wismar.de, 
(c) 

christina.deatcu@hs-wismar.de 

 

 

 

 

ABSTRACT 

Since the first publication of DEVS, the formalism was 

enhanced and many extensions have been introduced. 

Every extension holds some advantages over the other, 

e.g. Parallel DEVS generalizes the specification and 

handling of concurrent events, DEVS with Ports 

enables a more structured modeling and Dynamic 

Structure DEVS introduces dynamic structure changes 

at coupled model level during simulation time. The 

extensions have one joint attribute: they are extending 

the Classic DEVS formalism and don’t incorporate the 

advantages of each other. Hence, the decision on one 

DEVS extension inhibits the use of advantages of 

another one. This lack leads to the idea of a merging 

formalism to combine the advantages of different 

approaches. The Extended Dynamic Structure DEVS 

combines the Classic DEVS with some of the existing 

extensions: Parallel DEVS, Dynamic Structure DEVS 

and DEVS with Ports. 
 

Keywords: Discrete Event Simulation, DEVS, 

DSDEVS, PDEVS, EDSDEVS 
 

1. INTRODUCTION 

The DEVS formalism was first introduced by Zeigler 

(Zeigler 1976) in the 1970s. In (Zeigler et.al. 2000) the 

authors classify this formalism, position and compare it 

with other, more established modeling and simulation 

formalisms. Several international research groups are 

working on the DEVS formalism and are regularly 

publishing results at the annual DEVS Symposium at 

Spring Simulation Conferences, European Modeling 

and Simulation Symposia and others. Wainer (Wainer 

2009) maintains a list of available DEVS tools. The 

DEVS formalism is, in contrast to other modeling and 

simulation formalisms, not very widely used in 

industrial practice. This situation persists despite the 

fact that the theory is a well-founded, general 

formalism. It can only be assumed that one reason of 

the marginal acceptance is the type of available 

software tools (Pawletta et.al. 2006).  

There are several publications to extend the 

application field or to ease the use of DEVS e.g. Parallel 

DEVS generalizes the specification and handling of 

concurrent events, DEVS with Ports enables a more 

structured modeling and Dynamic Structure DEVS 

introduces dynamic structure changes at coupled model 

level during simulation time and significantly eases the 

modeling of larger real systems. The extensions have 

one joint attribute: they are based on the Classic DEVS 

formalism and extending it in a specific direction. 

Hence, the decision on one DEVS extension inhibits the 

use of advantages and application fields of another one. 

This lack leads to the idea of a merging formalism to 

combine the advantages of different approaches and 

widen the application field of the resulting formalism. 

The Classic DEVS formalism with the formal 

modeling concept and simulation algorithms is 

introduced in chapter 2. After a short introduction of a 

few DEVS extensions, three of them are described in 

detail in chapter 3. The fusion of Classic DEVS with the 

introduced extensions to the new Extended Dynamic 

Structure DEVS approach is presented with formal 

concept, simulation principles and algorithms in chapter 

4. The conclusions in chapter 5 complete this 

contribution. 
 

2. CLASSIC DEVS 

DEVS is a modular, hierarchical modeling and 

simulation formalism. Every DEVS model can be 

described by using two different model types, atomic 

and coupled. Both model types have an identical, 

clearly defined interface through input and output ports. 

An atomic model describes the behavior of a non-

decomposable entity via input/output events and event 

driven state transition functions. A coupled model 

describes the structure of a more complex model 

through the aggregation of several entities and their 

couplings. These entities can be atomic models as well 

as coupled models. The DEVS formalism consists of 

two parts: (i) a formal DEVS model definition and (ii) 

simulator algorithms. 
 

2.1. Formal Concept 

The formal Classic DEVS description defines coupled 

and atomic models as a combination of sets and 

functions. The description of an atomic model is a 

7-tuple (Zeigler et.al. 2000):  

am = (X, Y, S, δext, δint, λ, ta) 

• X, Y and S specify the sets of discrete inputs, 

outputs and internal states. 

• δext: Q × X → S where Q = {(s,e) | s ∈ S, 



 

 

0<e<tnext} 

The external state transition function δext handles 

external input events.  

• δint: S → S  

The internal state transition function δint 

establishes a new internal state. 

• λ: S → Y 

The output function λ generates an output event 

depending on the internal state S.  

• ta: S → ℜ�
�

 ∪ ∞ 

The time advance function ta schedules the time of 

the next internal event after each state transition.  
 

Figure 1 shows the dynamic behavior of an atomic 

model.  

 
Fig. 1 Dynamic Behavior of an Atomic Model 
 

The description of a coupled model is a 9-tuple (Zeigler 

et.al. 2000):  

CM = (dn, X, Y, D, { Md }, EIC, EOC, IC, SELECT) 

• dn specifies the name of the coupled model. 

• X and Y specify the sets of discrete inputs and 

outputs. 

• D specifies the set of sub component names. 

• Md
 
| d ∈ D 

Md is the model of the sub component d 

• EIC, EOC and IC are the sets of external input, 

external output and internal couplings. 

• The SELECT function prioritizes concurrent 

internal events of sub components. 
 

Figure 2 depicts the relations of the elements of a 

Classic DEVS coupled model.  
 

 
Fig. 2 Coupled Model Elements 

The Classic DEVS approach supports the specification 

of behavioral system dynamics in atomic systems and 

the specification of static component aggregations in 

coupled systems. It is not possible to describe structural 

system dynamics at the coupled model level, i.e. the 

deletion or creation of components and couplings or 

changes of interfaces, although all necessary structural 

information is also available during simulation time. 

The only possibility to realize a structural system 

dynamic is to specify it with logical constructs at the 

atomic model level. However, this removes the 

advantages of reusability and model clarity and 

increases modeling complexity. 
 

2.2. Classic DEVS Simulation 

Beside the formal definition the second part of the 

Classic DEVS formalism is the description of abstract 

simulator algorithms for the execution of DEVS 

models. The algorithms are named abstract because they 

are implemented as a general pseudo code. The abstract 

simulator has a modular, hierarchical structure matching 

exactly the modular, hierarchical structure of a DEVS 

model. A DEVS model can be directly transformed into 

an executable simulator model using abstract simulator 

elements e.g. as shown in (Praehofer 1992; Zeigler et.al. 

2000).  

The abstract simulator approach consists of three 

different elements namely root coordinator, coordinator 

and simulator. Each atomic model is associated with a 

simulator element and each coupled model is associated 

with a coordinator element. The root coordinator is 

added to that structure as topmost ruling entity.  
 

3. DEVS EXTENSIONS 

Extensions of the Classic DEVS formalism increase the 

classes of system models that can be represented by 

DEVS. Several DEVS extensions are introduced e.g. in 

(Barros 1996; Chow et.al. 1994; Hagendorf et.al. 2006; 

Pawletta et.al. 1996; Praehofer 1992; Uhrmacher et.al. 

1994; Wainer 2009; Zeigler et.al. 2000). An incomplete 

list of DEVS extensions recently presented is: 

• DEVS with Ports: The port extension adds 

additional input and output ports to models.  

• Parallel DEVS: Parallel DEVS (PDEVS) considers 

concurrent transition events.  

• Dynamic Structure DEVS: Dynamic Structure 

DEVS (DSDEVS) enables changes during a 

simulation run. Several partial very different 

approaches exist. Dynamic structure extensions 

introduced by Barros (Barros 1996) and Pawletta 

(Pawletta et.al. 1996) keep the general structure of 

Classic DEVS modeling and simulation with 

additions to coupled model definitions but 

unchanged atomic model definitions. Other 

dynamic structure extensions e.g. an agent based 

DEVS (Uhrmacher et.al. 1994) introduce more 

extensive modifications.  

• DSDEVS-hybrid: The extension of discrete state 

changes by continuous state changes as introduced 

by DSDEVS-hybrid enables a complete new 



 

 

application field and can ease the modeling of 

several problems (Deatcu et.al. 2009). 

• Real Time DEVS: The DEVS model is executed 

in real time rather than in model time. The time 

advance function delivers time intervals which 

allow uncertainty when an internal event has to 

take place. 
 

The next sections introduce some of these DEVS 

extensions in more detail. They are used as basis of the 

subsequently introduced, unifying DEVS formalism. 
 

3.1. DEVS with Ports 
The introduction of ports into the Classic DEVS 

formalism makes modeling easier and the representation 

of information flow more clearly (Zeigler et.al. 2000). 

In Classic DEVS each model has only one single input 

and one single output port. All events are received and 

sent through these ports. With the port extension, a 

model has several input and output ports each dedicated 

for a specific task i.e. event type. A model can have 

several output ports which can be connected to input 

ports of other models as shown in figure 3. Hence, each 

event can use a dedicated, well defined routing path. 

The modeling becomes more structured; a model can 

become clearer and better understandable through 

differentiated interfaces. 
 

 
Fig. 3 Model with Multiple Input and Output Ports 

 

The formal description of Classic DEVS with Ports 

largely remains the same except the extended 

definitions of X, Y for atomic and coupled models 

(Zeigler et.al. 2000): 

X = {(p,v) | p ∈ InputPorts, v ∈ Xp} 

Y = {(p,v) | p ∈ OutputPorts, v ∈ Yp} 

• p is the input or output port of the model 

• v is a discrete value 

• Xp / Yp specify discrete inputs/outputs sets at port p 
 

Whereas in Classic DEVS the coupling definitions 

consist of a sub model name as destination and source, 

respectively, for EIC and EOC and of a pair of sub 

model names for IC, the port extension necessitates a 

coupling definition extension, too: 

• EIC = { (input_port, d.input_port) | 

input_port ∈ InputPorts,  d ∈ D, 

d.input_port∈InputPorts of Md } 

• IC = { (di.output_port, dk.input_port) | di,dk ∈ D, 

di.output_port∈ OutputPorts of ���
, 

dk.input_port ∈ InputPorts of ���
, i<>k } 

• EOC = { (d.output_port, output_port) | 

d.output_port ∈ OutputPorts of Md, d ∈ D, 

output_por ∈ OutputPorts} 

3.2. Parallel DEVS 

Parallel DEVS (PDEVS) was introduced by Chow 

(Chow et.al 1994). It adds new elements and functions 

to the Classic DEVS formalism. It allows all imminent 

components to be activated simultaneously and enables 

sending their output to other components at the same 

time concurrently. Multiple outputs are combined in a 

bag which is sent as a whole to a model’s external state 

transition function. A bag is similar to a set, containing 

an unordered set of elements, but allows multiple 

occurrences of an element. In Classic DEVS by contrast 

events are handled individually. In a PDEVS simulator 

(Zeigler et.al. 2000) during the *-message handling first 

all outputs are established before calling external and 

internal state transition functions. Each receiving 

component is responsible for examining and 

interpreting its combined inputs in the correct order. 

PDEVS gives the atomic model more control over the 

handling order of concurrent external and internal 

events. In Classic DEVS a super-ordinate component, 

the coupled model, is responsible for the execution 

order of concurrent internal events of different sub 

components using the select function. In PDEVS the 

order of simultaneous events is locally controllable at 

atomic model level with an additional, third state 

transition function, the confluent transition function 

δcon. Hence, it merges the decision logic of execution 

order of concurrent events with the event handling 

functions at a same level.  

According to the extensions of PDEVS an atomic 

model is defined by the following 8- tuple (Chow et.al. 

1994):  

am = (X, Y, S, δext, δint, δcon, λ, ta) 

• X, Y and S specify the sets of discrete input events, 

output events and sequential states.  

• δext: Q × X
b
 → S where X

b
 is a bag covering 

elements of X and Q = { (s,e) | s ∈ S, 0<e<tnext } 

The external state transition function δext handles a 

bag covering external inputs X
b

 = {xi | xi ∈ X}.  

• δint: S → S  

The internal state transition function δint 

establishes a new internal state.  

• δcon: S × X
b
 → S 

The confluent transition function δcon handles the 

execution sequence of δint and δext functions during 

concurrent external and internal events.  

o The confluent function definition 

δcon(s, X
b
) = δext(δint(s), 0, X

b
) with 

δext(s, e, X
b
) is equivalent to the Classic 

DEVS behavior with a higher prioritized 

handling of internal events. 

o The alternative confluent function defintion 

δcon(s, X
b
) = δint(δext(s, ta(s), X

b
)) with δint(s) 

first handles external events.  

o The execution of the confluent function with 

an empty bag δcon(s, null) calls directly the 

internal transition function δint. 
 

• λ: S →Y
b
 where Y

b
 is a bag covering elements of Y 



 

 

The output function λ generates a bag covering 

outputs Y
b
 = { yi | yi ∈ Y } depending on the 

internal state S. 

• ta: S → ℜ�

�
 ∪ ∞ 

The time advance function ta schedules the time of 

the next internal event after each state transition.  
 

The definition of a coupled model for PDEVS is the 

same as for Classic DEVS except for the absence of the 

select function (Zeigler et.al. 2000): 

CM = (dn, X, Y, D, { Md }, EIC, EOC, IC) 

The execution of a PDEVS model is carried out 

similarly to Classic DEVS with some changed details in 

the message handling (Zeigler et.al. 2000). 
 

3.3. Dynamic Structure DEVS 

Several approaches extend the Classic DEVS to 

Dynamic Structure DEVS (DSDEVS). Barros (Barros 

1996) and Pawletta (Pawletta et.al. 1996) introduce two 

DSDEVS variants with an extension of the coupled 

model definition while the atomic model definition 

remains unchanged. With theses extensions the coupled 

model is able to change its structure during simulation 

time. Uhrmacher (Uhrmacher et.al. 1994) introduces an 

agent based approach. It defines extensions for both 

atomic and coupled systems. Another approach is Cell-

DEVS, a combination of cellular automata with the 

DEVS formalism where each cell consist of a single 

DEVS model (Wainer 2001).  

The different types of extensions are carried out 

due to different application fields or problem definitions 

e.g. a typical Cell-DEVS application field is social and 

environmental modeling and simulation. The 

approaches of Barros and Pawletta are extending the 

classic formalism without changing its overall principle 

and thus without changing the general application field 

of Classic DEVS. The DSDEVS approach of Pawletta 

enables several options to specify structural dynamics: 

• Creation, destruction, cloning and replacement of 

sub components 

• Exchange of a sub component between two 

coupled models 

• Changing coupling definitions of a coupled system 
 

The DSDEVS approach extends the coupled model 

definition but the atomic model definition stays 

unchanged. During the simulation time a coupled model 

can change its structure. Each structure can be seen as a 

structure state si with s0, s1, ...,sn ∈ SDS. A structure state 

si describes all structure relevant elements of a coupled 

model. Additionally a structural state set HDS can store 

further structure information e.g. the number of 

structure changes at the present time or the current 

structure number. External or internal events, handled 

by the additional state transition functions δx&s and δint 

at coupled model level, induce structure state changes 

and as a result model structure changes. This dynamic 

structure extension of Classic DEVS was developed 

with a regard to hybrid systems, i.e. systems with 

continuous and discrete event dynamic. In the following 

only the relevant aspect for discrete event systems are 

taken into account. 

A DSDEVS coupled model is defined by the 

following 6-tuple (Pawletta et.al. 1996): 

CMDS = (dds , SDS , δx&s , δint , λ , ta) 

• dds specifies the name of the coupled model. 

• According to the above definition of a coupled 

model, its structure consists of sets of sub 

components and coupling relations. Structure 

changes mean modifications of these sets. 

Obviously, the sets of sub systems and coupling 

relations could be interpreted as a structure state. 

The set of sequential structure states 

{s0, s1, ..., sn} = SDS defines all structure variants of 

the variable structure coupled model CMDS. 

Structure state changes can be induced by handling 

external or internal events of the coupled model 

itself or by state events i.e. output events of 

subordinated components. A structure state is 

defined by a 9-tuple: 

si = (X, Y, HDS, D, { Md
 
}, EIC, EOC, IC, select) 

o X and Y specify the sets of discrete input and 

output events. The sets exactly match the sets 

X and Y in Classic DEVS. As an extension of 

DSDEVS the coupled model can directly 

handle external input events and can create 

external output events itself. 

o The set HDS represents additional structure 

related state variables. They are equivalent to 

the state variable set S of an atomic model.  

o D specifies the set of sub component names. 

o Md | d ∈ D 
Md is the model of the sub component d of 

the coupled model CMDS. The set { Md
 
} 

defines all sub components of CMDS. 

o EIC, EOC and IC are the external input, 

external output and internal couplings. 

o The function select prioritizes concurrent 

internal events of the coupled model itself 

and its sub components. 
 

• δx&s: QDS × X → HDS where QDS = {(h,e) | h ∈ 

HDS, 0<e<tnext} 

The external and state transition function δx&s 

handles external input events and state events i.e. 

output events of sub components. However it is 

unreasonable to make changes in the set of sub 

components or the coupling relations by this 

function directly. This could lead to ambiguous 

event handling because external events could 

simultaneously influence the dynamic of sub 

components and the structure state. Consequently 

the δx&s function is only allowed to modify 

structure related state variables in the set HDS.  

• δint: SDS → SDS  

The internal transition function δint changes the 

structure state si to si+1 and as a result induces a 

structure change of CMDS. The execution of output 

function λ and internal transition function δint is 



 

 

induced by a time driven internal event. 

• λ: SDS → Y 

The output function λ generates output events 

depending on the state SDS.  

• ta: SDS → ℜ�

�
 ∪ ∞ 

As with the dynamic of atomic models, internal 

events are scheduled by the time advance function 

ta. After each state transition the next internal 

event is established by the time advance function.  
 

},...{ 0 nDSu ssSs =∈

nDSv ssSs ,...{ 01 =∈
+

 
Fig. 4 Dynamic Behavior of a DSDEVS Coupled Model 

 

The dynamic behavior of an atomic model is identical 

to the behavior in Classic DEVS. Figure 4 shows the 

dynamic behavior of a dynamic structure coupled 

model. The figure depicts two external input events and 

one internal event. Reasons for an input event handling 

can be an external input event at the input port of the 

coupled model itself or an external output event at the 

output port of a sub component Md of the coupled 

model. The handling of both events by the coupled 

model is identically. As a result of an event the structure 

related state variable set HDS can be changed and with 

the concluding call of the time advance function an 

immediate internal event can be induced. An internal 

event is handled by a coupled model similar to the 

internal event handling of an atomic model, i.e. the 

event handling can induce a change of the state sets S 

and SDS, respectively.  

