
Simulation Based Parameter and

Structure Optimisation of Discrete Event

Systems

Olaf Hagendorf

A thesis submitted in partial fulfilment of the

requirements of Liverpool John Moores University

for the degree of Doctor of Philosophy

May 2009

Abstract

Modelling and simulation based on discrete event systems is used routinely in research and

industrial applications e.g. in the design, planning and real time control of manufacturing

systems. An advanced, but now well established, technique is modelling and simulation with

integrated parameter optimisation to improve system performance. In using these established

approaches model structure is considered to be fixed as the relationships between model

elements are defined during model development. As model performance is optimised it may

be necessary to redesign the model structure, normally carried out manually by an analyst

using previous simulation results, observations or decisions based on previous experience.

With increasingly complex, flexible and reconfigurable discrete event systems such

as manufacturing systems, modelling and simulation methods are becoming more

challenging. As the number of possible structure variants increases the potential benefit of

automatic model structure optimisation becomes significant. The research reported in this

thesis details a new approach providing automatic reconfiguration and optimisation of both

model structure and model parameters. This is achieved through a combination of

simulation, optimisation and model management methods. Simulation is used to determine

current model performance and an optimisation method, assisted by model management,

searches for an optimal solution with repeated model parameter and model structure changes.

In contrast to conventional modelling and simulation methods this approach employs a meta-

modelling method. It defines a set of model structure variants and includes a model base

with pre-defined basic components. With this meta-modelling method the model

management can determine specific model structures and create executable models.

To validate the simulation based optimisation approach a prototype was

implemented. Several variants of a Photofinishing Laboratory part were modelled. In

different experiments the introduced approach and the prototype were validated.

This research project extends the work of Pawletta et al. [35]...[46], supports other

projects of the Research Group Computational Engineering and Automation at Hochschule

Wismar University of Applied Sciences Technology, Business and Design, Germany and

follows another collaborative LJMU School of Engineering / Wismar research project in this

field [23] [24].

Acknowledgements

It seems impossible to reach the end of this long process without the support from many

others, who have helped me so much along the way.

 First of all, I thank my advisor, Thorsten Pawletta at Hochschule Wismar University

of Applied Sciences Technology, Business and Design, for his mentoring and support on my

research in the PhD program. His insight to scientific research and the way to carry it out

have greatly inspired me and will continue to guide me through my career path.

 I would like to express my gratitude to my director of studies Dr. Gary. J. Colquhoun

at Liverpool John Moores University for his guidance, help and support throughout the

course of study within the last years. His wisdom, experience and knowledge, especially of

administrative mechanisms, burdens and resources within the university have proved

extremely beneficial for my work.

 I thank my colleagues in the CEA Research Group: Prof. Dr. Peter Dünow,

Prof. Dr. Sven Pawletta, Dipl.-Ing. (FH) Christina Deatcu, M.Eng. Stefan Behrendt, M.Eng.

Christian Fritzsche, M.Eng. Gunnar Maletzki, Dipl.-Ing. (FH) Tobias Pingel and M.Eng.

Christian Stenzel; and previous group members: Dr.-Ing René Fink and Dipl.-Ing. (FH)

Martin Kremp. We have had a good time together.

 I would like to sincerely thank my family, especially my daughter Pia, as well as any

friends not mentioned above, for all their support during the writing of this thesis.

 Finally, I would like to thank for the support given by the School of Engineering of

Liverpool John Moores University.

[i]

Contents

CHAPTER 1 INTRODUCTION ... 1

1.1 PREAMBLE .. 1

1.2 RATIONAL FOR SIMULATION BASED OPTIMISATION.. 3

1.2.1 A Context for Simulation in Manufacturing Systems .. 5

1.2.2 Aims and Objectives .. 7

1.2.3 Cost Reduction with the Aid of Simulation based Optimisation .. 8

1.3 METHODOLOGY AND STRUCTURE OF THE RESEARCH.. 9

1.3.1 Simulation based Optimisation ... 10

1.3.2 Modelling and Simulation ... 11

1.3.3 Model Management and Model Generation .. 12

1.3.4 Implementation and Employment ... 13

1.4 RESEARCH OUTCOMES .. 14

1.5 CONTRIBUTION TO KNOWLEDGE .. 15

1.6 CONTENTS OF THIS THESIS .. 16

CHAPTER 2 SIMULATION BASED OPTIMISATION .. 18

2.1 INTRODUCTION .. 19

2.2 PARAMETER OPTIMISATION .. 21

2.3 PARAMETER AND STRUCTURE OPTIMISATION ... 23

CHAPTER 3 DISCRETE EVENT SYSTEM SPECIFICATION AND SIMULATION 29

3.1 INTRODUCTION .. 29

3.2 DISCRETE EVENT SYSTEM SPECIFICATION ... 32

3.2.1 Classic DEVS Modelling ... 32

3.2.2 Formal Concept of Classic DEVS Modelling ... 36

3.2.3 Classic DEVS Simulation .. 38

[ii]

3.3 DEVS EXTENSIONS ... 45

3.3.1 DEVS with Ports ... 46

3.3.2 Parallel DEVS ... 48

3.3.3 Dynamic Structure DEVS ... 51

3.4 EXTENDED DYNAMIC STRUCTURE DEVS ... 56

3.4.1 Formal Concept of EDSDEVS Modelling .. 57

3.4.2 EDSDEV Simulation .. 65

CHAPTER 4 MODEL MANAGEMENT – MODEL SET SPECIFICATION AND ORGANISATION 70

4.1 CLASSIC SYSTEM ENTITY STRUCTURE/MODEL BASE FRAMEWORK .. 71

4.2 EXTENSION OF THE SYSTEM ENTITY STRUCTURE/MODEL BASE FRAMEWORK 75

CHAPTER 5 A FRAMEWORK FOR MODELLING, SIMULATION AND OPTIMISATION 79

5.1 GENERAL FRAMEWORK STRUCTURE ... 79

5.2 INTERFACE: OPTIMISATION MODULE – MODEL MANAGEMENT MODULE ... 82

5.3 INTERFACE: MODEL MANAGEMENT MODULE – MODELLING AND SIMULATION MODULE 86

5.4 INTERFACE: MODELLING AND SIMULATION MODULE – OPTIMISATION MODULE 87

5.5 ALGORITHMIC SUMMARY OF THE FRAMEWORK .. 88

5.6 DEFINITION OF A MODEL SET WITH XML SES/MB ... 90

CHAPTER 6 PARAMETER AND STRUCTURE OPTIMISATION OF MANUFACTURING SYSTEMS 94

6.1 MANUFACTURING SYSTEMS.. 94

6.2 MODELLING AND SIMULATION OF MANUFACTURING SYSTEMS .. 96

6.2.1 Simulation Model Level of Detail ... 96

6.2.2 Fundamental Components .. 97

6.2.3 Measures of Performance ... 100

6.2.4 Analysis Issues ... 101

6.3 INTRODUCTION TO THE PHOTOFINISHING INDUSTRY .. 101

6.4 PHOTOFINISHING LAB – AN OPTIMISATION APPLICATION ... 104

6.4.1 Problem Description .. 104

[iii]

6.4.2 Implementation Details ... 107

6.4.3 Results ... 115

CHAPTER 7 CONCLUSIONS AND FURTHER WORK ... 123

7.1 CONCLUSIONS .. 123

7.2 SUGGESTIONS FOR FURTHER WORK .. 126

APPENDIX A. REFERENCES .. 128

APPENDIX B. CODING EXAMPLES ... 132

APPENDIX C. PHOTOFINISHING MACHINES .. 161

APPENDIX D. PUBLICATIONS IN THE COURSE OF THIS RESEARCH ... 163

[iv]

List of Figures

Figure 1.1 Modelling and simulation of Manufacturing Systems (source [19]) 6

Figure 1.2 Research area structure 10

Figure 1.3 Structure of the main sections of the thesis 17

Figure 2.1 An example of an conventional simulation experiment 19

Figure 2.2 Classification of optimisation methods 21

Figure 2.3 An example of a simulation based parameter optimisation experiment 22

Figure 2.4 Components and steps of a simulation based parameter and structure optimisation

experiment 25

Figure 2.5 Schematic diagram of a simulation based parameter and structure optimisation

framework 27

Figure 3.1 A real-world process or system and its model (source [1]) 30

Figure 3.2 Simulation model taxonomy (source [48]) 31

Figure 3.3 DEVS model example 33

Figure 3.4 Dynamic behaviour of an atomic model 37

Figure 3.5 Coupled model elements 38

Figure 3.6 An example of a Classic DEVS model with associated abstract simulator elements

 39

Figure 3.7 An example of a Classic DEVS model with associated abstract simulator

elements, messages and model function calls during initialisation and simulation phases 42

Figure 3.8 Models with multiple input and output ports 47

Figure 3.9 Dynamic behaviour of an atomic PDEVS model 50

Figure 3.10 Examples of structure changes at coupled model level 52

Figure 3.11 Dynamic behaviour of a coupled DSDEVS model 55

[v]

Figure 3.12 Examples of sequential structure changes of a coupled model 55

Figure 3.13 Dynamic behaviour of an atomic EDSDEVS model 60

Figure 3.14 Dynamic behaviour of a coupled EDSDEVS model 64

Figure 3.15 An EDSDEVS model example with associated abstract simulator elements,

messages and model function calls during initialisation phase 67

Figure 3.16 An EDSDEVS model example with associated abstract simulator elements,

messages and model function calls during simulation phase 68

Figure 4.1 SES/MB formalism based model generation 72

Figure 4.2 A SES example 72

Figure 4.3 Detailed pruning and model generation example 75

Figure 4.4 Comparison original pruning – new pruning principle 77

Figure 4.5 SES example with a structure condition 78

Figure 5.1 Structure of the simulation based optimisation framework 80

Figure 5.2 Transformation SES → set XS and set DS 83

Figure 5.3 Transformation XSi + SES → PES 85

Figure 5.4 UML Diagram of SES/MB XML Schema 92

Figure 5.5 An SES/MB XML example – SES tree with both valid and invalid model

structure variants 93

Figure 6.1 General assembly system layout (source [5]) 95

Figure 6.2 Model detail during model validation (source [51]) 97

Figure 6.3 General product flows of a photofinishing lab 103

Figure 6.4 Product flow of the considered example 104

Figure 6.5 Model parameter and SES of the application 109

Figure 6.6 PES of 132th variant 110

Figure 6.7 Model structure of 132th variant 111

Figure 6.8 A sequence diagram section of one simulation run 112

Figure 6.9 Fitness values of all variants with the optimum at X132 119

[vi]

Figure 6.10 Individual fitness, best and average fitness of generations of one GA run 121

Figure B.1 A coupled model example 159

Figure C.1 Splicer (left) and URS 161

Figure C.2 DigiURS (left) and High-speed film scanner 161

Figure C.3 Analogue (left) and digital printer 162

Figure C.4 Manual (left) and automatic cutter 162

[vii]

List of Coding Examples

Listing 6.1 Matlab code section with GA initialisation and execution 115

Listing B.1 Pseudo code skeleton of an atomic Classic DEVS model 132

Listing B.2 Pseudo code skeleton of a coupled Classic DEVS model 133

Listing B.3 Pseudo code of a Classic DEVS root coordinator ... 134

Listing B.4 Pseudo code of a Classic DEVS simulator .. 135

Listing B.5 Pseudo code of a Classic DEVS coordinator .. 137

Listing B.6 Pseudo code skeleton of an atomic Classic DEVS with Ports model 138

Listing B.7 Pseudo code of a Classic DEVS with Ports simulator 139

Listing B.8 Pseudo code of a Classic DEVS with Ports coordinator 140

Listing B.9 Pseudo code skeleton of an atomic PDEVS model ... 142

Listing B.10 Pseudo code of a PDEVS simulator .. 143

Listing B.11 Pseudo code skeleton of an atomic EDSDEVS model 145

Listing B.12 Pseudo code skeleton of a coupled EDSDEVS model 147

Listing B.13 Pseudo code of an EDSDEVS simulator ... 149

Listing B.14 Pseudo code of an EDSDEVS coordinator ... 153

Listing B.15 DTD describing the structure of SES/MB XML ... 156

Listing B.16 SES/MB XML example – XML file ... 158

Listing B.17 Two atomic model XML files ... 159

Listing B.18 Coupled model XML file .. 159

Listing B.19 A general GA algorithm .. 160

[viii]