 

4. EXTENDED DYNAMIC STRUCTURE DEVS 
Chapters 3 and 4 introduce the Classic DEVS 

formalism and several DEVS extensions. This work 

aims to bring together all introduced approaches and to 

combine their advantages and application fields. In 

(Zeigler et.al. 2000) a first step into this direction is 

undertaken, the introduced PDEVS formalism is a 

combination of the original PDEVS and DEVS with 

Ports. The Extended Dynamic Structure DEVS 

(EDSDEVS), proposed here, combines the extensions: 

Classic DEVS with PDEVS, DSDEVS and DEVS with 

Ports. The selection of the extensions is carried out to 

ensure the preservation of the generic modeling and 

simulation principles of Classic DEVS. The fusion 

results in a DEVS formalism with the following main 

characteristics: 

• Modular, hierarchical and dynamic structure 

modeling and simulation formalism, 

• Formal description by sets and functions, 

• Exact definition of simulation algorithms, 

• Dynamic behavior description in atomic models, 

• Dynamic structure description in coupled models, 

• Exact behavior definition of concurrent events, 

• Substantial similarity between real system and 

model. 
 

The next sections focus on the formal concept of 

EDSDEVS modeling with formal descriptions, dynamic 

behavior descriptions and introduction of the simulation 

concept with abstract simulator algorithms. 
 

4.1. Formal Concept 
The EDSDEVS formal descriptions of coupled and 

atomic models as a combination of sets and functions 

are structured similar to the Classic DEVS formal 

description. The EDSDEV atomic model amEDS is 

defined as an 8- tuple:  

amEDS = (X, Y, S, δext, δint, δcon, λ, ta) 

• X = {(p,v) | p ∈ InputPorts, v ∈ Xp} 

Y = {(p,v) | p ∈ OutputPorts, v ∈ Yp} 

The definitions of both sets are identical to the 

definitions in DEVS with Ports. 

• S specifies the internal states set and is identical to 

set S of a Classic DEVS atomic model. 

• δext: Q × 	 

 → S with X

b
 = {xi | xi = (p,v), p ∈ 

InputPorts, v ∈ Xp } and Q = {(s,e) | s ∈ S, 

0 < e < tnext
 
} 

The external state transition function δext handles a 

bag covering external inputs. Each input consists 

of a pair of a discrete input v ∈ Xp and an input 

port p ∈ InputPorts. The set XP is the set of 

discrete inputs at port p and InputPorts is the set of 

input ports of model amEDS.  The function δext can 

induce an internal event with a rescheduling of the 

time of the next internal event. This extended 

definition of δext is a fusion of the δext definitions 

of PDEVS and DEVS with Port. 

• δint: S → S  

The internal state transition function δint can 

establish a new internal state. The execution of 

output function λ and internal state transition 

function δint is induced by a time driven internal 

event. The time of an internal event is established 

by the time advance function ta. The definition is 

identical to the definition in Classic DEVS. 

• δcon: S × 	 

  
→ S 

The confluent transition function δcon handles the 



 

 

execution order of δint and δext functions during 

concurrent external and internal events. In spite of 

the same function signature δcon(s, X
b
) the 

parameter X
b
 is different to that in the PDEVS 

definition as described in section 3.2. Anyhow the 

three δcon definitions from there also apply here. 

This extended definition of δcon is based on the 

PDEVS δcon function definition. Unlike in PDEVS 

the function has to handle a bag covering inputs, 

each consisting of a discrete input, input port pair. 

• λ: S → �  



 whit Y

b
 = {yi | yi = (p, v),  p ∈ 

OutputPorts, v ∈ Yp} 

The output function λ can generate a bag covering 

outputs Y
b
. In spite of the same function signature 

Y
b
 = λ (s) the function result Y

b
 is different to that 

in the PDEVS definition as described in section 

3.2. The function result is a bag covering outputs 

Y
b
={ yi | yi = (p, v) } each consisting of a pair of 

discrete output v ∈ Yp and output port 

p ∈ OutputPorts. The set YP is the set of discrete 

outputs at port p and OutputPorts is the set of 

output ports of model am.  If and which outputs 

are generated depends on the internal state S. This 

extended definition of λ is based on the PDEVS λ 

function definition. Unlike in PDEVS the function 

generates a bag covering outputs each consisting 

of discrete output and output port pairs as 

introduced in DEVS with Ports. 

• ta: S → ℜ�

�
 ∪ ∞ 

The time advance function ta schedules the time of 

the next internal event after each state transition. 

The definition is identical to Classic DEVS. 
 

Figure 5 shows the dynamic behavior of an atomic 

EDSDEVS model amEDS.  
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Fig. 5 Dynamic Behavior of an Atomic EDSDEVS 

Model 

At time tu the confluent transition function δcon handles 

two concurrent events. The first event contains a bag 

covering external inputs received by the atomic model 

amEDS. The figure depicts an example bag covering 

three external inputs received at two different input 

ports. A concurrent internal event at tu was scheduled by 

the previous execution of the time advance function ta. 

Depending on the specific implementation of function 

δcon sequence a) or b) is executed. The execution of λ 

creates a bag covering outputs. The shown bag ��

  

covers two outputs. 
 

An Extended Dynamic Structure DEVS coupled model 

is defined by the following 7-tuple: 

CMEDS = (dn, SEDS, δx&s, δint, δcon, λ, ta) 

• dn specifies the name of the coupled model. 

• In the EDSDEVS formalism the coupled model 

structure consists not only of sets of sub 

components and coupling relations as in DSDEVS 

but also of additional interface definitions i.e. 

input and output port definitions. The set of 

sequential structure states {s0, s1, ...,sn} = SEDS has 

to define all structure variants of the coupled 

model CMEDS. Two model structure variants can 

vary in different interface definitions, in contrast 

to DSDEVS where each model has a non-variable 

interface with a single input and a single output 

port. Hence, a structure state has to incorporate 

interface definitions with sets of input and output 

ports additionally to the structure state definition 

as introduced in section 3.3. An EDSDEVS 

structure state is defined by a 10-tuple: 

si = (X, Y, HEDS, D, { Md
 

}, InputPorts, 

OutputPorts, EIC, EOC, IC) 

o X and Y specify the sets of discrete input and 

outputs. The sets exactly match the extended 

definitions of X and Y as introduced in DEVS 

with Ports. 

o The sets HEDS, D and Md exactly match the sets 

HVS, D and Md of the DSDEVS formalism 

introduced in section 3.3.  

o InputPorts and OutputPorts specify the sets of 

input and output port names of the coupled 

model CMEDS. These two elements of the 

structure state si are introduced by the 

EDSDEVS formalism.  

o EIC, EOC and IC are the external input, external 

output and internal couplings of CMEDS. The 

definition of the coupling relations exactly 

match the definition as introduced with the 

DEVS with Ports extension. 
 

• δx&s: Q × X
b
 → HEDS where X

b
 is a bag covering 

input, input port pairs and Q = {(h,e) | h ∈ HEDS, 

0<e<tnext} 

The external and state transition function δext 

handles a bag covering inputs, each consisting of a 

pair of a), b) or c): 

a) A discrete input v ∈ Xp and an input port p ∈ 

InputPorts. The set XP is the set of discrete 



 

 

inputs at port p and InputPorts is the set of 

input ports of model CMEDS.   

b) A discrete output v ∈ Md.Yp and an output port 

p ∈ Md.OutputPorts where Md is the model of 

the sub component d of the coupled model 

CMEDS. The set Md.YP is the set of discrete 

outputs at port p and Md.OutputPorts is the set 

of output ports of model Md. 

c) A discrete input v ∈ Md.Xp and an input port 

p ∈ Md.InputPorts where Md is the model of 

the sub component d of the coupled model 

CMEDS. The set Md.XP is the set of discrete 

inputs at port p and Md.InputPorts is the set of 

input ports of model Md. 
 

This extended definition of δext is a fusion and 

extension of the δext definitions of DSDEVS, 

PDEVS and DEVS with Ports. In DSDEVS only 

state events induced by output events of sub 

components are handled. However, an output port 

can have coupling relations to multiple input ports. 

In this case there is a difference in the handling of a 

single output event of a single source sub model or 

multiple input events of different destination sub 

models. Hence, the external and state transition 

function of EDSDEVS can handle both output and 

input events. However, the functionality is in 

accordance with the description of the DSDEVS 

external and state transition function δx&s. 

• δint: SEDS → SEDS  

ta: SN → ℜ�

�
 ∪ ∞ 

The internal state transition function δint, and the 

time advance function ta exactly match the 

functions of the DSDEVS formalism. 

• δcon: SEDS × 	 

  
→ SEDS 

The confluent transition function δcon handles the 

execution sequence of δint and δext functions during 

concurrent external and internal events. The 

EDSDEVS formalism introduces the confluent 

transition function also at coupled model level due 

to the fusion of PDEVS and DSDEVS. An 

EDSDEVS coupled model handles external, state 

and internal events. Hence and in contrast to 

PDEVS, in EDSDEVS concurrent external and 

internal events can occur also at coupled model 

level. Consequently, a confluent transition 

function to handle concurrent events is necessary 

at this level. The functionality is in accordance 

with the description of the confluent transition 

function δcon at atomic model level in this section. 

• λ: SEDS → Y
b
 

The output function λ generates a bag covering 

outputs Y
b
 = {yi} depending on state SEDS. An 

output yi consists of a pair of discrete output v ∈ Yp 

and output port p ∈ OutputPorts. The set YP is the 

set of discrete outputs at port p and OutputPorts is 

the set of output ports of model CMEDS. The output 

function λ in the EDSDEVS formalism merges 

three sources: 

o The output function λ at coupled model level is 

introduced by DSDEVS. 

o The definition of the function creating a bag 

covering outputs is based on PDEVS.  

o The output event structure with pairs of 

output/output port is introduced by DEVS with 

Ports.  
 

Figure 6 shows the dynamic behavior of a coupled 

EDSDEVS model CMEDS. At time tu the confluent 

transition function δcon handles concurrent external and 

internal events. The first event is a bag covering inputs 

received at input ports by the coupled model CMEDS. A 

concurrent internal event at tu was scheduled by the last 

execution of the time advance function. Depending on 

the specific implementation of function δcon sequence a) 

or sequence b) is executed. The execution of the internal 

state transition function δint can change the structure 

state su to su+1 or su+1 to su+2  and therefore the model 

structure of 
����
  to 
����

∗ . The execution of the 

output function λ creates a bag covering outputs ��

 . 

The depicted example bag ��

  covers two outputs. 
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Fig. 6 Dynamic Behavior of a Coupled EDSDEVS 

Model 
 



 

 

4.2. EDSDEVS Simulation 

The simulation engine for EDSDEVS models is a 

combination and extension of the simulation algorithms 

of Classic DEVS, PDEVS and DSDEVS. The message 

handling of coordinators are largely similar to 

simulators. Each coordinator holds its own time of next 

internal event in tnext_c and searches the minimum time 

of next internal event in tnext of sub components and in 

its own tnext_c. 

Figure 7 depicts an EDSDEVS model example 

with associated simulation model elements i.e. root 

coordinator, coordinator and simulator instances, 

message handling and model function calls. The overall 

structure is very similar to the Classic DEVS simulation 

model execution except for additions at the coordinators 

and associated coupled models. Because of complexity 

and clarity selected situations are shown in sections: 

i. (Figure 7a) initialisation phase with i-message 

handling: 

During the initialisation phase model component’s 

init functions are called because of an i-message 

handling similar to Classic DEVS. Additionally, 

after structure changes during the simulation phase 

the init function is called too. 

ii. (Figure 7b) *-message handling created due to an 

internal event of model am2: 

The root coordinator advances the simulation clock 

and a *-message is firstly created. The message is 

sent to the successor coordinator instance of coupled 

model CM1 (not depicted). This coordinator 

instance compares the actual simulation time t with 

its own next internal event time stored in tnext_c and 

determines that it is not responsible for handling this 

event. Hence, the event is forwarded to the 

successor coordinator instance of CM2. The 

coordinator instance is again not responsible for 

handling the message itself but knows that a sub 

component scheduled the event. The coordinator 

instance will then forward the message to the 

appropriate simulator instance associated with am2. 

The simulator instance of am2 calls the model 

functions λ and δint. A result of calling λ could be a 

y-message sent back to the subordinate coodinator 

instance of CM2. This coordinator instance reacts 

with the call of the model function δx&s of CM2 and 

a message forward to the simulator instance of am3 

due to an appropriate IC coupling. 

iii. (Figure 7c) *-message handling created due to an 

internal event of model CM2: 

The depicted situation is similar to 7b except that 

the coordinator instance of CM2 determines that 

simulation time t and its tnext_c are equal. Hence, it 

has to handle the *-message itself with calling λ and 

δint model functions of CM2 with the possibility of 

generating a y-message sent to a sub component 

and/or superordinated coordinator instance and of 

changing its sequential structure state SEDS. 

 

 

 
Fig. 7 EDSDEVS Model Example with Simulation 

Model Elements and Message Flow during Initialization 

and Simulation Phases  

 

iv.  (Figure 7d) concurrent event handling with the 

confluent transition function δcon: 

The figure depicts the handling of concurrent 

external and internal messages by the coordinator 

instance of CM2. The confluent function of CM2 is 

called to handle the concurrent messages. 

Depending on the specific implementation of δcon 

the external transition function δx&s and internal 

transition/output functions δint, respectively, are 

firstly called. The external message is concurrently 



 

 

handled by the function δcon and forwarded to the 

simulator instance of sub component am2 as an x-

message due to an appropriate EIC. Calling the 

output function λ could cause an y-message sent to a 

sub component and/or superordinated coordinator 

instance. 
 

Listings 1 and 2 show the pseudo codes of the 

EDSDEVS simulator components.  

variables: 

 tlast // time of last event 

 tnext // time of next int state event 

 am  // associated atomic model 

 

// t=0 init at simulation start 

// t>0 init after structure change 

when receive i-msg(t)at time t 

 am.init(t) 

 tlast := t 

 tnext := am.ta() 

 

when receive *-msg(t) at time t 

 if t <> tnext 

  error: bad synchronisation 

 y_bag := am.λ() 

 send y_bag in a y-msg to parent coord. 

 

when receive x-msg(t, x_bag) at time t 

with value x_bag containing x.value und 

x.port pairs 

 if not (tlast ≤ t ≤ tnext) 

  error: bad synchronisation 

 if t=tnext and x_bag is not empty 

  //concurrent ext. & int. event 

  am.δcon( t, x_bag) 

 else if t=tnext and x_bag is empty 

  // internal event 

  am.δint(t) 

 else 

  // external event 

  am.δext( t-tlast, x_bag) 

 end if 

 tlast := t 

 tnext := tlast + am.ta() 

Listing 1 Pseudo Code of an EDSDEVS Simulator 

 
variables: 

 tlast // time of last event 

 tnext // minimal time of next int.  

   // state event of coupled model  

   // or sub component 

 tnext_c // time of next int state event  

   //of the coupled model itself 

 CM  // associated coupled model with   

   // CM.st current structure state 

 IMM  // imminent children 

 mail  // output mail bag 

  

// t=0 init at simulation start 

// t>0 init after structure change 

when receive i-msg(t)at time t 

 CM.init(t) 

 foreach sub component Md ∈ CM.st.M 

  send i-msg(t) to Md 

 tlast := t 

 // determine time of next scheduled  

 // internal state event of coupled  

 // model itself 

 tnext_c := CM.ta() 

 // determine minimum time of next  

 // scheduled internal state events of  

 // coupled model and all subcomponents 

 tnext := min( tnext_c, { Md.tnext | Md 

∈ CM.st.M } ) 

  

when receive *-msg(t) at time t 

 if t <> tnext & t<>tnext_c 

  error: bad synchronisation 

 // internal state event of CM 

 if t=tnext_c 

  y_bag := CM.λ() 

  send bag of value/output port pairs 

in a y-msg to parent coordinator 

 // internal state event of a subcomp. 

 else if t=tnext 

  // find all subcomps with tnext==t  

  IMM:={Md |Md ∈ CM.st.M ∧ Md.tnext= t} 

  foreach Md in IMM 

   send *-msg(t) to Md 

 

when receive x-msg(t, x_bag) at time t 

with x_bag containing x.value/x.port 

pairs 

 if not (tlast ≤ t ≤ tnext_c) 

  error: bad synchronisation 

 if t=tnext_c and x_bag is not empty 

// concurrent ext. and int. event 

  CM.δcon( t, x_bag)   

 else if t=tnext_c and x_bag is empty 

  CM.δint( t )  // int. event 

 else 

  CM.δx&s( t-tlast, x_bag) //ext. event 

 end if 

 // get all subcomponents Md* with an  

 // appropriate EIC 

 receivers:=subcomponents{Md|Md∈CM.st.M} 

with {coupling|coupling∈CM.st.EIC} 

 // forwards x-msg to all appropriate  

 // subcomponents 

 foreach subcomponent Md* in receivers 

  // ext. event of subcomponent 

  CM.δx&s( t-tlast, x_bag)    

  send x-msg(t, x_bag, Md*.p) to Md* 

at port p 

 foreach subcomponent Md* in IMM and not 

in receivers 

  // send empty bag without inputport 

  send x-msg(t, NULL, NULL) to Md*    

 tlast := t 

 tnext_c := tlast + CM.ta() 

 tnext := min(tnext_c,{Md.tnext|Md∈CM.st.M}) 

 

when receive y-msg(t, y_bag, d) at time t 

with y_bag with value/port pairs from d 

 // collect all y-msgs from all subcomp 

 if d is not the last not reporting d 

in IMM 

  add (y_bag, d) to mail 

  mark d in IMM as reporting 

 // all subcomps now handled their *msg 



 

 

 else if d is the last not reporting d 

in IMM 

  CM.δx&s(t-tlast, mail) 

  // check ext. coupling to form sub- 

  // bag of parent output 

  y_bagparent = NULL 

  foreach d in mail where (y_bag and 

d) has an appropriate EIC 

   add y_bag to y_bagparent 

  send y-msg(t, y_bagparent,, CM) to 

parent model 

  // check IC to get children Md*   

  // with an appropriate IC who  

  // receives a sub bag 

  receivers := subcomponents{Md|d in 

mail, Md∈CM.st.M} with 

{coupling|coupling∈CM.st.IC} 

  foreach subcomp Md* in receivers 

   creates sub bag x_bag from mail 

with elements where Md* is 

receiver    

   send x-msg(t, x_bag) to Md* 

    mark d in IMM as sending 

  foreach sub component Md* in IMM 

where Md* is not sending 

    send x-msg(t, NULL) to Md* 

 tlast := t 

 tnext_c := tlast + CM.ta() 

 tnext := min( tnext_c, { Md.tnext | Md 

∈ CM.st.M } ) 
 

Listing 2 Pseudo Code of an EDSDEVS Coordinator 
 

5. CONCLUSIONS 

The EDSDEVS formalism introduced in this 

contribution is a fusion of Classic DEVS with several 

extensions. This approach is an as generic as possible 

modeling and simulation formalism based on DEVS. It 

widens significantly the application area of DEVS 

modeling and simulation. Further extensions are 

desirable and essential. To establish a widely accepted 

modeling and simulation approach extensions for 

parallel computing and graphical modeling are 

necessary. There are also approaches for hybrid DEVS 

extensions i.e. the support of continuous state changes. 

These proposals are recommended as further research. 
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A Framework for Simulation Based Structure and Parameter 

Optimization of Discrete Event Systems 

Olaf Hagendorf, Thorsten Pawletta 

 

Simulation with integrated parameter optimization of a given model structure is a well 

established technique today. However, with increasing system complexity and flexibility the 

number of possible structure variants increases. Therefore the potential benefit of automatic 

model structure optimization becomes significant. During optimization, the introduced 

framework supports automatic parameter variation in concert with a re-configuration of model 

structure. This is achieved by means of a combination of optimization, simulation, and model 

management methods. Using this approach simulation is employed to determine the performance 

of a current model structure and its parameters. An optimization method searches for an optimal 

solution with repeated, simultaneous model structure and model parameter changes. The model 

structure changes are assisted by a model management method. 

1 Introduction 

Research and application of simulation based optimization has seen a significant development in 

recent years. A Google search on ‘Simulation Optimization’ in 2006 found ca. 4.000 entries [1] 

in comparison to a search in 2008 that found almost 80.000 entries with among the results 

articles, conference presentations, books, and software. 

 Till relatively recently, the simulation community was resistant to the use of optimization 

tools. Optimization models seem to over-simplify the real problem and it was not always clear 



 

  

why a certain solution was the best [5]. The situation changed at the end of the 90s. An ACM 

Digital Library [23] search on ‘Simulation Optimization’ found 16.000 articles between 1960 

and 2008. A significant number (15500) of articles has been published during the last 20 years 

and only 500 articles in the 28 years before. Two reasons for this change may be the advances in 

modeling and simulation methods and increase of computing power over the past two decades 

that has enabled simulation based optimization. Currently there are several algorithms to change 

simulation model parameters to establish solutions with good performance and methods to 

compare different solutions in terms of quality. Many commercially available discrete event or 

Monte Carlo simulation software packages contain optimization methods to search for optimal 

input and system parameter values. Several such packages are described in [2]. 

 This chapter addresses a fundamental problem of simulation based optimization: The 

technique is well established but is restricted to the optimization of system parameters. In using 

this established technique, the model structure is considered to be fixed as the structure of model 

elements is defined during model development before an optimization experiment. As model 

performance is optimized it may be necessary to redesign the model structure. This would 

conventionally be done manually by an analyst using previous simulation results, observations, 

or decisions based on previous experience. With increasingly complex, highly flexible, and 

dynamic structure models, the number of possible structure variants increases and the potential 

benefit of automatic model structure optimization would be significant. 

 The focus of this chapter is the description of a methodology for a simulation based 

parameter and structure optimization for modular, hierarchical discrete event systems. In contrast 

to current approaches that use modeling and simulation, here the model structure is variable and 

thus it is open to optimization. The variation of model structure and model parameters is 



 

  

controlled by a super ordinate optimization module. The introduced simulation based 

optimization framework consists of three main elements: (i) model management, (ii) modeling 

and simulation, and (iii) optimization. 

i. As a basis for the model management method the System Entity Structure/Model Base 

(SES/MB) approach, introduced by Rozenblit, Zeigler et al. [20][27][28] is employed. The 

SES/MB approach is a generative, knowledge base framework consisting of a tree like 

system entity structure and a model base containing basic components. It supports the 

definition of a set of modular, hierarchical models and the generation of specific model 

structures using predefined basic components from a model base. Because of this 

characteristic a modular, hierarchical modeling and simulation method has to be employed.  

ii. The modeling and simulation approach based on the Discrete Event System Specification 

(DEVS) formalism introduced by Zeigler [26][27] is an established method in the field of 

modular, hierarchical modeling and simulation. Dynamic Structure DEVS (DSDEVS) as an 

extension of DEVS offers methods to allow structural changes during a simulation 

run [6][15][25][27]. In countless applications, for example in [8][9], the advantages of a 

dynamic structure modeling and simulation method are considerable. A DSDEVS method 

based on work in [9][15][16] is integrated in the novel simulation based optimization 

approach. However, detailed aspects of DSDEVS systems are not considered in this chapter. 

iii. The optimization method controls the variation of model parameters and structure. Genetic 

algorithms have delivered robust solutions for various simulation based optimization 

problems, for example in [17][18][24]. The genetic algorithm documented in [24] will be 

employed as optimization method in the framework.  

Section 2 provides a short preview of conventional simulation based optimization aspects and 



 

  

introduces the fundamentals of a combined structure and parameter optimization approach. 

Section 3 briefly describes the applied SES/MB approach as a model set organization and model 

generating meta-modeling method with necessary changes of the original approach. The 

synthesis of the three fundamental methods, optimization, model management, and modeling and 

simulation to perform a simulation based structure and parameter optimization is presented in 

Section 4. Finally, the usage of the new optimization approach is demonstrated by an industrial 

application in Section 5. 

2 Simulation based Optimization 

For all its achievements, a disadvantage of modeling and simulation is the missing optimization 

capability. For many years simulation experiments, as shown in figure 2.1, have been state of the 

art. An analyst creates a model, for example based on a real system, transforms the model to an  

 

Figure 2.1 An example of a conventional simulation experiment 

executable model and executes a simulation with it. After a review of simulation results, if 

necessary, the model configuration, that is, model parameters and/or model structures, has to be 



 

  

manually changed by an analyst. Using a manual procedure only a relatively small number of 

system configurations can be examined until a suitable solution is chosen. 

 Through the combination of modeling and simulation with optimization methods a 

simulation based optimization approach is achieved that can reduce the effort of this manual 

procedure. Mathematical optimization generally means establishing a function minimum or 

maximum. Simulation based optimization means finding the best model configuration by 

minimizing a function of output variables estimated with a simulation method [21]. 

2.1 Parameter Optimization 

An established approach of a simulation based optimization is simulation based parameter 

optimization. The overall goal of this optimization approach is the identification of improved 

settings of user selected model parameters under control of performance measures. There is an 

extensive and varied body of literature on this topic that includes several tutorials, reviews, and 

summaries of the current state of the art (e.g., [3][4][7][14][21][22]). Law and Kelton describe in 

[11] commercially available simulation tools with integrated optimization techniques using this 

approach of simulation based parameter optimization. Figure 2.2 shows a principle example of a 

simulation based parameter optimization experiment. The procedure to create an executable 

model follows the procedure described in Fig. 2.1. A crucial difference is the detachment of 

model and model parameters. Based on this detachment the optimization method is able to alter 

model parameters to minimize the result of an objective function. The objective function 

measures the model performance with current model parameters. In most instances improving 

the model performance means minimizing the objective function result. Model parameter 

adjustments are carried out in a loop until a stop criterion is fulfilled. Examples of stop criteria 

are (i) going below a minimum alteration rate of objective function result or (ii) exceeding the 



 

  

maximum number of optimization cycles. The result of a successful optimization experiment is a 

parameter optimized model. 
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Figure 2.2 An example of a simulation based parameter optimization experiment 

According to [21], a simulation based parameter optimization problem O with a set of m model 

parameters X = {x1, ... xm} can be described as follows: 

• A parameter set X = {x1, ... xm} has the domain set D = {d1 … dm}. 

• The multi-dimensional (one for each parameter) search space S is defined by 



 

  

S = {s = {(x1,v1) . . . (xm,vm)} | vi ∈ di}. 

• A set Y is the output set defined by Y = {y1 . . . yn} = Y(X) and estimated by simulation. 

Simulation experiments are often based on stochastic parameters and properties. Hence the 

output set Y is stochastic too. 

• The objective function F establishes a single stochastic value from output set 

Y : F = F(Y) → ℜ+. The result of the objective function is a measure of the current model 

performance. 

• Because of the stochastic nature of Y and consequently of F. an estimation function R, the 

simulation response function defined by R(X)=E(F(Y(X))), is optimized, that is, in the scope 

of this approach it is minimized. 

• Depending on the optimization problem and analysis required, the exchange of the last two 

steps, evaluation of objective function F and simulation response function R, can save 

computational effort. Hence, the simulation response function is defined by R(X) = E(Y(X)) 

and subsequently the objective function by F(X) = F(R(X)). 

Each parameter set Xi ∈ S can be seen as a possible solution of O. The optimization method has 

to search the space S to find the parameter set Xopt ∈ S with E(F(Y(Xopt))) ≤ E(F(Y(X))) ∀ X ∈ S. 

The resulting parameter set Xopt is considered the global optimum of O.  

This approach is restricted to automated parameter optimization. It is important to note 

that automatic structure changes during optimization are not possible with this approach. Instead, 

structure changes are carried out manually by an analyst and each manual structure change 

requires a repetition of the automated parameter optimization.  

2.2 Combined Parameter and Structure Optimization 

The extension of the optimization approach with the ability to additionally change model 



 

  

structure to improve system performance is a development of the idea introduced in Section 2.1. 

This extension is mainly directed towards a simulation based structure and parameter 

optimization as presented in Fig. 2.3. 

 

Figure 2.3 Components and steps of a simulation based parameter and structure optimization 

experiment 

The approach of a simulation based parameter and structure optimization differs in the following 

point from the simulation based parameter optimization described in Section 2.1: 

• An analyst does not generate a single model of the real system. In this case he has to organize 

a set of models. One way of achieving this is to define a model that describes a set of model 

variants instead of one single model of the system under analysis. Models that define the 



 

  

creation and interpretation of a set of models are named meta-models. If a model is the 

abstraction of an aspect of the real world, a meta-model is yet another, super-ordinate 

abstraction of the model itself. That is, when a model describes the behavior and structure of a 

real system then a meta-model describes the behavior and structure of different models that all 

describe the behavior and structure of the same real system in a slightly different way. 

• The model management organizes the set of model structures and provides a model selection 

method. 

• The model selection is controlled by an optimization method. The selection method delivers 

the selected model structure information to a model generator that generates an executable 

model.  

• The objective function receives simulation results and additional information gathered during 

model selection to estimate the performance of the current model configuration. 

• The optimization method investigates the search space with simultaneous model parameter 

and model structure changes without manual involvement. The intention of the optimization 

method is the finding of a point in the search space with the optimal objective function result. 

• The optimization process is separated into an initialization and an optimization phase:  

1. In the initialization phase, the model management module delivers information about the 

search space defined by the set of all model configurations to the optimization module. 

2. In the optimization phase, the model management module receives information from the 

optimization module about the currently investigated point in the search space. This 

information is used to select a new model structure and to initialize the model parameters.  

A prerequisite for an optimization is the definition of a search space. In the approach presented 

here, the search space is multi-dimensional as a result of the combination of model structure and 



 

  

model parameter variants. During the optimization loop several points of the search space are 

examined. Each point defines a model structure with an appropriate parameter set. The extension 

of the formal description of a simulation based parameter optimization problem O, defined in 

Section 2.1, to a combined simulation based structure and parameter optimization leads to O
*
 

shown in a schematic diagram in Fig. 2.4: 
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Figure 2.4 Schematic diagram of a simulation based parameter and structure optimization 

experiment 

• The model parameter set XP and its domain set DP, in Section 2.1 defined as X and D, are 

extended by structure parameter set XS and its domain set DS. The extended set of definitions 

are: X
*
 = XP ∪ XS = {xP1 . . . xPm, xS1 . . . xSn} and D

*
 = DP ∪ DS = {dP1 . . . dPm, dS1 . . . dSn} 

with m model parameters in set XP and n structure parameters in set XS. The sets XP and DP 

are defined by the current model. The model management has to provide the sets XS and DS 



 

  

by analyzing the meta-model. 

• The multi-dimensional (one for each parameter) search space S = SP ∪ SS is spanned by sets 

of model parameter and structure variants. 

• The objective function F* is defined by F*
(Y(X

*
),P(XS)) with simulation results 

Y(X
*
)=Y(XS ∪ XP) and results based on structure related variables P(XS) that are established 

during the model selection. Because of the stochastic nature of the simulation results Y(X
*
) 

an estimation function R, the simulation response function, is calculated. The results based 

on structure related variables P(XS) are not stochastic. Hence, the simulation response 

function is defined by R(Y(X
*
)) and subsequently the objective function by 

F
*
(R(Y(X

*
)), P(XS)). 

Through the inclusion of a model management method, the optimization method can 

simultaneously control parameter changes as well as model structure changes to find an optimal 

system configuration. The model management method takes a crucial role in this approach. The 

description of a model management method based on meta-modeling follows in the next section. 

3 Meta-Modeling – Specification and Organization of Model Sets 

Zeigler introduced in [27] a simulation based system design approach. It is a plan – generation –

 evaluation process. The plan phase organizes design alternatives with different model structures 

and model parameters within defined system boundaries to satisfy given design objectives. 

During the generation phase a specific model design is chosen and the corresponding model is 

generated. This model is simulated during the evaluation phase using an experimental frame 

derived from the design objectives. 

 The System Entity Structure/Model Base approach (SES/MB) [20][27] is such a 



 

  

simulation based system design approach. It is specifically configured to define, organize, and 

generate modular, hierarchical models and was developed to assist an analyst in model 

organization and generation. To represent a set of modular, hierarchical models, the SES/MB 

approach is able to describe three relationships: decomposition, taxonomy, and coupling. 

Decomposition means the formalism is able to decompose a system object called ‘entity’ into 

sub-entities. Taxonomy means the ability to represent several possible variants of an entity called 

‘specialization’. To interconnect sub-entities the definition of coupling relationships are 

necessary. With these features the SES/MB approach meets the needs of the model management 

method in the proposed simulation based optimization concept. 

 Fundamental properties of the SES/MB approach are [20][27]: 

• A modular, hierarchical model is constructed based on: (i) the declarative system knowledge 

coded in a SES and (ii) predefined basic system models stored in a MB.  

• The partitioning of a modular, hierarchical model is highly dependent on the design 

objectives. Model parameters are a typical example. They are not really a part of the model 

composition structure but nevertheless they can become a part of the system entity structure 

if they are crucial for describing design alternatives.  

• The model generation from a SES/MB is a multistage process. The first step is a graph 

analysing and pruning process to extract a specific system configuration. Based on this 

information a modular, hierarchical model is generated. 

The SES is represented by a tree structure containing alternative edges starting at decision nodes. 

With the aid of different edge types and decision nodes a set of different model variants can be 

defined. To choose a specific design and to create a specific model variant, the SES has to be 

pruned. The pruning process decides at decision nodes which alternative(s) to choose as a 



 

  

consequence of specified structure conditions and selection rules. The result of this process is a 

Pruned Entity Structure (PES) that defines one model variant. A composition tree is derived from 

a PES. The composition tree contains all necessary information to generate a modular, 

hierarchical model using predefined basic components from MB. Figure 3.1 shows the principal 

organization and the transformation process: SES → PES → Composition Tree + MB → 

Modular, Hierarchical Model. 

 

Figure 3.1 SES/MB formalism based model generation 

 

Figure 3.2 An example of a SES  

The used SES definition is based on definitions published in [20][27]. Figure 3.2 depicts an 

example to demonstrate the tree elements. The SES definition differentiates four main types of 

nodes: (i & ii) entity, (iii) specialization, (iv) aspect, and (v) multi-aspect. An entity node 

represents a system object. There are two subtypes of entity node in fact (i) atomic entity and (ii) 



 

  

composite entity. An atomic entity cannot be broken down into sub-entities. The model base 

contains a basic component for each atomic entity. A composite entity is defined in terms of 

other entities. Thus, the root node is always of type composite entity, while all leaf nodes are 

always of type atomic entity. The root node and each composite entity node of the tree have at 

least one successor node of type specialization, aspect, or multiple-aspect. That means there is an 

alternate mode between entity nodes and other node types. The node type definitions can be 

briefly summarized: 

• atomic entity node = (name, {av1,… avn}} 

composite entity node = (name, successors, {av1,… avn}, structure condition) 

An entity node is defined by a name and is of type atomic or composite. Both node types 

may have attached variables av. A composite entity node can have a single successor node of 

type specialization or multi-aspect or multiple successor nodes of type aspect. A composite 

entity node can have attached structure condition. 

• specialization node = (name, successors)  

A specialization node is defined by a name and a set of successor nodes. In the tree it is 

indicated by a double-line edge. A specialization node defines the taxonomy of a 

predecessor entity node and specifies how the entity can be categorized into specialized 

entities. A specialization node always has successor nodes of type atomic entity to represent 

the possible specializations. The specialization node A in Fig. 3.2 has two specializations 

defined by the nodes A1 and A2.  

• aspect node = (name, successors, coupling specifications) 

An aspect node is defined by a name, a set of successor nodes, and coupling information. It 

is indicated by a single-line edge in an SES tree. An aspect node defines a single possible 



 

  

decomposition of its parent node and can have multiple successors of type atomic and/or 

composite entity. The coupling specification is a set of couplings and describes how the sub-

entities, represented by the successor nodes, have to be connected. Each coupling is defined 

by a 2-tuple. Each tuple consists of sub-entity source and destination information, for 

example, (SourceEntity.outputport, DestinationEntity.inputport). The composite entity B in 

Fig. 3.2 has two decomposition variants defined by the aspect nodes Bdec1 and Bdec2.  

• multiple aspect node = (name, successor, coupling specification, number range property) 

The definition of a multiple aspect node is similar to an aspect node with an additional 

number range property. It has only one successor node of type atomic entity. It is indicated 

by a triple-line edge in an SES tree. A multiple aspect node also defines a decomposition of 

a composite entity, but all sub-entities have to be of the same entity type. Only the number 

of sub-entities is variable according to the attached number range property. The multiple 

aspect node Cmaspec in Fig. 3.2 illustrates the decomposition of composite entity C that may 

be composed by one, two, or three sub-entities L.  