List of Tables

Table 6.1 Fundamental components of manufacturing systems (source [51]) 98

Table 6.2 Order handling times .. 105

Table 6.3 Production costs ... 105

Table 6.4 Simulation results of all model structure and parameter variants with resulting

production time, costs and fitness .. 118

Table 6.5 Limits of fitness function parameters and results ... 119

Table 6.6 Optimal and near optimal solutions ... 120

Table 6.7 Results of 50 optimisation experiments ... 120

Chapter 1. Introduction

[1]

Chapter 1

Introduction

1.1 Preamble

Often it is of interest to study a system to understand the relations between its components or

to predict how a system is responsive to changes. Sometimes it is possible to directly

experiment with the system. However, this is not always possible e.g. due to costs when a

manufacturing system has to be stopped, changed or extended. Often the system even does

not yet exit. A model, defined as a representation of the system in order to investigate it, can

solve this dilemma. Generally, it is sufficiently to abstract the system with a view to the

analysing the issues under investigation. In terms of modelling and simulation this abstract is

named the simulation model.

 A system can be classified into discrete or continuous: “Few systems in practice are

wholly discrete or continuous; but since one type of change predominates for most systems,

it will usually be possible to classify a system as being either discrete or continuous.” [25].

The analysing issue also plays a decisive role. An analogue printer in a photofinishing lab is

a typical example. It is possible to analyse the machine at a very low level with the

continuous movements of machine components and analogue film material when the

objective is to optimise the component interaction. Another, discrete viewpoint could be the

number of pictures and the length of photographic paper handled in a specific amount of

time when the objective is to plan throughput and the necessary staff.

Chapter 1. Introduction

[2]

 Simulation models as a particular type of mathematical system models can be

classified too, e.g. as being static or dynamic, deterministic or stochastic, and discrete or

continuous. A static simulation model represents a system at a particular time whereas a

dynamic simulation model represents system changes over time. A deterministic simulation

model does not contain any random variables whereas a stochastic simulation model has in

minimum one random variable as an input. Discrete and continuous models can be discrete

and continuous systems as described above. One specific type of discrete systems is the

discrete event system (DES) where state variables change at discrete points in time during

simulation.

One of the most important applications of modelling and simulation based on

discrete event systems are manufacturing systems. These systems have been modelled since

the origins of manufacturing. From the civilisations of the ancient world to the first

industries through to current high-technology production, managers and engineers have

thought about the complexities of manufacturing systems [27]. As computers developed they

became an increasing important means of modelling and simulation. The expanding

capability of computing systems and the increasing demands of engineers and managers

planning, implementing and maintaining manufacturing systems have been pushing the

boundaries of modelling and simulation research. With the decreasing costs of computing

systems, modelling and simulation applications have become an integral part of industrial

practice.

Simulation has been used widely and successfully to support the design of new

production facilities and material handling systems and to evaluate variants of existing

systems. Applications for production, warehouse-management and material handling control

can incorporate simulation techniques to evaluate staffing and operating rules, changes of

material handling and system layout or the effect of capital investment. An important

advantage in using modelling and simulation techniques is the possibility of evaluating

changes before making investment decisions and without disturbing the existing system.

Chapter 1. Introduction

[3]

Recently, with increasing globalisation, the competition conditions for

manufacturing have been changing fundamentally. A key shift is the need to move from

increasing product quantity to a combination of increasing quantity and a drive for

manufacturing flexibility. As the number and the speed of product innovations increase, the

time to market and the marketing life of a product decreases. As a consequence

manufacturers have to extend the general objective “cost saving” to “time and cost saving”

[29]. To support this market trend manufacturing systems will increase in complexity with

increasing automation, flexibility and degree of computerisation. This also implies increased

requirements for production planning. For many companies modelling and simulation

together with a combined optimisation is a strategy to fulfil these requirements. Because of

the increasing production planning requirements modelling and simulation environments

have to meet these increasing needs.

1.2 Rational for Simulation based Optimisation

Successful systems have been stable over a long time, solved real problems and

demonstrated return-on-investment (ROI). New, identical copies of such systems are not

risky because they are proved. However, it is not possible to guarantee that innovative

system changes will ever generate their ROI. Simulation enables system analysis with time

and space compression, provides a robust validation mechanism under realistic conditions

and can reduce the risk of implementing new systems. Validation is achieved using a series

of qualitative and quantitative experiments with changes of system variables and structures.

Pilot projects using real systems with reduced size and/or implemented in a low-risk

laboratory environment, can provide analysis results. Such real experiments take time and

cost. Hence, a large number of alternatives imply an initial pre-selection. Modelling and

simulation can lower the number of alternatives analysed in real experiments as the final step

[8].

Chapter 1. Introduction

[4]

One reason for system changes is the search for a better overall performance. Under

the focus of simulation this means the search for a set of model specifications e.g. input

parameters and/or structural assumptions, that leads to an optimal model performance. For

all possible variants the range of parameter values and the number of parameter

combinations may be too large to implement and simulate manually. A method to automate

this is needed. The example described in chapter 6 demonstrates this problem. Even though

only a fraction of the complete manufacturing system is modelled the number of possible

variants is overwhelming.

Many real word systems are too complex to be expressed by mathematical models.

But mathematical models are a precondition of optimisation methods. This leads to a

contradiction [2]:

• Pure optimisation models are not able to handle the complexity of both system

behaviour and structure.

• Pure simulation cannot find an optimal solution.

⇒ Simulation based optimisation resolves this contradiction through a combination

of both methods.

Research and application of simulation based optimisation has seen a significant

development in recent years. A Google search on ‘Simulation Optimisation’ in 2006 found

ca. 4.000 entries [2] in comparison to a search in 2008 with almost 80.000 entries among

others articles, conference presentations, books and software.

 Until a relative short time ago, the simulation community was resistant to the use of

optimisation tools. Optimisation models seem to over-simplify the real problem and it was

not always clear why a certain solution was the best [8]. The situation changed at the end of

the 90s. An ACM Digital Library [57] search on ‘Simulation Optimization’ found 16.000

articles between 1960 and 2008. A significant number (15.500) of articles has been

published during the last 20 years and only 500 articles in the 28 years before. Two reasons

Chapter 1. Introduction

[5]

for this change may be the advances in modelling and simulation methods and increase of

computing power over the last two decades that has enabled simulation based optimisation.