• structure conditions are added to composite entity nodes. They are used as alternative 

structure knowledge representation instead of selection rules and structure constraints as 

defined in [20]. A modified pruning process necessitates an alternative representation. 

During the pruning, sub trees are cut. The remaining structure conditions are evaluated to 

verify the PES. Only if all structure conditions are true the PES is valid. Figure 3.2 shows an 

example of a structure condition added to composite entity node ROOT. If the generated 

model structure contains the atomic entity nodes A2, D, E, F, L, it would be valid because the 

condition p1+p2+1*p3=3+3+1*3<12 is true.  



 

  

4 Framework for Modeling, Simulation and Optimization 

In this section a complete framework for combined parameter and structure optimization 

experiments is introduced. After a brief description of the general framework structure, its 

methods are discussed in detail and finally the entire algorithm is summarized. 

4.1 General Framework Structure 

Based on the fundamental approach of a parameter and structure optimization experiment in 

Fig. 2.4, the detailed structure of the introduced framework is depicted in Fig. 4.1. 

 

Figure 4.1 Structure of the optimization framework 

The framework consists of the three fundamental components: 

• Model Management Module based on the SES/MB approach introduced in Section 3 

• Modeling and Simulation Module based on DSDEVS [9][16] 

• Optimization Module with a Genetic Algorithm (GA) as optimization method 



 

  

The appropriate interfaces to combine the above components are described next. 

4.2 Interface: Optimization Module – Model Management Module 

The optimization process consists of an initialization and an optimization phase. During the 

initialization phase, the Model Management Module has to analyze the SES tree to transform 

formal meta-model structure information into numerical data useable by the Optimization 

Module. Together with the model parameters the information is sent as initialization data to the 

Optimization Module. The information, coded in the four sets XS, DS, XP, and DP is used to build 

the set X
*
 = XP ∪ XS and the corresponding domain set D

*
 = DP ∪ DS. During the optimization 

phase that is repeated in each optimization loop cycle, the optimization method calculates a 

numerical data set Xi
*
 = XPi ∪ XSi. The set Xi

*
 is sent to the Model Management Module, which 

determines based on this information a new model configuration, that is, a new model structure 

and initial model parameters. 

 The main task of the first transformation is to convert SES structure information to a 

structure parameter set XS and the corresponding domain set DS. This is done by a tree analysis 

using a breadth-first or depth-first algorithm, starting at the root node, traversing the tree and 

considering every node. If a node is a decision node (i.e., a specialization node, multiple aspect 

node or composite entity node with alternative successor nodes), a structure parameter xSi is 

added to the structure parameter set XS and a corresponding domain dSi to the domain set DS. The 

domains of specialization node and composite entity node are {1, …, number of variants}. The 

domain of a multiple aspect node is defined by its attached number range property.  

 Figure 4.2 illustrates the algorithm for creating structure parameter set XS and the 

corresponding domain set DS using a breadth-first algorithm. It starts at the root node A, a non-

decision node. Next nodes are non-decision nodes Adec and B. The composite entity node C is the 



 

  

first decision node. It has two alternative successors. A first parameter xS1 is added to set XS with 

the domain dS1 = {1, 2}. The next examined nodes are Bdec, Cdec1, Cdec2, D, E, F, G, H and I - they 

are non-decision nodes. The next examined node, the multiple aspect node Dmaspec is a decision 

node. The value of its number range property is {2, 3, 4}. A second parameter xS2 is added to XS 

with the domain dS2 = {2, 3, 4}. The next node, the specialization node Espec is again a decision 

node. It has three alternative successor nodes. A third parameter xS3 is added to XS with the 

domain dS3= {1, 2, 3}. The last nodes analyzed, K, E1, E2 and E3 are non-decision nodes. The 

example SES has three decision nodes. The resulting structure parameter set is XS = {xS1, xS2, xS3} 

with the corresponding domain set DS = {dS1, dS2, dS3} with the above determined domains. 

These sets, XS, DS, the model parameter set XP and its domain set DP are used by the optimization 

method as the search space definition. Additional SES tree information, that is, structure 

conditions and attached variables, are irrelevant during the initialization phase. 

 

Figure 4.2 Transformation SES → set XS and set DS 

The second transformation is the reverse of the first. The Model Management Module receives a 

point in the search space from the Optimization Module, that is, the numerical data set 

Xi
*
 = XPi ∪ XSi, where set XSi codes the model structure and set XPi codes its parameters. It has to 



 

  

synthesize the corresponding model structure and has to infer the model parameters. The 

transformation has to traverse the tree in the same direction as during the first in the initialization 

phase. At each decision node the next element of current structure parameter set XSi is used to 

decide: (i) which successor of a composite entity node with alternative successor nodes is 

chosen, (ii) which successor of a specialization node is chosen, or (iii) how many successors of a 

multiple aspect node are incorporated into the PES. After pruning, the model structure is verified 

with the evaluation of the remaining structure conditions. If a structure is invalid the specific set  

Xi
* will be refused and this information is sent to the Optimization Module. In case of an invalid 

model configuration, the Optimization Module marks this point in the search space as prohibited 

and determines a new one. 

 

Figure 4.3 Transformation XSi + SES → PES 

Figure 4.3 illustrates the principle of this transformation. The breadth-first analysis starts at the 

root node A and continues as already described before. The first decision node is composition 

entity node C. The first element of XSi is xS1=1, that is, the first aspect node Cdec1 is chosen for the 

PES. The next decision node is the multiple aspect node Dmaspec and the corresponding set 

element is xS2=4, that is, the PES contains four nodes K. The last decision node is specialization 

node Espec and the corresponding set element is xS3=2, that is, the PES contains the second 



 

  

specialization of node Espec. After pruning, the attached variables are calculated and the PES is 

verified by evaluating the structure condition. In the example, the aspect node Cdec1 and four 

atomic entity nodes K were chosen. Therefore, the structure condition at node A is evaluated as 

follows: p1 + ∑p2i = 4 + 8 < 13 and it follows that the PES is valid. 

4.3 Interface: Model Management Module – Modeling and Simulation Module 

Each optimization cycle requires a change and adaptation of the simulation model. If the 

structure parameters in XSi are changed, a new simulation model structure has to be generated. 

Otherwise, if just the model parameters in XPi are changed, it is adequate to re-initialize the 

model parameters. As illustrated in Fig. 4.1 all necessary information is sent from the Model 

Management Module to the Model Generator of the Modeling and Simulation Module. The 

Model Management Module creates XML files describing the model structure. DSDEVS basic 

components predefined in the MB, XML files, and current model parameters coded in set XPi are 

used by the Model Generator to generate the entire DSDEVS model. 

 The use of a standardized XML model description for information exchange decouples 

the two modules. It is based on W3C XML schema Finite Deterministic DEVS Models 

introduced in [12] and [13]. The XML interface uses the atomic and coupled model descriptions 

with model and port names. The coupled model description described in [13] is currently work in 

progress and does not contain all necessary description elements for this approach. Therefore, the 

composition description of coupled models used in the framework additionally defines submodel 

names and coupling specification. The decoupling of Model Management Module and Modeling 

and Simulation Module using XML files eases the modeling and verification of the basic 

components. 



 

  

4.4 Interface: Modeling and Simulation Module – Optimization Module 

The objective function, defined in the Optimization Module (see Fig. 4.1) estimates the 

performance of the current model configuration. The function gets its input parameters from the 

Modeling and Simulation Module. These are the simulation results Yi(XSi, XPi) and simulation 

response function results R(Yi(XSi, XPi)) respectively. Further input parameters are delivered by 

the Model Management Module. These are the model structure results Pi(XSi), which are based 

on evaluation of attached variables after pruning the SES. An example is illustrated in Fig. 4.2. 

The aspect nodes Cdec1 and Cdec2 and the atomic entity node K define the attached variables p1 

and p2i. After pruning illustrated in Fig. 4.3, the values of p1 and p2 are calculated as follows: 

Pi(XSi) = {p1;∑p2i} = {4;8}. These values may be used as further objective function parameters. 

 The result F
*
(R(Yi), Pi) of the objective function is evaluated by the optimization method. 

As a consequence of the often stochastic nature of simulation problems, a random based 

optimization method is preferable. Two established random based algorithms inspired by the 

principle of the evolution of life are the Genetic Algorithm (GA) introduced by Holland [10] and 

the Evolutionary Strategy (ES) introduced by Rechenberg [19]. The origins of ES are continuous 

parameter problems whereas current GAs support hybrid problems. A disadvantage of the 

original GA is the missing memory. It is possible that in different generations the same 

individual is repeatedly examined. Because of the time consuming fitness estimation of an 

individual in simulation based optimization, the addition of a memory method is vitally 

important. It has to store already examined individuals with their resulting F
*
(R(Yi), Pi). 

4.5 Algorithmic Summary of the Framework 

As described in the precedings, the proposed simulation based parameter and structure 

optimization framework is composed of different methods that form a uniform optimization 



 

  

approach. The following algorithm summarizes the fundamental operations using a GA as 

optimization method. 

Initialization Phase: 

0. Analyze the SES and establish X
*
 = XP ∪ XS  and D

*
= DP ∪ DS  

1. Initialize a population of individuals (generation 0) with different Xi
*
 = XPi ∪ XSi     

Optimization Phase (repeat until stop criterion is fulfilled): 

2. Estimate the fitness of all individuals of the current generation 

Repeat for each individual 

2.1. Check memory if individual is known. In case of ‘true’: continue with next 

individual 

2.2. Prune SES with XSi 

2.3. If structure condition is valid establish Pi(XSi) or otherwise mark individual as 

invalid and continue with next individual 

2.4. Generate DSDEVS model 

2.5. Simulate DSDEVS model and get result Yi(XSi, XPi)  

2.6. Evaluate the simulation response function R(Yi(XSi, XPi)) by repeating Step 2.5 

2.7. Evaluate the objective function F*
(R(Yi), Pi) 

2.8. Store Xi
*
 and F

*
(R(Yi), Pi) in memory 

3. Select pairs with m individuals and create descendants using crossover 

4. Mutate the descendants 

5. Exchange individuals of the current generation with descendants based on a substitution 

schema to create a new generation 

The next section demonstrates the application of the introduced framework with a project from 



 

  

industry. 

5 Application example 

The example is based on developments and problems in the photofinishing industry and 

investigates a small part of a production process to demonstrate the approach.  Photofinishing 

laboratories specialize in high volume production of thousands to millions of pictures per day. 

As a consequence of significant changes in the photography market, notably the introduction of 

digital cameras with a considerable reduction of analogue and an increase of digital orders during 

recent years, a mix of analogue and digital production facilities are used. The changes have lead 

to concentration from many, local working, smaller laboratories to a few, large, nationwide 

working laboratories and fierce competition between them. The situation is driving an urgent 

need to be as cost effective as possible.   

 Figure 5.1 shows general structure and product flow through the different departments of 

a typical photofinishing laboratory. The material arrives in several forms at the login department. 

After sorting the product mixes, some 10 to some 1000 single orders are combined into batches, 

each batch containing only one product type, for example, specific paper width and surface. The 

batch creation is done with different machine types: (i) a splicer combines undeveloped film rolls 

onto a film reel, (ii) a universal reorder station (URS) combines analogue reorders to a strap of 

film strips, (iii) a digital URS scans the analogue reorders and produce a digital batch, (iv) a 

digital splicer handles data carriers (CDs, flash cards etc.), and (v) software applications combine 

digital images received over the internet. Undeveloped analogue batches have to be developed 

and analogue material can be scanned. Next steps are CD production, printing, paper 

development, and cutting. Finally items are packed and identified for delivery to customers. 

There are several possible material routes through production with the same end product but 



 

  

different processing time, machine and operator requirements, and costs. It is possible to employ 

fewer operators than available workstations and produce on time if an appropriate production 

structure and effective organization method are used to manage production. 

 

Figure 5.1 General product flows of a photofinishing lab 

The example is based on developments and problems in the photofinishing industry and 

investigates a small part of a production process to demonstrate the approach described in this 

chapter. For this example the login and splicer departments are studied in detail with a structure 

as in Fig. 5.2. The source material, unsorted, single orders, is sorted by product type manually or 

automatically into boxes. The sorted orders are combined onto batch reels at splicers. An 

automatic sorter is handled by one or two operators, whereas manual sorting is done by the 

number of available operators without the need of a machine. The handling time depends on the 

number of machines, machine type, and the number of operators. A splicer is handled by one 

operator with fixed average handling time. Operators can be moved between machines. The 



 

  

production time of a fixed number of orders, and, consequently, the cost, vary depending on the 

type and number of machines used, number of operators, and the strategy to organize operators. 

The task is to minimize the production time of a given number of orders whilst minimizing cost. 

 

Figure 5.2 Product flow of the considered example 

To validate the introduced framework the global optimum estimated through simulation of all 

system variants is compared with the result of an optimization experiment. In both experiments 

the performance rating of one variant is done by the same objective function.  

 The simulation output of a single run delivers the production time and cost 

Y = {yproduction time, ycosts} of the currently investigated model variant. They are passed to the 

objective function. This function is defined by the term: 

F = F(Y) = α1* yproduction time + α2* ycosts → minimum 

The factors α1 and α2 define the relevance of the variables. With α1=1/max_production_time and 

α2=1/max_costs both variables are within the range 0..1 and have the same relevance. The 

maximal value of the production time can be calculated by one simulation run and the maximal 

value of the costs is defined by the maximal number of operators, a model parameter with 

defined range.  



 

  

 

Figure 5.3 SES of the example 

Figure 5.3 depicts the SES, describing possible model structures of the considered example. The 

model variants are characterized by: (i) the usage of automatic and/or manual sorting, (ii) the 

usage of one to eight splicers, and (iii) the usage of one of three different department 

organization strategies to move operators between departments. Depending on chosen 

alternatives during the pruning process several structure related attached variables will be 

initialized with different values. The SES defines 72 model structure variants in all. Besides, 

there is one variable model parameter, the number of operators with a range of one to eight. The 

combination results in 576 model variants. Not all model variants define useful combinations. 

For example, a model with four operators and eight splicers delivers the same result as a model 

with four operators and four splicers. To exclude the useless variants the root node MODEL 

defines a structure condition that reduces the valid number of model variants to 275.  

 To solve this example, the search space has to be defined in terms of a structure 

parameter set, a model parameter set, and their corresponding domain sets. Using the principle 



 

  

introduced in Section 4.2, the structure parameter set and the corresponding domain set are 

defined by: 

XS = {xDEP_LOGIN, xcontrollerspec, xsplicermaspec} 

DS = {dDEP_LOGIN, dcontrollerspec, dsplicermaspec} with 

 dDEP_LOGIN = {1; 2; 3}; dcontrollerspec = {1; 2; 3}; dsplicermaspec = {1; 2; 3; 4; 5; 6; 7; 8} 

The model parameter set and the corresponding domain set are defined by: 

XP={x#_of_operators} 

DP={d#_of_operators} with d#_of_operators = {1; 2; 3; 4; 5; 6; 7; 8} 

Hence, the resulting search space is defined by: 

X = XP ∪ XS = { xDEP_LOGIN, xcontrollerspec, xsplicermaspec, x#_of_operators} 

Each model variant defines one point in the search space. With the principle introduced in 

Section 4 a PES can be derived and a corresponding model can be generated. One point in the 

search space is X132 = {2; 2; 2; 2}. This means that the aspect node DEP_LOGINdec2 and the 

specialization ctrl2 are chosen, the number range property value of the multiple aspect node 

splicermaspec is two, and the model parameter #_of_operators is also two. Figure 5.4 depicts the 

PES of model variant 132. The generated modular, hierarchical simulation model is illustrated in 

Fig. 5.5. This model variant delivers the minimal objective function value. The fitness values of 

all 275 model variants are depicted in Fig. 5.6. 

 

Figure 5.4 PES of 132
th

 variant 
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Figure 5.5 Modular, hierarchical model of 132
th

 variant 

 

Figure 5.6 Fitness values of all variants with the optimum at X132 

The MATLAB® GA toolbox [24] is employed as the optimization method in this example. The 

default MATLAB GA parameter settings were used, except for a decreased population size of 15 

and an adjusted stop criterion: if the weighted average change in the fitness function value over 

20 generations is less than 0.01, the algorithm stops. The optimization experiment was repeated 

100 times with different random number streams. The optimal structure and its parameter set 

were found after 194 simulation runs on average in contrast to 275 simulation runs of a complete 



 

  

enumeration experiment. The optimal solution X132 with the fitness 0.3024 was found 47 times. 

Other sub-optimal solutions with a fitness value smaller than 0.35 were found 21 times. Non-

optimal solutions were found 32 times.  

 The results show that the introduced optimization framework delivers an optimal solution 

with significantly less simulation runs in comparison to a complete simulation study of all model 

variants. 

6 Summary 

This chapter briefly summarized fundamental aspects of simulation based optimization. It 

introduced a novel approach for structure optimization of modular, hierarchical discrete event 

systems. The approach combines a model management method, modeling and simulation 

methods, and an optimization method to enable a concerted structure and parameter 

optimization. Appropriate interfaces between the different methods have been developed. Core 

of the interfaces are two transformations. The first one transforms formal structure information 

into numerical data, which are amenable to an optimization method. The second one transforms a 

specific numerical data set, calculated by the optimization method, into a specific model 

structure with its corresponding model parameters. 

 A prototype of the introduced framework was implemented with the Scientific and 

technical Computing Environment MATLAB. It consists of a MATLAB based SES toolbox for 

model management, a MATLAB based DSDEVS simulation toolbox, and the Genetic Algorithm 

and Direct Search ToolboxTM from The MathWorksTM. The software prototype has been 

successfully used to prove the approach with first applications. The results of the described 

example demonstrate the advantages of the introduced approach. Using the implemented 

framework, the optimal structure and its corresponding model parameters are found with 



 

  

significantly less simulation runs in comparison to a complete simulation study of all model 

variants. 
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Abstract 

Modelling and simulation with integrated parameter 

optimisation is a well established technique. This paper 

introduces an extended, simulation based optimisation 

method. Behind automatic parameter value variation the 

method is able to re-configure model structure during 

optimisation. This is achieved through a combination of 

optimisation, simulation and model management methods. 

Using this approach simulation is used to establish the 

performance of a current model structure and parameter 

value set and the optimiser searches for an optimal solution 

with repeated model structure and model parameter value 

changes assisted by the model management methods. 

 

1. INTRODUCTION 

Modelling and simulation with integrated optimisation is a 

well established technique in engineering applications. Such 

techniques are used for system design, real time planning 

and to control production systems. With increasingly 

complex, flexible production systems the requirements for 

modelling and simulation tools are growing. Existing 

applications using optimising simulation are restricted to 

parameter optimisations. The modeller has to change model 

structure manually and repeat optimisations until a solution 

is found. With increasing production system flexibility the 

number of possible structure variants increases and the 

potential benefit of automatic model structure optimisation 

would be significant. 

 The focus of this paper is the description of a 

methodology for a combined parameter and structure 

optimisation for modular, hierarchical discrete event 

systems. In contrast to current, optimising modelling and 

simulation environments the model structure is variable and 

thus it is open to optimisation. The variations of model 

structure and model parameter values are controlled by a 

superordinate optimisation module. To support the 

optimisation method appropriate modelling, model 

management/generation and simulation methods are 

necessary. 

 As a basis for model management and generation the 

System Entity Structure (SES) formalism, introduced by 

Rozenblit, Zeigler et al [6] [10] [11], is employed. The SES 

formalism is a generative, knowledge base framework 

consisting of a tree like entity structure and a model base. 

With its features it is able to define a set of modular, 

hierarchical models and to generate specific model 

structures. The modelling and simulation method is based 

on the Discrete Event System Specification (DEVS) 

formalism introduced by Zeigler [9] and some of its 

extensions [1], [4], [8] and [10]. Traditional modelling and 

simulation systems, and the original DEVS, only provide 

support for static structure models [9] [10]. That means, 

they offer modelling methods to build specific model 

structures with behavioural dynamics and aggregation 

methods to combine them into complex structures. But the 

structure information itself cannot be changed during model 

execution. The structural information in a modular 

hierarchical DEVS model remains an integral part of the 

system during simulation. This offers the potential of 

structure changes during simulation time. Dynamic 

Structure DEVS (DSDEVS) introduces methods to make 

these potential structural changes possible [1] [4] [5]. In 

engineering and manufacturing applications the advantage 

of a dynamic structure modelling and simulation method are 

considerable. Dynamic structure features are beneficial for 

several applications but the approach presented is not 

restricted to the usage of DSDEVS. 

 Section 2 provides a short preview of optimisation and 

optimising simulation, the approach using a combined 

structure and parameter optimisation method is presented 

and the requirements for the optimisation environment are 

defined. Section 3 briefly introduces the established SES 

formalism as a model set organisation and model generating 

meta-modelling method. The synthesis of the three 

elements, optimisation, model generation and simulation, to 

perform a combined structure and parameter optimisation is 

presented in section 4. Finally an industrial application is 

described in section 5. 

 

 



2. OPTIMISING SIMULATION 

Simulation experiments can be of different complexity. The 

least complex ones are ordinary simulation runs, shown in 

figure 2.1a. After examining simulation results the modeller 

manually changes the model parameter values and/or 

structure and starts the simulation again. These steps are 

repeated until a suitable solution is found. A more complex 

approach is simulation based parameter optimisation, 

described in figure 2.1b. Mathematical optimisation 

generally means establishing a function minima or maxima. 

Parameter optimising simulation means finding the optimal 

model input parameter value set through optimising a 

function of output variables estimated with a simulation 

method [7]. The function is named the objective function. 

The optimising method alters model parameter value(s) to 

improve the result of the objective function until a stop 

criteria is fulfilled. The result is a parameter optimised 

model. Structure changes are carried out manually by the 

modeller with a possible repetition of the automated 

parameter optimisation. 

Figure 2.1 principles of (a) simulation and (b) parameter 

optimising simulation 

The following describes a parameter optimising simulation 

problem O with a set of m input parameters X = {x1, ... xm} 

[7]: 

• parameter set X has the domain set D = {d1 … dm} 

• the search room S = {s = {(x1,v1) . . . (xm,vm)} | vi ∈ di} 

• set Y is the stochastic, simulation output variable set 

defined by Y = {y1 . . . yn} = Y(X) and estimated by 

simulation 

• an objective function F establishes a single stochastic 

value from output set Y :  F = F(Y) → ℜ+ 

• because of the stochastic nature of Y an estimation 

function R, the simulation response function, typically 

defined by R(X)=E(F(Y(X))), is optimised 

Each parameter value set Xi ∈ S can be seen as a possible 

solution of O. The optimiser has to search the search room S 

to find the parameter value set Xopt ∈ S with E(F(Y(Xopt))) ≤ 

E(F(Y(X))) ∀ X ∈ S. The resulting parameter value set Xopt 

is named the global optimum of O. 

 This approach to optimising simulation is widely used 

in research and commercial applications. It is restricted to 

an automated parameter optimisation. Automatic structure 

changes during optimisation are not possible. It is a logical 

conclusion to extend the optimisation methods with the 

ability to change the model structure thus improving the 

result of the objective function. The result of this extension 

is a structure and parameter optimising simulation. The 

figure 2.2 as an extension of figure 2.1b describes the 

approach in principle. 

 
Figure 2.2 principle of a combined structure and 

parameter optimising simulation 

 In contrast to the established approach the optimising 

method now controls both model parameter values and the 

model structure. The objective function can now not only 

use the simulation results but also further information about 

the model structure. This information is based on optional 

attached variables, summarised during model synthesis. The 

optimiser loop changes both the structure and the parameter 

values until a stop criterion is reached. The result of this 

process is a combined parameter and structure optimised 

model. 

 Also, in contrast to the established approach, the 

modeller has to organise a set of models. One possibility is 

to define a model which describes a set of model variants 

instead of one single model of the real system. Such models 

that define the creation and interpretation of a set of models 

are named meta-models. When a model is the abstraction of 

an aspect of the real world a meta-model is yet another 

abstraction of the model itself. Through this inclusion of an 

automatic model generating element the optimiser can use 

parameter values as well as model structure changes to find 

an optimised solution. This idea combines established 

methods: (i) a modelling and simulation environment and 

(ii) a meta-model framework as model 

generation/management with (iii) an optimiser. 

 This approach was implemented as a prototype. The 

implementation uses a Genetic Algorithm (GA) as an 



optimising method. A GA has a numerical stabile and robust   

behaviour. As a modelling and simulation environment an 

extended DEVS formalism is chosen. It is well suited for 

engineering tasks, especially the modelling and simulation 

of variable structure systems, and discrete event control 

problems [5]. As a meta-modelling framework the System 

Entity Structure is used. The SES formalism is a general, 

knowledge base framework. With its key feature to depict 

the three relationships (i) decomposition, (ii) taxonomy and 

(iii) coupling it is capable of defining a set of DEVS models 

[6] [10] [11].  

3. SPECIFICATION OF MODEL SETS WITH SES 

To represent a set of modular, hierarchical models, a method 

is needed to describe three relationships: decomposition, 

taxonomy and coupling. Decomposition means the 

formalism has to be able to decompose an object into sub-

objects. Taxonomy means the ability to represent several, 

possible variants of an entity. To compose an entity from 

sub-entities these have to be coupled. This is the meaning of 

a coupling relationship. The SES formalism is able to 

describe these three relationships [6] [10] [11].  

 A SES is described by two major parts: (i) an entity 

structure and (ii) a model base. The entity structure (ES) is a 

tree like structure which contains invariable and/or variable 

branches. To create one structure variant the entity structure 

is pruned. The pruning process decides at decision nodes 

which or how many variable branches will be used 

considering the structure constraints. The result of this 

process is a pruned entity structure (PES) which is the basis 

of a composition tree. This tree contains all the information 

to create together with the model base contents the 

hierarchical model. Figure 3.1 shows the principal 

transformation process SES → PES → Model. 

 
figure 3.1 pruning and model generation process 

Figure 3.2 depicts the taxonomy of an ES. It is a labelled 

tree and consists of different entities, atomic and composite, 

and different edge types. The leaves of the tree are atomic 

entities, inner nodes are composite entities. The edge type 

defines further categories of the superordinate composite 

entity. Three different composite entity types exist: 

• specialisation entity, shown in figure 3.2a with a double 

line edge. The entity Aspec has two specialisations A1 and 

A2. This structure is named taxonomy.  

• decomposition entity, depicted in figure 3.2b with a single 

line edge. The decomposition entity B has two variants 

Bdec1 and Bdec2, named aspect entity. The aspects are 

special kinds of decompositions like specialisations are 

kinds of classifications.  

• multiple aspect entity, shown in figure 3.2c with a triple 

line edge. The variable number of its sub-entities is 

defined by an attached property. 

 
figure 3.2 entity types in a SES 

An entity can have additional properties: 

• Couplings information added to an aspect entity - they are 

used during the composition of the model structure 

• AttachedVariables added to an entity, e.g. p1, p2, p3 in 

figure 3.2 – they are used for a structure evaluation and as 

properties for the model 

• StructureConstraints added to sub-entities of variable 

entities like specialisations and aspects – they are used 

during the pruning process to validate the model structure 

• DomainProperty - multiple aspects have attached the 

possible number of entities. 

 
The model base contains a set of DEVS models which 

corresponds to entities in leaf nodes of ES. 

 The following formal description of an ES is derived 

for further definitions in chapter 4 and provides the basis for 

a prototype implementation: 

 

AtomicEntities = {Entity1,… Entityn } |  

Entity ∈ LeaveNodes 
 

CompositeEntities = { Entity1,… Entityn } | 

CompositeEntity ∉ LeaveNodes 
 

RootEntity ∈ CompositeEntities
 

The root entity represents the root of ES. 
 

AtomicEntity=(name, {av1,… avn}, {sc1,… sco}) | name ∈ 

Modelbase ∧ {av1,… avn} ⊆ Attached Variables ∧  

{sc1,… sco} ⊆ StructureConstraints 

An atomic entity is defined by a name, can have attached 

variables and refers to a model of the Model Base. 
 

DecompositionEntity =(name, {AspectEntity1,…  

AspectEntityn} ∨ SpecEntity ∨ MultiEntity) | 

DecompositionEntity ∈ CompositeEntities 

A decomposition entity is defined by a name and 

incorporates an ordered set containing one or more aspect 



entities or one specialisation or one multi-aspect entity. It 

has to have at least one sub-entity. During the pruning 

process one of the aspect entities is chosen within the 

relevant structure constraints. 

 

SpecEntity = (name, {Specialisation1, . . . Specialisationm}, 

{av1,… avn}) |  

{Specialisation1, . . . Specialisationm} ⊆ AtomicEntities ∧  

{av1,… avn} ⊆ Attached Variables ∧ 

DecompositionEntity ∈ CompositeEntities 

The specialisation entity is defined by a name, incorporates 

an ordered set with 1-n sub-entities and can have attached 

variables. During the pruning process one of these sub-

entities is chosen within the relevant structure constraints of 

its Specialisation sub-nodes. 
 

AspectEntity = (name, {AtomicEntity1,… AtomicEntitym},  

{DecompositionEntity1,… 

DecompositionEntityn},{av1,… avo}, {sc1,… scp}, 

{Coupling1,… Couplingq}) |  

{av1,… avo} ⊆ Attached Variables ∧  

{sc1,… scp} ⊆ StructureConstraints ∧ 

DecompositionEntity ∈ CompositeEntities 

The aspect entity is defined by a name, incorporates ordered 

sets with Atomic and/or DecompositionEntities, can have 

attached variables and structure constraints. Coupling 

properties are used to compose the sub-entities and they are 

defined by a set of 2-tuples. Each tuple consists of sub-

entity source and destination information, e.g. 

(SourceEntity.outputport, DestinationEntity.inputport). 
 

MultiAspectEntity = (name, {Entitymin,… Entitymax}, 

{av1,… avm}, {sc1,… scn})  | 

DomainProperty={min,max} ∧  

{av1,… avm} ⊆ Attached Variables ∧  

{sc1,… scn} ⊆ StructureConstraints 
The multiple aspect entity is defined by a name, has one 

sub-entity and can have attached variables. During the 

pruning process the number of the sub-entities is chosen 

within the relevant structure constraints and possible 

quantities defined in domain property. 

4. INTERFACE SPECIFICATIONS 

The fundamental parts of this approach are the interface and 

method definitions I, II and III, depicted in figure 4.1. They 

bind the established methods together to synthesize the 

combined structure and parameter optimising simulation. 

 Before an optimisation can be carried out, information 

about the search room is necessary. In this approach the 

search room is defined by the set of model structure variants 

established by analysing the ES and the set of model 

parameters, defined by each model structure. During the 

optimisation process several points in the search space are 

examined. Each point defines one single model structure to 

be generated through the model generator with one 

parameter value set.  

 The formal description extension of a parameter 

optimising simulation problem O (section 2 and [7]) to a 

structure and parameter optimisation leads to O
*
: 

• model parameter value and domain sets XP=X and DP=D 

are extended by sets of model structure parameters xSi∈XS 

and their domains dSi∈DS. The extended set definitions 

are: X
*
 = XP ∪ XS = {xP1 . . . xPm, xS1 . . . xSn} and D

*
 = DP 

∪ DS = {dP1 . . . dPm, dS1 . . . dSn} with m model parameters 

in set XP and n model structure parameters in set XS. The 

sets XP and DP are defined by the current model. To 

provide sets XS and DS the ES tree has to be analysed. 

• The objective function F
*
 is defined by F(Y(XP),P(XS)) 

with simulation results YP=Y(XP) and optional attached 

variables PS=P(XS) established from pruning the ES. 

• The search room S = SP ∪ SS is spanned by sets of model 

parameter and model structure variants. 

 
figure 4.1 interfaces between the three methods  

The interface (I) between Optimisation Module and Model 

Management/Generation Module (figure 4.1 I) is a two-way 

interface defining both, (i) the generation of information 

about model structure parameter and domain sets from an 

ES and (ii) the method to prune a SES based on information 

about a specific point of the search room. One task of the 

interface is the generation of the two sets XS and DS based 

on information from an ES tree. This is done by analysing 

the tree starting at RootEntity, traversing it in a defined 

direction and sub-entity order and considering every entity 

property. When it is a decision node, i.e. of type SpecEntity, 

DecompositionEntity or MultiAspectEntity, a parameter xSi 

is added to the structure parameter set XS and a domain dSi to 

the domain set DS. The domains of SpecEntity and 

DecompositionEntity nodes are {1 . . . number of variants}. 



The domains of MultiEntity nodes are defined by their 

attached NumberRangeProperty. 

 There are two general principles that can be applied to 

traverse the tree: (i) depth-first and (ii) width-first analysis. 

An advantage of the width-first analysis is the arrangement 

of the variables. When it can be assumed that variant 

decisions at a higher level of the ES have larger effects on 

model performance than decision near the leaves, then the 

width-first analysis sorts the variables accordingly: variables 

on the left hand side of the ordered set correspond to higher 

levels of the ES, variables on the right hand side correspond 

to decision nodes nearer the leaves. Figure 4.2 describes the 

idea of creating model structure parameter set XS and the 

corresponding domain set DS based on ES tree information. 
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figure 4.2 transformation ES to sets of XS and DS 

Using a width-first analysis of the ES depicted in figure 4.2 

the algorithm starts at non-decision node Adec. Next nodes 

are non-decision node B and decision node C. The 

decomposition node C has two AspectEntity nodes Cdec1 and 

Cdec2. A first parameter xS1 is added to set XS with the 

domain dS1 = {1, 2}. Next examined node Dmaspec is a 

decision node. This MultiAspectEntity node has the number 

range property {2, 4}. A second parameter xS2 is added to XS 

with the domain dS2 = {2, 3, 4}. The next node examined is 

SpecEntity node Espec with three specialisations E1, E2 and 

E3. A third parameter xS3 is added to XS with the domain 

dS3= {1, 2, 3}. The last nodes Cdec1, Cdec2, E1, E2, E3, F, G, H 

and I are non-decision nodes. Hence the example ES has 

three decision nodes and the resulting model structure 

parameter set is XS={xS1,xS2,xS3} with domain set 

DS={dS1,dS2,dS3}. On the basis of these sets together with the 

model parameter and domain sets the optimiser can search 

the search space. 

 During the optimising process several points in the 

search room are examined. Each point is defined by a 

specific set Xi=XPi ∪ XSi. The set XSi codes a specific model 

structure and set XPi represents its model parameter values. 

In each structure optimisation step a specific set XSi is 

passed from the optimisation module to the model 

management/generation module to generate an appropriate 

model structure with model parameters XPi. The 

transformation of set XSi to ES information is the reverse of 

the previously described process. The same direction to 

traverse the tree and same sub-node handling order are 

essential. At each decision node the next element of current 

structure parameter value set XSi is used to decide which 

specialisation or aspect branch is chosen or how many 

multi-aspect branches are used for the composition tree. The 

model generation from the resulting PES is performed as the 

established SES model generation process described in 

chapter 3. Figure 4.3 illustrates the idea. 

 
figure 4.3 transformation of the point XSi to PES 

Using the same width-first analysis, as was used during the 

creation of the sets XS and DS, the ES is pruned with the 

current structure parameter value set XSi. The first decision 

node in the ES of figure 4.3 is DecompositionEntity C. The 

first set element is xS1=1 i.e. the variant 1 of C is used in the 

PES. The next decision node is MultiAspectEntity Dmaspec 

and the corresponding set element is xS2=4 i.e. the PES 

contains four times node D. The last decision node is 

SpecEntity Espec and the corresponding set element is xS3=2 

i.e. the PES contains the second specialisation of node E. 

 The generated model and the parameter values are sent 

to the modelling and simulation model over the interface II. 

This interface between Model Management/Generation 

Module and Modelling and Simulation Module (figure 4.1) 

decouples the modules using standardised XML files. It is 

based on W3C XML schema Finite Deterministic DEVS 

Models [2] [3]. The interface uses the atomic and coupled 

model interface descriptions with model and port names and 

additionally, for coupled models, the composition 

description with sub-model names and couplings. The 

coupled model description described in [3] is currently work 

in progress and does not contain all necessary description 

elements for this approach. The coupling definitions are 

extended by separated external input, external output and 

internal couplings. With the pruned ES a set of XML files is 

generated. Figures 4.4 and 4.5 show atomic and coupled 

model examples. With information in the XML files an 

executable model structure for the simulator is generated 

from the model base. 