 Currently there are several algorithms to change simulation model parameters to

establish solutions with good performance and methods to compare different solutions in

terms of quality. Many commercially available discrete event or Monte Carlo simulation

software packages contain optimisation methods to search for optimal input and system

parameter values [3] e.g. WITNESS with the optional optimisation packages WITNESS

Optimizer, ARENA with the additional package OptQuest for Arena [7], SIMPROCESS and

SIMUL8 with OptQuest optimisation technology [8].

1.2.1 A Context for Simulation in Manufacturing Systems

The application of manufacturing simulation focuses on modelling the behaviour and the

structure of manufacturing organisations, processes and systems. Simulation in a

manufacturing system can be used at different phases of manufacturing system lifetime and

at different system levels as depicted in figure 1.1. Traditionally, simulation has been used in

the planning and design phase dating back to the beginning of the 1960’s [26]. Today

simulation models are used in all phases of life cycle and at all system levels (see figure 1.1)

[19]. Recent developments indicate approaches that also use simulation as an integral part of

real time machine control [23] [24] [28].

Chapter 1. Introduction

[6]

Figure 1.1 Modelling and simulation of Manufacturing Systems (source [19])

A broad variety of simulation tools are available for manufacturing systems. Historically

they can be classified into two major types: simulation languages and application-oriented

simulators [26]. Simulation languages are very general. Models are created by coding their

behaviour and structure and are similar to a general computer language. Simulation

languages provide very high flexibility in model creation but are complex in use for non-

scientists and non-engineers. Application-oriented simulators specialise in a given

application class. Models are often developed with a graphical user interface based on

components, dialog boxes, context menus etc. This eases model development for non-

technical users but could lead to reduced flexibility for specific problems [26]. Recent

developments indicate that both types are adapting typical characteristics of the other e.g. a

simulation language can use a graphical modelling user interface to internally produce code

which can be manually altered later.

 In summary it is possible to differentiate between general purpose and application-

oriented simulation packages. The first are general packages but may have special features

for certain application. Examples of general-purpose simulation packages are Arena,

Chapter 1. Introduction

[7]

AweSim, Extend, GPSS/H, Micro Saint, MODSIM III, SIMPLE++, SIMUL8, SLX and

Taylor Enterprise Dynamics Developer. Examples of application-oriented simulation

packages for manufacturing are Arena Packaging Edition, AutoMod, AutoSched, Extend +

MFG, ProModel, QUEST, Taylor Enterprise Dynamics Logistics Suite and WITNESS.

Short overviews about the above packages and their main feature can be found e.g. in [7]

[25] [26].

 Other classifications of simulation packages exist, e.g. the differentiation between

continuous and discrete simulation. Few systems are completely discrete or continuous but in

many systems one is dominant or analysis objectives require the use of a specific simulation

type. Due to the stochastic nature of systems continuous processes can be approximated by

stochastic distributions with start and stop events. Hence, a continuous system or sub system

can be described by a discrete event system. For example, in an automobile assembly line

simulation discrete events dominate but of course it would be possible to continuously

describe sub systems e.g. work piece movements. In contrast in a chemical plant continuous

state changes prevail but the switch of a valve could be modelled discretely.

 In this research a general, theoretical established, discrete modelling and simulation

approach is used. Hence the research results are general statements and applicable to generic

simulation approaches and application specific systems respectively. The Discrete Event

System Specification (DEVS), used in this research, is a formalism based on discrete event

models. It supports a modular, hierarchical model construction and claimed to be a general

and powerful approach in the field of discrete event simulation. The formalism can describe

models with a formal specification and simulation model execution with generic simulation

algorithms.

1.2.2 Aims and Objectives

The research addresses a fundamental problem of simulation based optimisation. The

technique is well established but is restricted to the optimisation of system parameters. In

Chapter 1. Introduction

[8]

using these established techniques model structure is considered to be fixed as the structure

of model elements is defined during model development before an optimisation experiment.

As model performance is optimised it may be necessary to redesign the model structure. This

would conventionally be done manually by an analyst using previous simulation results,

observations or decisions based on previous experience. This manual process cannot

guarantee the global optimal solution. The aim of this research is to develop an approach to

discard the manual changes i.e. to develop a combined, simulation based parameter and

structure optimisation.

The objectives are:

• Carry out a literature analysis on simulation based optimisation and search methods

• Carry out a literature analysis on the specification and simulation of modular,

hierarchical discrete events systems, particularly the Discrete Event System

Specification (DEVS) and DEVS extensions

• Advance the established approach of a simulation based parameter optimisation to a

simulation based parameter and structure optimisation

• Develop a modelling and simulation method based on DEVS and DEVS extensions

to create a merging formalism which combines advantages of different approaches

• Investigate model management and model generation methods

• Investigate appropriate optimisation and search algorithms

• Validate the research and developed approach using an industrial application

• Publish the results in peer reviewed journals, at conferences or in other research

publications

1.2.3 Cost Reduction with the Aid of Simulation based Optimisation

The results of this research enable two different possibilities for cost reduction:

1. With increasingly complex, flexible and reconfigurable manufacturing systems the

number of possible structure variants increases. In using established approaches it

Chapter 1. Introduction

[9]

may be necessary to redesign the model structure between two parameter

optimisation runs, normally carried out manually by an analyst using previous

simulation results, observations or decisions based on previous experience. This is

time consuming and potentially error prone. With this new approach providing

automatic reconfiguration and optimisation of both model structure and model

parameters the process becomes shorter and the ability to find an optimal solution

increases.

2. Many manufacturing systems have the potential to be optimised. Using existing

machines, facilities and processes, optimisation could be used to find a new layout

and system dimension with improved performance.

The application of this research described in the thesis demonstrates both aspects.

1.3 Methodology and Structure of the Research

The four main areas investigated in this research are:

1. Introduction of simulation based optimisation approaches with regard to an

extension to a structure optimisation method

2. Modelling and simulation method based on the Discrete Event System Specification

(DEVS)

3. Model management and model generation method using the System Entity

Structure/Model Base (SES/MB) framework

4. Employing the approach with a real life manufacturing problem

A new approach was established based on the methods 1, 2 and 3. Through the linking of the

methods and the definition of appropriate interfaces between them they constitute a new

approach to a combined and automatic simulation based parameter and structure

optimisation. Figure 1.2 depicts the connections between the investigated areas.