<?xml version="1.0" encoding="utf-8"?> 

<atomic modelName="server" xmlns="AtomicDevs"> 

   <inports/> 

   <outports> 

      <outport>job_out</outport> 

   </outports> 

</atomic> 

figure 4.4 XML atomic model example 



<?xml version="1.0" encoding="utf-8"?> 

<Digraph name="MODEL" xmlns="CoupledDevs"> 

   <Models> 

      <Model><devs>server</devs></Model> 

      <Model><devs>transducer</devs></Model> 

   </Models> 

   <inports/> 

   <outports/> 

   <EIC/> 

   <IC> 

      <Coupling> 

         <SrcModel>server</SrcModel> 

         <outport>job_out</outport> 

         <DestModel>transducer</DestModel> 

         <inport>job_in</inport> 

      </Coupling> 

   </IC> 

   <EOC/> 

</Digraph> 

figure 4.5 XML coupled model example 

 The decoupling of model management/generation and 

modelling and simulation modules using XML files eases 

implementation and validation and enables the use of 

different simulator implementations. 

 The objective function (III) (figure 4.1) estimates the 

performance of the current model structure and model 

parameter values set. The function has two input sources: (i) 

simulation results and (ii) information calculated during 

model generation based on additional variables. They are 

optionally attached to ES tree nodes and calculated during 

the pruning process. In the example in figure 4.3 entities C1, 

C2 and D has two attached variables p1 and p2, both are used 

as additional objective function parameters. During pruning 

the values of p1 and p2 are calculated: PSi=P(XSi)={4;8}.  

5. APPLICATION EXAMPLE 

This example is based on developments and problems in the 

photofinishing industry and investigates a small part of a 

production process to demonstrate the approach.  

Photofinishing laboratories specialise in high volume 

production of thousands to millions of pictures per day. As a 

consequence of significant changes in the photography 

market, notably the introduction of digital cameras with a 

considerable reduction of analogue and an increase of 

digital orders during recent years, a mix of analogue and 

digital production facilities are used.  The situation is 

driving an urgent need to be as cost effective as possible. 

Figure 5.1 shows product flow through the different 

departments of a typical laboratory. The material arrives in 

several ways at the login department. After sorting the 

product mixes, some 10 to some 1000 single orders are 

combined into batches, each containing only one product 

type (e.g. specific paper width and surface). It is done with 

different machine types: (i) a splicer combines undeveloped 

film rolls, (ii) an universal reorder station (URS) combines 

analogue reorders to a roll of film strips, (iii) a digital URS 

scans the analogue reorders and produce a digital batch, (iv) 

a digital splicer handles data carriers (CDs, flash cards etc.) 

and (v) software applications combine digital images 

received over the internet. Undeveloped analogue batches 

have to be developed and analogue material can be scanned. 

Next steps are CD production, printing, paper development 

and cutting. Finally items are packed and identified for 

delivery to customers.  

 There are several possible routes for the material 

through production with same end product but different 

times, requirements and costs. It is possible to employ fewer 

operators than working places are available and produce on 

time with them when an appropriate production structure 

and effective organisation methods are used. 

 
figure 5.1 product flows in a photofinishing lab 

This example is restricted to the login and splicer 

departments with a structure as depicted in figure 5.2: 

 
figure 5.2 product flow of the example 

 The source material, unsorted, single orders, is sorted by 

product type manually or automatically into boxes. These 

sorted orders are combined to batch rolls at splicers. An 

automatic sorter is handled by one or two operators, 

whereas manual sorting is done by the number of available 

operators without the need of a machine. The handling time 

depends on the number of machines, machine type and the 

number of operators. A splicer is handled by one operator 

with fixed average handling time. Operators can be moved 

between machines.  



 The production time of a fixed number of orders (and 

consequently the cost) varies depending on the type and 

number of machines used, number of operators and the 

strategy to organise operators. The task is to minimise the 

production time of a given number of orders whilst 

minimising the costs. 

 To validate the methodology the global optima 

estimated through simulation of all system variants is 

compared with the result of the optimisation approach. In 

both experiments the performance rating of one variant is 

done by the same objective function. 

 The simulation output of a single run delivers the 

production time and costs Y = {yproduction time, ycosts} of the 

currently investigated model variant. They are passed to the 

objective function. This function can be coded as follows: 

F = F(Y) = α1* yproduction time + α2* ycosts → ℜ+ 

The factors α1 and α2 are factors to define the relevance of 

the input variables. With α1=1/max_production_time and 

α2=1/max_costs both variables are within the range 0..1 and 

have the same relevance. The maximal value of the 

production time can be calculated by simulation and the 

maximal value of the costs is defined by the maximal 

number of operators, a model parameter with defined range.  

 Figure 5.3 depicts the ES, describing all possible model 

structures of this example. Variants with automatic and/or 

manual sorting, one to eight splicers and three different 

control strategies to move operators (moving after finished 

login, no movement and moving depending on size of queue 

box2) are allowed. 

 
figure 5.3 ES of the example 

The ES defines 72 model structure variants. The model has 

one parameter number of operators with a range of one to 

eight. The combination results in 576 model variants. The 

fitness of all simulated variants and minimal fitness value 

are depicted in figure 5.4. The optimal model structure X266  

 
figure 5.4 fitness of all variants with optimum at X266  

is shown in figure 5.5. The optimal value of the model 

parameter number of operators is two. 

 
figure 5.5 model structure of 266

th
 variant 

To solve this example, the search room with model structure 

parameter and model parameter sets and their domains has 

to be defined. Using the principle introduced in section 4 the 

model structure parameters and domain sets are defined by: 

XS={xDEP_LOGIN, xcontrollerspec, xsplicermaspec} 

DS={dDEP_LOGIN, dcontrollerspec, dsplicermaspec} with 

 dDEP_LOGIN = {1; 2; 3} 

 dcontrollerspec = {1; 2; 3} 

 dsplicermaspec = {1; 2; 3; 4; 5; 6; 7; 8} 

The model parameter and domain sets are defined by: 

XP={xoperators} 

DP={doperators} with doperators = {1; 2; 3; 4; 5; 6; 7; 8} 

Hence the resulting search room is defined by: 

X = XP ∪ XS  

X = { xDEP_LOGIN, xcontrollerspec, xsplicermaspec, xoperators} 

Each point of the search room defines one model structure 

and parameter variant. With the principle introduced in 

section 4 a PES can be composed and the model can be 

created. One point is X266={2; 2; 2; 2}. This means that the 

second decomposition of DEP_LOGIN and the second 

specialisation of controllerspec are chosen, the sub-entity 

number of the multiple aspect splicermaspec is two and the 

model parameter number of operators is also two. The 



associated PES is depicted in figure 5.6. and the 

corresponding model structure in figure 5.5. 

 
figure 5.6 PES of 266

th
 variant  

 For optimisation the genetic algorithm of the Matlab 

GA toolbox was used with default settings (except the 

population size of 15). The optimisation experiment was 

repeated 100 times with different random number 

generation initialisations of the GA toolbox. The 

optimisation process finds the global optimum but needs 

less simulation runs than the complete enumeration. The 

global optimum X266 with the fitness 0.3024 was found 42 

times. Other local optima with a fitness value smaller then 

0.31 were found 50 times. Non-optimal solutions were 

found eight times. The optimal structure and parameter set 

was found for the first time after 51 simulations on average 

and after 172 simulations the result didn’t change. An 

example of the development of fitness values during one 

optimisation run is shown in figure 5.6. 

 
figure 5.6 mean generation fitness values of one GA run 

The results show that the approach can find an optimal 

model variant using less simulation runs than a complete 

simulation of all model variants. 

6. CONCLUSION 

This paper has introduced a structure optimisation method 

for discrete event simulation systems. The approach 

combines three established methods and extends 

optimisation to the fundamental model structure to enable 

combined structure and parameter optimisation. 

 It has been shown that using a meta-model as a 

superordinate method to define simulation models, 

parameter optimisation can be extended to a combined 

structure and parameter optimisation. Three main elements 

have been determined: (i) a model generating 

meta-modelling technique based on SES formalism, (ii) a 

DSDEVS based modeller and simulator, (iii) an 

optimisation method. The interfaces between them have 

been defined: (i) A two-way interface between optimiser 

and meta-modeller provides information about the search 

room for the optimiser and supports model structure and 

parameter value set generation for a specific point of the 

search room. (ii) An interface between meta-modeller and 

simulator decouples both and permits the use of different, 

modular hierarchical modelling and simulation methods.  

 A prototype of the approach was implemented with the 

Scientific and technical Computing Environment Matlab. 

The implementation with the MatlabDSDEVS toolbox [4] 

[5], MatlabSES, implemented within the scope of this 

research, and Matlab Genetic Algorithm and Direct Search 

Toolbox has been successfully used to prove the approach 

with first examples. Implementation of more complex 

examples and examination of other optimisation methods 

will be carried out in the scope of further research. 
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Abstract. Discrete Event Simulation (DES) is an established method for manufacturing system 

analysis. The development of complex DES models requires a modular modelling and simulation 

approach. Modularity supports clear model structures, provides high model reusability and enables 

independent development and testing of components. A comprehensive theory of modular 

hierarchical modelling and accompanying simulator algorithms was introduced by Zeigler with the 

Discrete Event Specified System (DEVS) formalism. A disadvantage of the classical DEVS theory 

is the lack of capability to formulate complex structure variability. This paper provides a brief 

summary of the classical DEVS theory and introduces extensions to give comprehensive support to 

modelling and simulation of complex structural changes in modular hierarchical systems. The paper 

concludes by discussing the advantages of the variable structure modelling approach using an 

application in the photo-finishing industry. 

Keywords: variable structure systems, discrete event simulation, DEVS, DSDEVS. 

1 INTRODUCTION 

Many real systems change their structure during lifetime. These can be technical systems [1] such as 

manufacturing, computing or communication systems, digital controllers [2] or natural systems such 

as in biology and ecology [3]. In a manufacturing environment structure changes can occur at 

different levels. At the management level shop floors can be opened or closed, at the shop floor 

level different production sections can be used to produce the same product and at the production 

level different operation sequences can be performed to produce a specific product or machines and 

operators can be replaced or moved to another production cell.  

Traditional modelling and simulation systems provide only support for static structure models 

[4] [5]. That means, they offer modelling methods to specify modules or components with a 

behavioural dynamic and aggregation methods to compose them to complex structures. But the 

composition structure itself cannot be changed during model execution. Of course with these 

systems it is also possible to emulate structural system dynamics. But the specification has to be 

transformed to the behavioural modelling level. Sometimes it is hard to describe complex structural 

dynamic such as the various production possibilities in manufacturing systems on the behavioural 

modelling level. Furthermore, this procedure often leads to complex model components and reduces 

the component generality that results in reduced component reusability.  

The goal of this paper is to introduce a structure dynamic modelling approach based on Zeigler's 

Discrete Event Specified System (DEVS) formalism. Chapter 2 briefly summarizes general aspects 

of the classical DEVS theory and its accompanying simulation approach.  In chapter 3 the extension 

of the classic DEVS concept to a Dynamic Structure DEVS (DSDEVS) approach is introduced and 

the advanced modelling possibilities are discussed. After that the dynamic structure modelling 

approach is demonstrated using a complex photo-finishing laboratory application in chapter 4. 



 

 

2 DISCRETE EVENT SIMULATION 

General View. Discrete event systems are characterized by a continuous time base and discrete 

state changes [4]. In Discrete Event Simulation (DES) practice there are four dominant modelling 

techniques, called modelling worldviews [5]. These are process-interaction method, event 

scheduling method, activity scanning and the three phase method. A specific, material oriented view 

of the process-interaction method is often called transaction oriented. Each of the modelling 

worldviews has specific advantages and disadvantages and makes certain forms of model 

description more naturally expressible than others. In manufacturing simulation the process-

interaction method is widely used. In modern simulation tools it is often combined with component-

oriented approaches. The DEVS theory is able to handle all four above mentioned worldviews [4]. 

One of the most general and powerful features of the DEVS formalism is the modular, hierarchical 

model construction.  

DEVS. Every DEVS system is described by two different 

types of entities, atomic and coupled models. Each model 

type has a clearly defined input and output interface and 

the internal structure is completely encapsulated. An 

atomic model describes the behaviour of a non- 

decomposable entity via event driven state transition 

functions. A coupled model describes the structure of a 

more complex model through the aggregation of several 

entities and their couplings. These entities can be atomic 

models as well as coupled models. All this together 

allows the modular and hierarchical construction of 

complex systems. 

Figure 1 shows a simple DEVS model, a production 

cell with integrated queues, a server with quality checker 

and a rework server. The complete cell is depicted by the coupled model CM1. The model has an 

external interface with one input and one output port to receive and send work pieces. It contains 

two atomic models and one coupled model, the queue am1, the server am2 and the rework facility 

CM2.  The coupled model CM2 consists of two further atomic models the queue am3 and the 

rework server am4. When CM1 receives a message (a work piece) at its input port it is forwarded 

over the external input coupling to queue am1. When CM2 generates an output message at its output 

port, a reworked work piece is forwarded to the second input port of am1 over an internal coupling. 

The DEVS theory in [4] defines a simulator concept for 

the computation of modular-hierarchical DEVS models. 

Figure 2 shows the computational model structure of the 

model example from figure 1 according to the DEVS 

simulator concept. Each atomic model is connected to a 

simulator entity. This entity handles messages like 

‘initialisation’, ‘compute next state’ or ‘get time of next 

event’. Each coupled model is connected to a coordinator 

entity. It has the same interface as a simulator. But the 

coordinator entity handles messages, not itself, but 

forwards them to its subordinated coordinators or 

simulators. On top of the hierarchy the root coordinator 

initiates, controls and ends a simulation cycle. With this 

concept the modular hierarchical structure of the model remains a part of the computational model 

during simulation runtime in contrast to a transformation of the modular model to a monolithic 

computer implemented model. 

Fig. 1 Example DEVS model 

Fig. 2 Hierarchical simulator structure of the 

example DEVS model in fig.1 



 

 

Formal Concept of DEVS Theory. The description of an atomic model is a 7- tuple [4]:  

AM = (X, Y, S, δext, δint, λ, ta)  (1) 

X, Y and S specify the sets of discrete inputs, outputs and states. The δext function handles external 

input events. It can induce an internal state change by generating an internal state event. An internal 

state event can induce an output event and is handled by the state transition function δint. Output 

events are generated using the output function λ. After external and internal events the internal 

events are rescheduled with the time advance function ta. 

The description of a coupled model is a 9-tuple [4]:  

CM = (dn, XN, YN, D, {Md
 
| d ∈ D}, EIC, EOC, IC, select)  (2) 

dn represents the name of the coupled model, XN and YN are the sets of inputs and outputs, D 

specifies the name set of subsystems, Md represents a subsystem, EIC, EOC and IC are the external 

input, external output and internal couplings and finally the select function prioritize concurrent 

internal events of the subsystems.  

The classic DEVS approach only supports the specification of a behavioural system dynamic in 

atomic systems and the specification of a component aggregation in coupled systems. It is not 

possible to describe a structural system dynamic, such as the deletion or creation of components or 

couplings, at the coupled system level, although all necessary structural information is available 

during runtime. The only possibility to realise a structure dynamic is to specify it with logical 

constructs at the atomic model level. This abolishes the advantages of reusability and model clarity 

and increases modelling complexity. 

3 DYNAMIC STRUCTURE DEVS 

Several approaches extend the classic DEVS to Dynamic Structure DEVS (DSDEVS). Barros [2] 

[6] and Pawletta [1] [7] use an extension of the coupled system definition while the atomic model 

definition remains unchanged. Uhrmacher [3] and others introduce an agent based approach. They 

define extensions for both atomic and coupled systems. But in general all extensions allow nearly 

the same possibilities to specify structural dynamics at coupled system level such as creation, 

destroying, cloning and replacement of subsystems, movement to other coupled systems, and 

changes in the couplings and interface definition of subsystems.  

This research is based on the approach of Pawletta, where a coupled model is defined by the 

following 6-tuple: 

CMdyn = ({dn}, SN, δx&s, δint, λ, ta)  (3) 

with   

SN = XN x YN x HN x D x {Md
 
| d ∈ D} x EIC x EOC x IC x select (4) 

The current structure of a coupled model is interpreted as a structure state s ∈ SN. The additional 

introduced set HN defines specific structure related state variables. Structure changes can be induced 

by external, internal or external events of subordinated components. In analogy to the dynamic of 

atomic systems internal structure events are scheduled by a time advance function ta and their 

proposed structure changes are specified with a structure state transition function δint. Output events 

caused by internal events are generated using the output function λ. Structure state changes induced 

by external events or output events of subcomponents are handled by the transition function δx&s. 

However it is unreasonable to make changes in the subsystem set or coupling relations by this 



 

 

Fig. 3 Overview of the product flow and the 

departments of a photo-finishing laboratory 

function directly. This could lead to ambiguous event handling because external events could 

influence simultaneously the dynamic of subcomponents and the structure state. That’s why the δx&s 

function is only allowed to modify structure related state variables in the set HN  to trigger an 

internal structure state event at the same time. Simultaneous internal events of sub-models and of 

the coupled model itself are controlled by the select function. 

The structure variable modelling approach and its accompanying simulation algorithms were 

developed as a Matlab toolbox using Matlab's object oriented programming features. The theoretical 

simulator and coordinator definitions are directly mapped to software classes. User specified 

models have to be derived from these predefined classes. Matlab as a common scientific and 

technical programming environment offers a large amount of computation methods and toolboxes, 

e.g. for optimisation and parallel computing. With the implementation of the DSDEVS approach as 

a Matlab toolbox it is possible to use these toolboxes within the DSDEVS simulator [7] [8]. 

4 APPLICATION EXAMPLE 

Photo-finishing laboratories specialise in high 

volume production of some thousands to millions 

of pictures per day. As a consequence of the 

significant changes in the photography market 

during recent years they use a mixture of 

analogue and digital production facilities. 

Because of the growing complexity of these 

systems it is no longer possible to organise 

production manually in an optimal way as was 

usual some years ago. To analyse the system, 

optimise throughput and costs it is necessary to 

simulate the production process.  

Figure 3 shows the product flow through the 

different departments of a laboratory. It depicts 

only an overview of the high volume product 

flow. The material arrives over several channels 

at the login department. After logging in and 

sorting the product mixtures, the single orders are 

combined to batches, depending on the order type 

(e.g. analogue or digital), the film type (e.g. 135 

or APS) and the end product (e.g. paper width). It is done with different machine types: (i) a splicer 

combines undeveloped film rolls, (ii) a universal reorder station (URS) combines analogue reorders 

to a roll of film strips, (iii) a digital URS scans the analogue reorders and produce a digital batch, 

(iv) a digital splicer handles data carriers (CDs, flash cards etc.) and (v) software applications 

combine digital images received over the internet. Undeveloped analogue batches have to be 

developed and analogue material can be scanned. Next steps are printing, paper development and 

cutting. Finally all items are packed into a customer envelope.  

Figure 4 shows the overview of a variable structure model for a photo-finishing process. It 

specifies (i) alternative ways to handle incoming material, (ii) some ways can be used in a different 

sequence but with the same result, (iii) the number of operators is less then necessary to handle all 

machines at the same time and so they have to move between departments and (iv) machines can be 

removed from or put back into production. 
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Because of the complexity of the complete system figure 4 shows only a fragment of the 

complete DSDEVS model, mainly the splicer department. The atomic model generator generates 

unsorted orders of different types as input events of the production process model 

PHOTFINISHING_LAB. The coupled model INSORTER_LOGIN implements the manual and 

automatic order login and sorting operations. The coupled model SPLICER depicts the splicer 

department. It needs a minimum limit of sorted orders in its input queues to work smoothly. The 

outputs of this model go to next sub-models which are not represented in figure 4. An operator is 

depicted by an atomic model op. The operator handling, requesting them from or sending to other 

departments, is implemented at a general level for the complete laboratory in the 

PHOTFINISHING_LAB model and at a lower level in the department sub-models such as 

INSORTER_LOGIN and SPLICER. Control messages for operator handling are sent over the op ctrl 

couplings and the operator sub-models op themselves over the op in/out couplings. At production 

start there is not enough material available in the splicer queues. Consequently operators have to be 

moved to the INSORTER_LOGIN model to increase the sorting throughput. SPLICER2 and 

SPLICER3 models are deactivated and the appropriate connections are deleted. When the length of 

queue_product2 and/or queue_product3 is long enough the coupled model SPLICER requests one 

or two op models from the parent model PHOTOFINISHING_LAB, adds them to the SPLICER X 

sub-model, activates the SPLICER X sub-model and creates the necessary couplings. When the 

length of the queue_productX model falls below a defined limit the op model will be released to the 

parent model, the SPLICER X sub-model will be deactivated and the internal coupling to the 

queue_productX sub-model will be disconnected. 

In contrast to traditional modeling concepts the DSDEVS approach maps the real system 

structure one to one in the model. Not only the behavioural system dynamics of machines and 

products are directly depicted in the model but also the structural system dynamics of the production 

management and the movement of shared resources are comprehensible. The entire model structure 

and individual components reflect system reality in a more natural manner. Thereby independent 

component development, testing and reuse are improved. 

Fig. 4 Part of a photofinishing lab DSDEVS model 



 

 

5 CONCLUSIONS 

The DEVS formalism with the extensions to DSDEVS by Pawletta was briefly introduced and 

the advantages of the variable structure, hierarchical modelling approach were shown using a 

manufacturing application. The real system structure with its structural and behavioural system 

dynamics maps one to one onto the model. Modules can be developed and tested independently of 

other parts in the complete system which eases the model development process and supports 

extensive model reuse. They can form a model library to ease the creation of further manufacturing 

systems. The modelling approach and its necessary simulation algorithms are implemented as a 

Matlab toolbox. Due to homogeneous integration in Matlab it can be combined with all other 

Matlab computation methods. The next step in this research programme is the development of 

optimisation methods in combination with the structure variable modelling and simulation approach 

to investigate structure optimisations of complex modular, hierarchical systems. 
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ABSTRACT

This paper describes our current research in the area of 

Discrete Event System Simulation (DEVS) and its 

implementation for programmable Scientific and technical 

Computing Environments (SCEs) with a focus on variable-

structure and hybrid systems. 

Engineers, unlike scientists, are usually familiar with the 

use of SCEs such as Matlab rather than high level 

programming language simulation libraries. DEVS-based 

modeling and simulation until now has not been available 

for SCEs. This research has led to the development of a 

fully compatible toolbox for the Matlab environment with 

the potential to interact with other toolboxes. The paper 

reviews the advantages of DEVS/SCEs integration and 

concludes by describing the potential benefits in 

applications with other toolboxes. 

1 INTRODUCTION 

Modeling and simulation is widely applied in engineering 

science and, in. the majority of cases, the problems to be 

solved are complex. In contrast to other modeling 

methodologies such as statecharts or petri nets DEVS 

formalisms have not been widely accepted by the 

engineering community. This despite the fact that the DEVS 

theory offers well-founded formalisms for a wide variety of 

engineering problems. An overview of the formalisms that 

underpin DEVS theory is given by Zeigler et.al. in [1]. 

For engineering tasks, particularly the modeling and 

simulation of hybrid system dynamics [2], of variable-

structure systems [3,4] and discrete event control problems 

[5] are of greater interest.

We assume that the reason for the relatively marginal 

acceptance of DEVS theory in engineering is a result of the 

type of software tools available. Wainer’s [6] summary of 

current DEVS tools developments shows that these tools are 

based on high level programming language libraries for pure 

simulation tasks. 

In engineering science the use of SCEs has been 

growing rapidly for the last 15 years, while the utilization of 

high level programming languages is decreasing. Currently 

the best-known SCEs are Matlab/Simulink , Scilab/Scicos

and Octave .

SCEs provide a large number of predefined algorithms 

for numerical, graphical, statistical, symbolical and other 

computations for us in a single uniform environment 

interactively. In addition, the features of an SCE are easily 

extendable by integrating user-defined algorithms coded 

using a powerful integrated programming language. 

In terms of modeling and simulation, SCEs provide 

efficient methods for continuous system simulation. These 

methods can easily be combined with other computation 

methods, e.g. optimisations, fuzzy methods, etc.. For 

discrete event system simulation, support is limited. 

However for Matlab, the most popular SCE, there is a 

combined discrete event / continuous simulation toolbox 

prototype available (MatlabGPSS, 1996-1999 [7]). This 

toolbox is based on the process-oriented modeling 

paradigm. Matlab's graphical simulation environment 

Simulink also provides Stateflow (Stateflow*, 1997) – a 

toolbox with limited discrete event features based on 

statecharts. In the latest release (R14-SP3, fall 2005), 

another discrete event toolbox – SimEvents* – is provided. 

Since 1994 this research has focussed on the integration 

of DEVS formalisms within SCEs. As a first prototype, a 

function-oriented DEVS toolbox for Matlab4 was 

implemented. The key motivation was to employ the tool to 

introduce practical DEVS theory knowledge to engineering 

graduates. After Mathworks introduced an object-oriented 

extension for Matlab5's programming language in 1995 the 

work led to the implementation of an object-oriented DEVS 

toolbox for pure discrete event and static-structure DEVS 

networks. Subsequently we advanced the toolbox step by 

 Matlab/Simulink, Stateflow, SimEvents are trademarks of the 

Mathworks Inc. 

 Scilab/Scicos is a trademark of INRIA, France. 

 Octave is free software under GPL developed by J. W. Eaton and 

many others 
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step to structure dynamic networks and then to hybrid 

system dynamics using several practical projects.  

In addition to the educational application, toolbox 

prototypes have been utilized for fundamental research. The 

objective of the research is the implementation of an 

environment for modeling and simulation based on DEVS 

for variable-structure and combined discrete event/ 

continuous systems. Another aspect of the research is the 

implementation of process control using real-time 

synchronized DEVS models. In terms of the simulation of 

variable-structure hybrid systems we are working on the 

realization of a DEVS simulator using the advanced 

ordinary differential equation solvers from Matlab's ODE 

toolbox. Modeling formalisms and simulator algorithms for 

this domain are already published in [4,8]. The research on 

simulation model based process control is documented in 

[9,10]. 

Section two reviews the characteristics of SCEs, and 

section three describes the development of the 

MatlabDSDEVS-hybrid toolbox for modeling and 

simulating hybrid and variable-structure systems. Section 

four illustrates the potential to benefit from use with other 

Matlab toolboxes. The underlying modeling ideas and 

simulation algorithms are explained and the integration with 

optimisation algorithms and methods for parallel computing 

are discussed. 

2 CHARACTERISTICS OF SCEs 

SCEs include a large number of computing algorithms and 

can be easily improved by user-defined extensions 

implemented with the SCE specific programming language. 

These languages are largely array oriented and in some 

cases achieved using object-oriented features. They support 

dynamic data type binding and the syntax is very similar to 

mathematical notation. In contrast to classical programming 

languages (e.g. FORTRAN, C, C++), their primary aim is 

not to produce memory and runtime optimized code, but to 

support efficient tests and implementations of complex 

problems. In conjunction with the ability to execute user-

defined routines immediately and interactively, a SCE 

constitutes an excellent basis for rapid prototyping. 

Some SCEs such as Matlab provide additional features 

to produce more suitable code. One of these features is the 

compilation of SCE routines into faster intermediate code or 

into an executable stand-alone program. Another approach 

is the dynamic binding of external compiled code. This 

technique can also be used to couple SCEs with other 

applications. Figure 1 shows the general architecture of an 

SCE.

The core of an SCE is the parser, interpreter and routine 

module. Fundamental and runtime critical system routines 

are integrated as built-in functions (object code). Other 

system and user supplied routines are implemented as SCE- 

or intermediate code. The interpreter and the output together 

with the input module establish the user interface. 

Instructions can be processed in interactive mode by typing 

at the command line or in batch mode, if the parser and 

interpreter get their input from a file. Calculation results are 

printed, visualized on screen or written to file by the output 

module. The memory management provides a permanent 

global workspace and function related temporary local 

workspaces. A detailed description can be found in [11]. 
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Figure 1. Architecture of an SCE 

3 MatlabDSDEVS-HYBRID TOOLBOX 

3.1 Underlying Formal Concept 

Our modeling approach for modular hierarchical hybrid 

systems with structural variability at the coupled system 

level is based on the work in [2,3,4] and classical DEVS-

theory [1]. 

Prähofer [2] defined a hybrid atomic system by the tuple 

Ahybrid = (X, Y, S, f, cse, c, x&s, int, d, ta) 

where X, Y and S specify the set of inputs, outputs and states 

which may be continuous or discrete. Continuous dynamics 

are mapped by the rate of change function f and the output 

function c. Discrete events are internal, external and state 

events. State event conditions are defined using the state 

event condition function cse. External events and state events 

induce state transitions using the function x&s. Internal 

events activate the discrete output function d and also the 

state transition function int. After each discrete state 

transition internal events are re-scheduled by the time 

advance function ta. Local structural changes of the 

continuous dynamics can be modelled by structuring the 

dynamic description using logic variables inside the rate of 

change function f , the state event condition function cse and 

the continuous output function c.

Coupled structure static systems describe a static 

aggregation of atomic and/or coupled systems, and they 

permit the construction of hierarchical structures. If 

couplings are restricted to equivalence relations, a coupled 
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system consists of a set of subsystems and couplings. A 

coupled system is defined [2] by the tuple 

N = (XN, YN, D, {Md | d  D}, EIC, EOC, IC, select) 

where XN and YN designate the set of input and output 

quantities. D represents the name set of the dynamic 

subsystems, and Md represents a dynamic subsystem. EIC,

EOC and IC are the sets of continuous and event oriented 

coupling relations, subdivided into external input, external 

output and internal couplings. Finally, select is a special 

function to prioritize a subsystem in case of simultaneous 

internal events in different subsystems. 

 To allow structure variability, some extensions of a 

coupled system’s definition have been introduced. In the 

context of this work, structural changes at the coupled 

system level contain the creation, cloning, deletion and 

replacement of atomic or coupled subsystems, their 

movement between coupled systems and the dynamic 

changes of couplings between system components. 

Obviously, the subsystem set and the coupling relations 

should be interpreted as structure state. Hence, a structure

variable coupled system can have different structure states 

s0, s1, …, sn SN.

In order to store special structure dynamics information, 

e.g. the number of structure changes achieved, it is 

appropriate to introduce an additional set of structural state 

variables HN. In addition the select function can depend on 

the structure state. Consequently, the set of sequential 

structure states SN of a structure variable coupled system has 

the form: 

SN = HN  D  {Md | d  D}  EOC  EIC  IC  select

Structure changes in coupled systems can be induced by 

external, internal or state events. State events that affect 

structure can be caused by output events of subsystems or 

threshold events of: (i) continuous outputs of subsystems, 

(ii) continuous inputs of the coupled system or (iii) structure 

related states of the set HN.* They can be considered an 

analogy to event-oriented dynamics of atomic systems. 

Events influenced by the internal structure of a coupled 

system are planned by a time advance function ta, and their 

proposed structure changes are specified with a structure 

state transition function int. For the generation of structure 

related output events caused by internal events, a discrete 

output function d is introduced. For example, it is possible 

to send subsystems to other coupled systems. In order to 

avoid ambiguity in the coupled system as a result of 

instantaneous internal subsystem events and structure 

related internal events, the coupled system must 

* Structure changes depending on threshold events of continuous 

outputs of subsystems or continuous inputs of the coupled system 

are not supported by the toolbox currently.  

occasionally be included in the selection function select to 

sequence internal events. 

Structure state changes induced by external or state 

events are handled by a coupled system's transition function 

x&s., however it is unreasonable to make changes in the 

subsystem set or their coupling relations by the x&s function 

directly. This could lead to ambiguous event handling 

because external events could influence subcomponents and 

the structure state simultaneously. To avoid the definition of 

a further select function it is appropriate to convert changes 

in the subsystem sets and coupling relations with only the 

internal state transition function int. A coupled system's x&s

function should only modify structure related variables in 

the set HN, which trigger internal structure state events at the 

same time. Simultaneous internal events are controlled by 

the select function introduced above.

On the basis of the definition for coupled systems 

without structure variability, and the extensions introduced 

above, we find the following formal definition for coupled 

variable structure systems 

Ndyn = (XN, YN, {dN}, SN, x&s, int, d, ta)

where dN stands for the name of the coupled system. A 

detailed description of the modeling approach and its 

application on a real engineering system can be found in [4]. 

3.2 Modeling and Simulation Concept  

Computation algorithms for modular, hierachical DEVS 

models involving variable structure and hybrid system 

extensions were established in [1-3]. The key idea is to map 

a model specification to interacting program objects to 

reflect the system's components and their coupling relations. 

This approach is satisfactory for all complex structure 

changes during simulation runtime. However problems arise 

for the effective calculation of continuous model parts if 

they are distributed in different program objects and if non-

causal integration methods are used. Non-causal algorithms 

are implicit integration methods and predictor/corrector 

integration methods [1]. In addition numeric library 

algorithms are not yet directly usable because they, like 

Matlab's ODE solver toolbox, require model preparation 

using specific data structures. To solve this problems this 

research has lead to the introduction of new data structures 

and methods. 

Class Definitions 

Figure 2 shows the MatlabDSDEVS-hybrid toolbox 

class definitions and function libraries. It follows that 

complete class definitions contain some more variables and 

methods such as event chain management, statistical 

calculations or debugging. In addition some variable and 

method identifiers are renamed in figure 2 in order to be 

self-explanatory. Because many identifiers are known from 

DEVS/HPC/MMS'06 153 ISBN 1-56555-304-7



general DEVS theory in [1] this paper will only discuss 

essential extensions and modifications. 

MatlabDSDEVS hybrid GUI tools

states_HN

constructor, init, cse, delta_x_s, delta_int,

add_ / delete_IC, add_ / delete_EIC,

Matlab ODE solver library

root coordinator

t, tnext, tfinal, root_model_name, cSimObj, aSimObj, cSc

start, odewrapper

devs

atomic_devs

tlast, tnext, elapsed, sigma, x_ports, y_ports

component_name, parent_name,

z, i, *, x, s

coupled_devs

component_names, ic, ec, eoc, tnextC

add_ / delete_component,

enable_ / disable_component,

clone_component, replace_component,

add_ / delete_EOC, delete_Couplings,

add_ / delete_Xport, add_ / delete_Yport,

z, i, *, x, y, s

lamda_d, ta, select

user_specified_atomic_devs_model

s_d, s_c

constructor, init, delta_x_s, delta_int,

lamda_d, ta, f, cse, lamda_c

user_specified_coupled_devs_model
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Figure 2. Major Class Definitions and Function Libraries 

Class methods can be sub-divided into different groups: 

(i) Methods for creation and rearrangement of model 

structure in class coupled_devs, (ii) Message-based 

simulation methods z, i, *, y, x, s in class 

atomic_devs and coupled_devs and (iii) User-defined 

modeling methods corresponding to the formal DSDEVS-

hybrid specification in section 3.1. Most methods in (i) are 

self-explanatory. Only the replace_component method is 

highlighted as it supports the replacement of systems that 

belong to a system family - see [4]. 

In the toolbox the same base classes are used for 

modeling and simulation. The devs class acts as a base 

class. Classes for modeling have to inherit from the two 

classes atomic_devs and coupled_devs. Using this 

strategy, each instance of a user-defined class inherits its 

computation methods and attributes, i.e. the inherited parts 

correspond to the associated simulators or coordinators in 

accordance with the general theory in [1]. Because each 

instance of a user-defined class contains both a specific 

model part and an inherited computation engine, we term it 

a simulation object. 

Some Modeling Aspects 

In the Matlab-environment object-oriented programming 

is a difficult task as a result of Matlab’s rules for defining 

classes. A separate M-file for each class method has to be 

created, consequently class definitions may become quite 

complicated and difficult to follow. Accordingly some 

simple GUI tools have been implemented to support the 

modeling process. These GUI tools offer a model editor that 

automatically creates the file structure with appropriate 

function templates for atomic and coupled models. That 

means, for example in a hybrid atomic model, the following 

files are created: model_name.m (constructor), init.m, f.m, 

cse.m, lamda_c.m, delta_x_s.m, delta_int.m, lamda_d.m and

ta.m. These files will be edited by the modeler to specify the 

desired model behaviour. The following code shows the 

model specification of a hybrid atomic system describing a 

bouncing ball with one continuous and one discrete output 

port.