Chapter 1. Introduction

[10]

Figure 1.2 Research area structure

1.3.1 Simulation based Optimisation

Modelling and simulation with integrated parameter optimisation to improve model

performance is an established technique. In using these established approaches model

structure is considered to be fixed as the relationships between model elements (machines,

facilities, conveyors etc.) are defined during model development before the optimisation

experiment. As model performance is optimised it may be necessary to redesign the model

structure after the optimisation experiment. This is normally carried out manually and

repeatedly by an analyst with subsequent optimisation experiments.

 In established parameter optimisation methods the number of parameters and their

domains specify the search space. Depending on the optimisation method the search space is

traversed i.e. the optimisation method needs a specific knowledge about the search space

bounds. Certain points of the search space are analysed. Each point defines a certain

parameter value set. The model is initialised with this parameter value set and subsequently

simulated.

Chapter 1. Introduction

[11]

 The extension using a structure changing facility means broadening the technique to

a parameter and structure optimisation. Additional variables with their associated domains

are describing possible model structure variants. The combination with the set of parameters

defines the new search space of the extended optimisation problem. Methods to transform

the set of parameters and structures to a search space definition and vice versa a search space

point to a model structure and model parameter values are an integral part of the broadened

technique.

1.3.2 Modelling and Simulation

Many different concepts and methods of modelling and simulation exist. This research is

restricted to the discrete event system specification formalism, characterised by continuous

time and discrete state changes and modular, hierarchical modelling and simulation. The

investigated und further developed discrete event system approach is based on DEVS

introduced by Zeigler [66] [67] [68]. This approach is one of the most developed, theoretical

well-founded discrete event approaches. DEVS supports the definition of modular,

hierarchical systems and incorporates well-defined simulator algorithms.

 A crucial part of the research is the analysis of the discrete event system

specification and the existing extensions with regard to simulation based parameter and

structure optimisation and its application in a prototype implementation. Based on the

Classic DEVS formalism [66] a broad range of publications with several extending

approaches are available. For the application of this research within the manufacturing

systems domain certain Classic DEVS extensions were incorporated to establish the

Extended Dynamic Structure Discrete Event System specification formalism (EDSDEVS).

Consequently a formal concept for this unified specification was developed. The formalism

was verified with examples from [66], a benchmark application [18] and industrial

applications [16] [17].

Chapter 1. Introduction

[12]

 This research is a key element of a major search project of the Research Group of

Computational Engineering (RG CEA), Hochschule Wismar University of Applied Sciences

Technology, Business and Design1.

1.3.3 Model Management and Model Generation

In a further crucial area of the research the following key features of a model management as

part of a simulation based structure optimisation were developed:

• Declarative specification of different model structures

• Definition of a method for external controlled model structure selection

• Definition of an interface between model selection and model generation

To specify a set of modular, hierarchical models an approach has to be able to describe three

relationships: (i) decomposition, (ii) taxonomy and (iii) coupling [52] [66] [69].

(i) Decomposition means the approach has to be able to decompose a system called entity

into sub-entities.

(ii) Taxonomy means the ability to represent several, possible variants of an entity called

specialisations.

(iii) To compose an entity from sub-entities these have to be connected. This is the meaning

of a coupling relationship.

The System Entity Structure/Model Base (SES/MB) approach is able to describe these three

relationships [52], [66], [69]. The original SES/MB approach was developed to assist a

manual model design process for modular, hierarchical models using a tree like definition

with different node and edge types and a model base containing basic components. An

essential demand for an appropriate model management method is the external

controllability. The SES/MB approach has to be changed to comply with this demand.

 Based on the adapted SES/MB approach three interfaces around the model

management method were designed. The first interface is a model set definition based on a

1 Research Group Computational Engineering and Automation, http://www.mb.hs-wismar.de/cea/

Chapter 1. Introduction

[13]

XML file structure. This interface is deployed to create a specific SES/MB structure. In

future extensions the development of a graphical SES/MB modeller based on this interface

would be possible. The second interface delivers model generation information to a model

generator. It is based on a XML file structure definition. This interface represents the

connector to the modelling and simulation method. The third interface communicates with

the optimisation methods during the initialisation and the optimisation phases:

1. In the initialisation phase it delivers information about the search space defined by

the set of all possible model structure and model parameter variants to the

optimisation method.

2. During the optimisation phase it receives information from the optimisation method

about the currently investigated search space point. This information is used to select

the corresponding model structure and initialises the model parameters. A

subsequent model structure validation is a crucial part of the model structure

selection.

1.3.4 Implementation and Employment

In this research methods and algorithms were implemented using the MATLAB Scientific

Computing Environment [58].

1. The modelling and simulation toolbox was not started from scratch. A pre-release of

the modeller and simulator published in [41] was the starting point. These sources

were adapted to the current MATLAB version with a new object-oriented

programming principle and were extended step-by-step. Each extension was

validated with test models for example those introduced in [66]. Each important

stage of the research was published and subject to peer review [16] [17] [18] [34].

A simulation model was implemented as a basis for later optimisation. This

model uses results, observations, structures, parameter etc. gathered by the author of

this thesis during several projects which were realised by the supporting company

Chapter 1. Introduction

[14]

Syntax Software2. The company is a leading production and machine control

software developer for the photofinishing industry. The final model was validated

with original production data taken from photofinishing applications implemented

by the author.

2. The model management toolbox was developed and tested using conventional

software engineering techniques.

3. The optimisation method used the commercial available Genetic Algorithm Toolbox

[59].

4. The research application is based on industrial experience of the author. The germ of

the idea to optimise structure comes from a project enquiry made by the Kodak

Photofinishing Department to Syntax Software 6 years ago. The project was not

realised because Kodak closed their European photofinishing business.

 To validate the new approach all possible model variants were simulated. The

simulation results are compared with the result of the automatic structure and parameter

optimisation. This procedure and its results are described and discussed in chapter 6.

1.4 Research Outcomes

The outcomes of this research can be divided into four parts:

1. Development of an approach for a combined, simulation based model parameter and

model structure optimisation

The extension of the established simulation based parameter optimisation by a

controllable model management is the fundamental idea behind this research.

Through this inclusion of a model management the optimisation method can

simultaneously control parameter changes as well as model structure changes to find

an optimal system configuration.

2. Development of an Extended Dynamic Structure DEVS Formalism

2 SyntaX Software Inh. Jörn Satow formerly SyntaX Software O.Hagendorf J.Satow GbR,
Schweinsbrücke 9, 23966 Wismar, www.syntaxsoft.de

Chapter 1. Introduction

[15]

Classic DEVS and DEVS extensions has been a research topic since more than 30

years. The extensions have one joint attribute: they are based on the Classic DEVS

formalism. Hence, the decision on one DEVS extension inhibits the use of

advantages of another one. In this research selected extensions are combined to

create to a merging formalism to combine the advantages of different approaches.

3. Validation of the new approach

The approach was successfully validated with a simulation based optimisation

experiment using an industrial application. All variants of the application were

calculated and the results compared with the optimisation experiment. The global

optimal result was found with a probability of 47%. With an error of 3% of the

system performance an optimal result was found with a probability of 68%. To find

an optimal result, on an average 70% of the search space were analysed. With a

second experiment the dependency of optimisation results on search method

configuration was shown. However, the finding of an optimal search method

configuration was not within the scope of this research.

4. Publication of results

Results and intermediate steps have been published in a peer-reviewed journal and

as a book chapter and have been presented at international conferences.

1.5 Contribution to Knowledge

This research has resulted in two novel formalisms:

1. an approach to extend the established simulation based parameter optimisation to a

combined simulation based parameter and structure optimisation which

automatically change system structure and parameter values to improve the overall

system performance

2. an Extended Dynamic Structure Discrete Event System Specification (EDSDEVS)

as an enhancement and combination of the Discrete Event System Specification and

Chapter 1. Introduction

[16]

some of its different extensions. The EDSDEVS formalism is used as one

component of the simulation based parameter and structure optimisation approach.

The contribution and the advantages of this approach are:

• The approach establishes a structure and parameter optimised model based on the

definition of a set of model variants. The previous manual steps of changing

structure to find an optimal system model are now incorporated into an optimisation

algorithm and thus are automated.

• Through automation the probability of finding the optimal solution grows

significantly in comparison to a manual search.

The contribution and the advantages of the EDSDEVS approach are summarised as follows:

• fusion of different extensions of the Classic Discrete Event System Specification

• implementation of modelling and simulation environment for research and teaching

1.6 Contents of this Thesis

The thesis is organised into three main sections as depicted in figure 1.3. In chapter 2 the

simulation based optimisation is introduced, limitations are outlined and the idea of an

extension of the established technique is developed. Based on this new concept of a

simulation based parameter and structure optimisation the requirements of several

algorithms, methods and interfaces are brought out. Essential components of the optimisation

concept are appropriate model management and modelling and simulation methods.

 Chapter 3 starts with a short presentation of simulation and simulation model

taxonomy. The Classic DEVS formalism with the associated formal modelling concept and

simulation algorithms is introduced. Concepts of selected extensions of the DEVS formalism

are subsequently shown. The last part of chapter 3 introduces the EDSDEVS formalism as it

was developed in the scope of this research. The formal concept of EDSDEVS, the dynamic

behaviour of its components in different situation and simulation algorithms are shown.

Chapter 1. Introduction

[17]

 Chapter 4 introduces the System Entity Structure/Model Base framework as an

approach to organise a set of model structure variants based on meta-modelling. In chapter 5

all aspects of this approach for a simulation based parameter and structure optimisation are

described in detail.

1. Introduction

3. Discrete Event

System Specification
4. Model Management

5. Framework for

Modelling, Simulation

and Optimization

6. Application of the

Research

7. Conclusion

2. Simulation based

Optimisation

Figure 1.3 Structure of the main sections of the thesis

 Chapter 6 demonstrates application of the approach with an optimisation example.

The problem is taken from the industrial experience of the author. The general structure of a

photofinishing lab i.e. a company for industrial production of photos and related products is

described together with a daily problem and how this could be solved with the new approach

of a simulation based optimisation.

 The thesis concludes with a summary and suggestions for further work.

Chapter 2. Simulation based Optimisation

[18]

Chapter 2

Simulation based Optimisation

Optimisation is an important research topic and has the potential for significant commercial

application. At the ACM Digital Library [57] the first publications on optimisation were

published in the early 1950s, ca. 118.000 to date. They cover a very broad range of

optimisation methods and optimisation applications. In general, the aim of an optimisation

method is to find an optimal problem solution in a given search space whereas the often

multidimensional search space defines the complete set of possible problem solutions.

 Research and application of simulation based optimisation has seen a significant

development in recent years. A Google search on ‘Simulation Optimisation’ in 2006 found

over 4.000 entries [2] in comparison a search in 2008 found almost 80.000 entries among

others articles, conference presentations, books and software.

 The integration of optimisation techniques into simulation packages has been an

important requirement for commercial modelling and simulation tools, shown for example in

comparing two popular simulation textbooks [7] and [25] with previous editions. The third

edition of Law and Kelton [25], published in 2000, lists five commercial available simulation

based optimisation tools which did not exist at the time of the second edition of the book,

published 1991 [15].

 The following chapter introduces the ideas of combining modelling and simulation

with optimisation methods. It concludes with the introduction of the new simulation based

parameter and structure optimisation approach developed in this research.

Chapter 2. Simulation based Optimisation

[19]

2.1 Introduction

In retrospect a disadvantage of modelling and simulation is the missing optimisation

capability. For many years, simulation experiments as shown in figure 2.1 have been state of

the art. An analyst creates a model e.g. based on a real system, transforms the model to an

executable model and executes a simulation with it. After a review of simulation results the

model configuration, i.e. model parameters and/or model structures has to be manually

changed by an analyst, when necessary. Using a manual procedure only a relative small

number of system configurations can be examined until a suitable solution is chosen. It is not

possible to guarantee the detection of an optimal or near optimal system configuration and

the manual effort to find a solution can be considerable.

Figure 2.1 An example of an conventional simulation experiment

Through the combination of modelling and simulation with optimisation methods to a

simulation based optimisation method this manual procedure can be partly automated.

Mathematical optimisation generally means establishing a function minima or maxima.

Simulation based optimisation means finding the best model configuration by minimising a

Chapter 2. Simulation based Optimisation

[20]

function of output variables estimated with a simulation method [56]. Important prerequisites

are the availability of:

• suitable modelling and simulation methods

Modelling and simulation as well as model and model parameter have to be strictly

separated. With the combination of optimisation and simulation an optimisation

method needs capabilities to influence the model configuration.