% model equations
% height:   q1(t0)=0;   dq1/dt = q2;
% velocity: q2(t0)=20;  dq2/dt = -9.81; 
% when event q1 == 0 then q2 = -0.95*q2

constructor in file bball.m 
function obj = bball(in)
%obj stores reference of this object 
obj.sigma = inf; %discrete states 
  %incarnate object
obj = class(obj,'bball',atomic_devs(in)); 
  %continuous states 
obj = set_c_state(obj,[0;20]);%[height; vel.] 
obj = set_mealy(obj,0);%isn't Mealy type
set(obj,'c_yports',1);%no. of cont. y ports 
set(obj,'d_yports',1);%no. of disc. y ports 

initialization fcn. in file init.m is empty 

rate of change function in file f.m
function dq = f(obj,t,q,x) 
  %t current time, x input vector 
  %q local continuous state vector 
dq = [q(2);-9.81] % der. of [height;velocity]

state events condition function in file cse.m 
function ret = cse(obj,t,q,x) 
  %continuous state value height
  %    | zero-crossing direction from + to - 
  %    |     | integration termination event 
  %    |     |  | 
ret = {q(1),-1 ,1}; 
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continuous output function in file lamda_c.m
function outp = lamda_c(obj,t,q,x) 
outp(1) = q(1); %current height cont. y port 

external and state event state transition 
function in file delta_x_s.m 
function obj = delta_ext(obj,x,event_idx) 
  % no external events 
switch event_idx  %handle state event actions 
case 1
  q   = get_c_state(obj); 
  obj = set_c_state(obj,[0; -0.95*q(2)]); 
end
obj.sigma = 0; %activate internal event

intern. state trans. fcn. in file delta_int.m
function obj = delta_int(obj) 
obj.sigma = inf; 

discrete output function in file lamda_d.m
function obj = lamda_d(obj) 
obj = set_d_output(obj,1,'down'); 

time advance function in file ta.m
function t = ta(obj) 
t = obj.sigma; 

Discrete event–oriented model parts are specified in a 

similar way to other DEVS modeling and simulation 

systems. Models with continuous parts have to be 

characterized as of Moore or Mealy type in the constructor. 

The continuous system dynamic is described by a vectorial 

differential equation in the rate of change function. State 

event conditions are defined in the cse function using three 

parameters. The first parameter is the zero-crossing variable, 

the second determines the zero-crossing direction and the 

third specifies if integration has to terminate or not. State 

event actions are handled in the delta_x_s function. 

Different state events are distinguished by evaluating the 

input parameter event_idx. In this case we have only one 

state event that sets the state variable height (q1) to 0 and 

determines the new value of the state variable velocity (q2).
Additionally, in this case, an internal state event is triggered. 

Interface to Matlab ODE Solver Toolbox 

Matlab provides a powerful set of ODE solver methods 

to control continuous integration, detection and the 

localization of state events. To take advantage of this 

methods, the continuous model descriptions (functions: f.m,

cse.m, lamda_c.m) and continuous state vectors of all 

components need to be available in a closed form. That 

means all continuous model functions have to be 

encapsulated in just one wrapper function and references to 

all continuous state variables have to be concentrated in just 

one global continuous state vector. Data structures and 

methods necessary to perform this task are provided by the 

root_coordinator. The closed model form is represented 

by the odewrapper method using the three vectors cSc,

aSimObj, cSimObj. The vector cSc stores references to 

all continuous state variables, while references to atomic 

and coupled simulation objects are stored in the vectors 

aSimObj and cSimObj. Collecting this information takes 

place during the model generation and initialisation phase 

and after each structure change in the simulation phase. 

Model Generation and Initialisation Phase 

Major aspects of message passing during the model 

generation and simulation phases are represented in figure 3.  

ei as abbreviation for event idx

Matlab ODE
solver

root
coordinator

lamda_d

delta_int

select  ta

start(root_model_name,tfinal)

[t,tnext],cSc,options,

aSimObj,cSimObj)

y(t,Y) y(t,Y)
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simulation object

coupled
simulation object
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atomic
simulation object

[t,q,te,qe,ei]=solver(’odewrapper’,

delta_x_s(X,[]) delta_x_s(X,ei)
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Figure 3. Message Passing During Model Execution 

Model generation and initialisation is controlled by the 

start method of the root_coordinator object. Initially 

the root_coordinator configures the modular, 

hierarchical computing model structure. It calls the 

constructor of the outermost coupled simulation object, 

creates its subcomponents and their couplings and starts a 

recursive constructor call for all other subcomponents.

Subsequently all objects are initialized by a recursive i

message. Each object's i method calls the component 

specific ta and init methods to determine the object's next 

internal event time and to initialise its state and statistical 

variables. In contrast to classical DEVS approaches, the 

coupled simulation objects may contain structure related 

state variables in states_HN. They also store two next 

internal event times: (i) tnext for the next internal event of 
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a subcomponent and (ii) tnextC for the next internal 

structure event. The next event time sent to the super-

ordinated simulation object is the minimum of these two 

values.

In the next step the start method initiates the 

configuration of the special data structures cSimObj,

aSimObj and cSc. This is achieved by traversing the 

modular computing model multiple times using a recursive 

z message. As a consequence, the vector cSc stores 

references to all continuous state variables of atomic 

simulation objects. Also the vectors aSimObj and cSimObj

store references to the atomic and coupled simulation 

objects engaged in defining or evaluating continuous 

variables.

A second outcome is the creation of direct references 

between the continuous input and output variables where 

input variables obtain references to the output variables. 

After completion the algebraic relations are sorted. To 

achieve this the references in the vector aSimObj are 

initially arranged with respect to atomic simulation objects 

of types Moore-Automata ( c: Sc  Yc) and Mealy-

Automata ( c: Xc  Sc  Yc). In a second sorting step the 

references to objects of type Mealy-Automata are arranged 

with respect to their dependent relations. In the same way 

the three vectors cSimObj, aSimObj and cSc are

reconfigured during the simulation phase if structural 

changes in the modular computing model have occurred. In 

essence it is possible to generate multiple replicas of the 

three vectors. This is of advantage, if there are no 

interrelations between some continuous state variables and 

if they need to be calculated using different integration 

methods or numerical step widths. 

Simulation Phase 

After model generation and initialisation the start

method enters the simulation loop. If the current simulation 

time t is smaller than the next event time tnext a 

continuous simulation phase proceeds until the next event 

time. A solver method from the Matlab ODE toolbox is 

called and the odewrapper method is passed as a callback 

function. In addition the reference vectors cSc, aSimObj,

cSimObj and a solver specific option structure are passed. 

[t,q,te,qe,ei] = solver('odewrapper',...
       [t,tnext],cSc,options,aSimObj,cSimObj) 

In each integration step the solver calls the odewrapper

method which in turn sends a lamda_c and a f message to 

all registered atomic simulation objects to calculate their 

continuous outputs and derivatives. After each integration 

step it also sends a cse message to all registered atomic 

simulation objects to check their continuous state event 

conditions. The values returned by the solver after an 

integration phase delivers the continuous trajectories and 

event information subject to continuous state values. 

When a state event has occurred the continuous 

simulation phase is interrupted. A s(t,obj,ei) message 

containing the state event's simulation object reference 

(obj) and the state event index (ei) is then forwarded 

along the edges of the modular computing model to the 

referenced simulation object. That action manages the state 

event by calling its specific delta_x_s method and it re-

schedules its next internal event time by calling its ta

method. It follows that all coupled simulation objects along 

the s message path also re-schedule their next internal event 

time. The root_coordinator can now start a new 

continuous or a discrete simulation phase. 

A discrete simulation phase is initiated when the current 

simulation time reaches the next event time by sending an *

message to the outermost simulation object. The cycle of a 

discrete simulation phase is very similar to the classical 

DEVS simulation approach in [1] so, for clarity, we will 

only discuss some modifications. 

(i) Coupled simulation objects transfer an x message 

dependent on the current structure state to the corresponding 

input ports of their subobjects and subsequently execute 

their own state transition function delta_x_s.

(ii) Coupled simulation objects pass an * message to the 

subordinated simulation object planned for the next internal 

event and/or call their specific structure state transition 

function delta_int (if the current simulation time is equal 

to their time value in the tnextC variable). Simultaneous 

internal events inclusive structure events are prioritised by 

the object specific select method. 

(iii) When structural changes occur, a recursive z and i

message is sent to the outermost simulation object to 

reconfigure the reference vectors of root_coordinator

and to initialize recently inserted simulation objects. 

4 COMBINATION WITH OTHER 

COMPUTING METHODS 

The MatlabDSDEVS-hybrid toolbox is fully compatible 

with the Matlab-environment and is therefore able to 

interact with other computing methods. This section 

identifies the benefits of integration and reviews how 

advantage can be gained from other methods. It is not 

intended to provide a detailed discussion of modeling and 

simulation. For an example of a hybrid and variable-

structure engineering application using the 

MatlabDSDEVS-hybrid toolbox see [4]. 

Two common problems in simulation experiments are 

monte carlo studies for stochastic systems and parameter 

optimisation. As a consequence experimental techniques are 

provided in most commercial simulation packages. 

However, such experiments are often runtime heavy. 

Although such experiments offer significant potential for 

parallelisation with an almost linear speed up, commercial 

simulation packages cannot perform experiments using 
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parallel computing methods. In contrast special Matlab 

toolboxes provide user-friendly distributed and parallel 

computing methods. The first of these was the DP-toolbox 

published in 1995 [12]*.

The following example provides realistic demonstration 

of how computation methods can be easily combined. The 

example is taken from a series on comparisons of 

simulation software featured in the journal Simulation News 

Europe (SNE) [15]. The challenge addresses the modeling, 

simulation and optimisation of restaurant business dynamics 

and includes an opportunity for dynamic structure modeling. 

Although not an engineering problem, it provides an 

effective way of testing and evaluating the performance and 

features of the MatlabDSDEVS-hybrid toolbox. 

The simulation model represents the dynamics of an area 

with a fixed number of people and a dynamically changing 

number of restaurants. A restaurant closes or opens 

depending on its profit in a certain time span and some 

probability values. A restaurant’s profit is influenced by the 

tax rate considerably. One experiment is to maximize the 

government tax income by varying the tax rate for the 

restaurants. The system has to be simulated for 5 years and 

50 simulation runs are necessary to achieve reliable average 

results.

Initially a classical solution for a single computer is 

developed. It contains of three parts: (i) the simulation 

model MODEL, (ii) the optimisation objective function 

objFcn and (iii) the interactive experiment execution 

commands. The following code shows the complete 

implementation of the objective function and all interactive 

execution commands.  

objective function in file objFcn.m 
1 value = function objFcn(taxRate) 
2 global seedMat tfinal 
3 taxIncome = zeros(50,1); 
4  for i=1:50 
5    taxIncome(i)=devs_start('MODEL',tfinal,…

                     seedMat(i,:),taxRate); 
6 value = (-1)*mean(taxIncome); 

interactive experiment execution 
>>global seedMat tfinal 
>>tfinal = 5*365; 
>>seedMat= [1:50;51:100;101:150;151:200]'; 
>>[taxRate,meanTaxIncome]=fminbnd(@objFcn,0)

The experiment execution starts with a declaration of two 

global variables. The tfinal variable is initialized with the 

simulation final time and the seedMat variable is defined as 

a matrix with 50 rows and four columns. Each row stores 

the random number generator-IDs for one simulation run. 

Finally, one of Matlab's numerical optimisation algorithms 

is called and the objective function pointer @obj_fcn and a 

* Since 2004 MathWorks provides an own toolbox, called 

Distributed Computing Toolbox [13]. 

start value 0 for the  optimisation parameter taxRate are 

passed. The optimisation method delivers the optimal tax 

rate and average tax income for the optimal parameter as 

result values. 

Objective function takes the current optimisation 

parameter value in taxRate as input and delivers the 

objective function value as output. The global variables 

seedMat and tfinal are declared. In the third line a result 

vector taxIncome with 50 elements is initialized. 

Subsequently 50 simulation runs are performed in a for-loop 

(line 4 & 5). The MatlabDSDEVS-hybrids's function 

devs_start generates a root_coordinator object, calls 

its start method and passes the root_model_name 

'MODEL', the tfinal value and one row of the matrix 

seedMat together with the current tax rate value as 

simulation model input parameters. Each simulation run 

delivers the accumulated tax income as output value. In the 

sixth line, the mathematical objective function is coded. It 

determines the average tax income and multiplies it by 

minus one because the numerical optimisation method 

implements a minimisation algorithm.   

As stated such experiments are often runtime heavy and 

interactive program execution in SCEs is slower than the 

execution speed of compiled program code. However, we 

argue that such problems can be conveniently solved using 

parallel computing methods within SCEs. The following 

code shows the complete parallel implementation of the 

objective function using the DP-toolbox [12]. The 

interactive execution commands are the same as for the 

sequential program above. 

parallel objective function in file objFcn.m 
1 value = function objFcn(taxRate) 
2   global seedMat tfinal 
3   taxIncome = dpfeval(@devs_start,'MODEL',…

      tfinal,seedMat,taxRate); 
4   value = (-1)*mean(taxIncome); 

The heart of the parallel objective function implementation 

is the vectorial RPC-function (Remote Procedure Call) 

dpfeval, introduced theoretically in [14]. It initiates 

parallel simulation runs using function pointer 

@devs_start. All other function arguments are passed to 

the devs_start function and evaluated as described by the 

non-parallel implementation. The number of programs 

executed in parallel depends on the number of available 

processors and the possible parallelisation degree of the 

problem. Both conditions are examined by the dpfeval

function. In this case the extent of problem dependent 

parallelisation is determined by the function argument 

seedMat. This is the only non-scalar parameter. Therefore, 

its dimension is implicitly used as maximal parallelisation 

limit. The value of the result vector taxIncome is also 

defined implicitly. Runtime experiments on a nine-node 

computer cluster proved the prediction of approximate 
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linear speedup. This is not surprising as the ratio of 

communication to computation time is very small. 

Another significant example for the combination of 

computing methods in SCEs is published in [9]. In this 

application a robot cell is controlled using a simulation 

model nand input data is generated from camera signals 

processed by Matlab’s image processing algorithms. 

5 CONCLUSION 

We analyzed why the DEVS theory is relatively unknown in 

the broad engineering community and recognized  the 

absence of a DEVS-based software implementation for 

engineering tools as a key reason. The development of a 

DEVS-based toolbox for hybrid and variable structure 

systems in the Matlab environment provides small 

contribution to the solution. The toolbox is still a 

development prototype consequently it is not yet an 

alternative for solving standard engineering problems. 

Nevertheless it is a suitable tool for teaching and research. 

From a research perspective the DEVS-based toolbox's 

underlying modeling approach supports all known concepts 

of structure variability at the coupled system level and its 

simulation algorithms allow the computation of hybrid 

variable structure systems using Matlab’s high performance 

integration methods. In addition the work has indicated that 

there are benefits in its use with other SCE computational 

methods such as optimisation and parallel computing. 

 The research has proved that the realisation of a DEVS 

toolbox in the Matlab environment is possible and useful. 

Currently implementation is not a trivial task as some 

programming features differ markedly from the general 

object oriented programming approach. A new release of an 

improved class concept has been announced and this 

development will be investigated in terms of its suitability 

for realising our DEVS approach. 

Currently there seems to be no way to implement a 

toolbox for variable structure systems within the Matlab 

Simulink/Stateflow simulation environment. The next step 

in the research is to pursue this problem and develop a 

means to realise a static-structure DEVS toolbox in this 

graphical simulation environment. 
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Table 1: Results after 5 years 

Figure 1: Mean tax income 
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Simulator: The MatlabDEVS Toolbox is a DEVS 
Simulator realized as an object oriented Matlab Tool-
box. With the usage of Matlab the simulator shares all 
advantages and disadvantages of this well known and 
widely used SCE, a quite large basis of toolboxes, ea-
sy programming but also performance limitations be-
cause of the interpretive work. The toolbox imple-
ments to the greatest possible extent the Abstract Si-
mulator introduced by Zeigler [Theory of Modelling and Simulation. 

Wiley-Interscience, Academic Press, 2000]. It was extended by port 
definitions and the capabilities to simulate dynamic 
structures after the formalism introduced by Pawletta 
et.al. [A DEVS Based Approach for Modeling and Simulation of Hybrid 

Variable Structure Systems Lect. Notes in Control & Informat. Sciences No. 279, 
pages 107-129, Springer] 

Model: The model is implemented as a structure va-

riable coupled DEVS model MODEL. This coupled mo-
del contains the following atomic models:  

- two generators gen_people gen_week 
o one for the people going out to eat 
o another to force the calculation at the end of a 

week 
- a model switch to choose a restaurant for a per-

son from the list of possibilities 
- a varying number of restaurant models (after ini-

tialisation 30, at the end of each week the number 
can change) 

Figure 1 shows a graphical representation of the mo-
del MODEL after some weeks of simulation. Through 
the usage of a Dynamic Structure instead of an ordi-
nary DEVS model the Real World structure is always 
mapped in a one to one manner. The simulator needs 
ca 2300s to simulate 10 years, with a dependency on 
the number of restaurants. 

 
Figure 2 Representation of MODEL 

Task a: Time Domain Analysis: The warm up 

period is finished after ca 30 weeks. Figure 2 shows 
the development of the mean number of restaurants 

over a simulation time of 10 years and 50 runs. Table 
1 shows the result after 5 years. 

0

5

10

15

20

25

30

35

1 22 43 64 85 106 127 148 169 190 211 232 253 274 295 316 337 358 379 400 421 442 463 484 505

 

Figure 3: Development of mean number of         
restaurant in 10 year simulation time 

Mean 4.24 Min 3.42 

Variance 0.026 Max 4.2 

Deviation 0.129   

 

Task b: Tax Income Maximisation: It is possible to 
use the built-in Matlab optimisation functionality. In 
this case the fminbnd method is suitable. It deter-
mined the best tax rate at 39.23%. Figure 3 shows the 
mean tax income in the tax range from 1% to 99% 

 
 
 
 
 
 
 
 
 
 
 

 
Task c: Restaurants’ Revenue Analysis: The simu-
lation with a variable parameter k didn’t have an obvi-
ous maximum. The results, shown in table 1 and fig 4, 
have two very close maxima with a difference of only 
2.2%. 

 

 

 

 

 

 

 

 

C16 Classification: Dynamic Structure DEVS imple-
mented as a Matlab Toolbox
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Table 2: Restaurant re-
venues with variable k 
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