• suitable optimisation methods

Figure 2.2 shows a classification of optimisation methods, identified during this

research, many others and more completed classifications exists in the optimisation

literature. Enumerating or calculus based optimisation methods are suitable when the

search space is small enough and the problem is analytically solvable respectively. If

the problem complexity is large, often search based algorithms are more appropriate.

Problem descriptions with a stochastic component are another crucial reason to use a

search based optimisation method. Because of the typical stochastic character of a

simulation calculus based optimisation methods are not appropriate for a simulation

based optimisation.

• sufficient computing power

Simulation based optimisation is typically used when the number of different model

configurations is large. This is often accompanied with complex model structures.

Both results in considerable quantity of computing time while searching for the

optimal model configuration.

Descriptions of established and new simulation based optimisation approaches follow in

sections 2.2 and 2.3.

Chapter 2. Simulation based Optimisation

[21]

Figure 2.2 Classification of optimisation methods

2.2 Parameter Optimisation

An established approach to simulation based optimisation is simulation based parameter

optimisation. The overall goal of this optimisation approach is the identification of improved

settings of user selected model parameters under control of performance measures. There is a

extensive and varied body of literature on this topic that includes several tutorials, reviews

and summaries of the current state of the art (e.g. [4], [6], [14], [32], [55], [56]). Law and

Kelton describe in [25] commercial available simulation tools with integrated optimisation

techniques using this approach of simulation based parameter optimisation. Figure 2.3 shows

a principle example of a simulation based parameter optimisation experiment. The procedure

to create an executable model follows the procedure described in figure 2.1. A crucial

difference is the detachment of model and model parameters. Based on this detachment the

optimisation method is able to alter the model parameter set to improve the result of an

objective function. The objective function measures the model performance with current

model parameters i.e. improving the objective function result means improving the model

performance. Model parameter adjustments are carried out in a loop until a stop criteria is

fulfilled. Examples of stop criteria are (i) going below a minimum alteration rate or (ii)

exceeding the maximum number of optimisation cycles. The result of a successful

optimisation experiment (example criterion (i) fulfilled) is a parameter optimised model.

Chapter 2. Simulation based Optimisation

[22]

Figure 2.3 An example of a simulation based parameter optimisation experiment

According to [56], a simulation based parameter optimisation problem O with a set of m

deterministic model parameters X = {x1, ... xm} can be formally described as follows:

• A parameter set X = {x1, ... xm} has the domain set D = {d1 … dm}

• The multidimensional (one for each parameter) search space S is defined by

S = {s = {v1 . . . vm} | vi ∈ di}

• A set Y is the output set defined by Y = {y1 . . . yn} = Y(X) and estimated by

simulation. Simulation experiments are often based on stochastic model properties.

Chapter 2. Simulation based Optimisation

[23]

Hence the output set Y is stochastic.

• The objective function F establishes a single stochastic value from stochastic output

set Y : F = F(Y(X)) → ℜ+. The result of the objective function is a measure of the

current model performance.

• Because of the stochastic nature of Y and consequently of F, an estimation function

R, the simulation response function defined by R(X)=E(F(Y(X))), is optimised, i.e. in

the scope of this approach it is minimised.

• Depending on optimisation problem and analysis required the exchange of the last

two steps, evaluation of objective function F and simulation response function R,

can save computational effort. Hence, the simulation response function is defined by

R(X) = E(Y(X)) and subsequently the objective function by F(X) = F(R(X)).

Each parameter set Xi ∈ S can be seen as a possible solution of O. The optimisation method

has to search the search space S to find the parameter set Xopt ∈ S with E(F(Y(Xopt))) ≤

E(F(Y(Xi))) ∀ Xi ∈ S. The resulting parameter set Xopt is considered the global optimum of O.

This approach is restricted to automated parameter optimisation. It is important to

note that automatic structure changes during optimisation are not possible with this

approach. Instead, structure changes are carried out manually by an analyst and each manual

structure change requires a repetition of the automated parameter optimisation.

2.3 Parameter and Structure Optimisation

The extension of the optimisation approach with the ability to also change model structures

to improve system performance is a development of the idea introduced in section 2.2. This

extension is mainly directed towards a simulation based structure and parameter optimisation

as presented in figure 2.4. The approach of a simulation based parameter and structure

optimisation differs in the following extensions or modifications from the simulation based

parameter optimisation depicted in figure 2.3:

Chapter 2. Simulation based Optimisation

[24]

• An analyst does not generate a single model of the real system. In this case he has to

organise a set of models. One way of achieving this is to define a model that

describes a set of model variants instead of one single model of the system under

analysis. Models that define the creation and interpretation of a set of models are

named meta-models. If a model is the abstraction of an aspect of the real world, a

meta-model is yet another, super-ordinate abstraction of the model itself. That is

when a model describes the behaviour and structure of a real system then a meta-

model describes the behaviour and structure of different models that all describe the

behaviour and structure of the same real system in a slightly different way.

• The model management organises the set of model structures and provides a model

selection method.

• The model selection is controlled by a superior optimisation. The selection method

delivers the selected model structure information to a model generator which

generates an executable model. The parameter transfer and the simulation match the

simulation based parameter optimisation depicted in figure 2.4.

• The objective function receives simulation results to estimate the performance of

current model structure and parameters similar to the approach depicted in figure

2.4. Information generated by the model selection method can be additionally used

to establish the model performance.

• The optimisation method investigates the search space with simultaneous model

parameter and model structure changes without a manual involvement. The intention

of the optimisation method is the finding of a model structure and model parameter

set where the objective function delivers the global optimum value, in most instances

the global minimum.

Chapter 2. Simulation based Optimisation

[25]

Figure 2.4 Components and steps of a simulation based parameter and structure optimisation

experiment

A prerequisite for an optimisation is the definition of a search space. In the approach

presented here, the search space is multi-dimensional as a result of the combination of model

structure and model parameter variants. During the optimisation loop several points of the

search space are examined. Each point defines a model structure with an appropriate

parameter set. The extension of the formal description of a simulation based parameter

optimisation problem O, defined in section 2.2, to a combined simulation based structure and

parameter optimisation leads to O*:

• The model parameter set XP and its domain set DP, in section 2.2 defined as X and D,

are extended by structure parameter set XS and its domain set DS. The extended set

Chapter 2. Simulation based Optimisation

[26]

definitions are: X*
 = XP ∪ XS = {xP1 . . . xPm, xS1 . . . xSn} and

D
*
 = DP ∪ DS = {dP1 . . . dPm, dS1 . . . dSn} with m model parameters in set XP and

n structure parameters in set XS. The sets XP and DP are defined by the current model.

The model management has to provide the sets XS and DS by analysing the meta-

model.

• The multi-dimensional (one for each parameter) search space S = SP ∪ SS is spanned

by sets of model parameter and structure variants.

• The objective function F* is defined by F*
(Y(X

*
),P(XS)) with simulation results

Y(X
*
)=Y(XS ∪ XP) and results based on structure related variables P(XS) which are

established during the model selection. Because of the stochastic nature of the

simulation results Y(X
*
) an estimation function R, the simulation response function,

is calculated. The results based on structure related variables P(XS) are not

stochastic. Hence, the simulation response function is defined by R(Y(X
*
)) and

subsequently the objective function by F
*
(R(Y(X

*
)), P(XS)).

Figure 2.5 depicts the above formal description of a simulation based parameter and

structure optimisation framework O* in a schematic diagram.

Chapter 2. Simulation based Optimisation

[27]

Figure 2.5 Schematic diagram of a simulation based parameter and structure optimisation

framework

Further prerequisites of the introduced approach are:

• The modelling and simulation method with support of modular or modular,

hierarchical models and a flexible simulation engine are essential parts of the

framework. A powerful modelling and simulation method is fundamental in two

different aspects: (i) A strict separation between model and simulator are necessary

due to the crucial management of a model structure set with a downstream model

generator and a model parameter transfer. (ii) A flexible and modular, hierarchical

modelling and simulation method can incredible enlarge the application field and

ease its use.

• The cooperation between optimisation, model management, and modelling and

simulation modules has to be comprehensive. The aim of the cooperation is to

establish control of both model parameters and model structures by an optimisation

method. The objective function evaluates simulation results but can also incorporate

Chapter 2. Simulation based Optimisation

[28]

further information, generated by model management, into the evaluation. The

additional parameters can be provided by optional variables, summarised during

model selection as described in section 4.2. The search space definition used by the

optimisation module is established by the model management module. These

information exchanges require comprehensive cooperation between the above

modules.

• Using combined simulation based structure and parameter optimisation the number

of variants of different system configurations can be considerable higher than in a

pure simulation based parameter optimisation and will need more computing power

than the approach described in section 2.2.

Through the inclusion of a model management method, the optimisation method can

simultaneously control parameter changes as well as model structure changes to find an

optimal system configuration. This new approach significantly enhances the application of

simulation based optimisation. The extension of the simulation based parameter optimisation

by a controllable model management and subsequent automatic model generation is a

fundamental idea behind this research.

 The modelling and simulation and model management methods take a crucial role in

this approach. The description of a discrete event modelling and simulation method, and a

model management method based on meta-modelling follow in the next two chapters.

Chapter 3. Discrete Event System Specification and Simulation

[29]

Chapter 3

Discrete Event System Specification and Simulation

After a short, general introduction to modelling and simulation this chapter explains the

DEVS formalism. The Classic DEVS formalism will be introduced together with several

extensions which are combined to form an Extended Dynamic Structure DEVS (EDSDEVS)

approach. The chapter concludes with the introduction of the EDSDEVS formalism. The

EDSDEVS modelling and simulation approach with its advanced, modular, hierarchical

model definitions and flexible simulation algorithms plays a major role in the new simulation

based optimisation approach.

3.1 Introduction

A simulation is the imitation of the behaviour and the structure of a real-world system. The

behaviour and the structure of the system are studied by developing a simulation model and

performing experiments with it. During an experiment the model is executed within a

simulation environment by a simulator. The model is usually created by taking assumptions

concerning the function of the system, its attributes and structures. The complete system is

split into several entities with relationships defining connections between them. A more

complex system can be split in a hierarchical manner i.e. an entity can be segmented into

sub-entities which themselves can be again segmented into sub-entities. The entities are

expressed in a mathematical, logical or symbolic form. Once developed and validated a

model can be used to perform a variety of analysis concerning the real-world process or

Chapter 3. Discrete Event System Specification and Simulation

[30]

system. Analysing experiments can change the behaviour or the attributes of a certain entity,

the relationship between entities or sending changed inputs to the model.

It is possible to summarise as follows and as shown in figure 3.1:

• Modelling and simulation is the imitation of a real-world system.

• The model tries to describe real-world behaviour through states, state-transitions and

attributes.

• The model tries to describe the real-world structure throughout partitioning into sub-

entities. Subject to the modelling formalism, the structure can be defined

hierarchically.

• The model interacts with its environment based on inputs and outputs.

Figure 3.1 A real-world process or system and its model (source [1])

Chapter 3. Discrete Event System Specification and Simulation

[31]

 Under some circumstances, a model can be developed based on mathematical

methods only e.g. by the use of differential equations, algebraic methods or other

mathematical techniques. However, many real world systems are to complex to be modelled

using mathematical expressions. In these cases, numerical, computer based modelling and

simulation can be used to analyse the behaviour and the structure of real word systems [7].

 Many different concepts and methods for modelling and simulation exist. Ören [33]

classifies different types of simulation models with several criteria. One of the various

possible classifications is to use the two criteria - time change and state change [48]. Discrete

event models are a combination of continuous time and discrete state changes as shown in

figure 3.2. The choice of whether to use discrete state changes, continuous state changes or a

combination of both depends on the characteristics of the system under investigation and the

objectives of the study.

Figure 3.2 Simulation model taxonomy (source [48])

The Discrete Event System Specification (DEVS) is a formalism based on discrete event

models. It supports a modular, hierarchical model construction and claimed to be a general

and powerful approach in the field of discrete event simulation [66] [67].

 For modelling and simulation and particularly with DEVS the term formalism is

used with a specific meaning. A modelling formalism can be described by two parts: (i)

formal model specification and (ii) simulation algorithms to execute the model [53]. The

Chapter 3. Discrete Event System Specification and Simulation

[32]

formal mathematical specification describes model structure and behaviour. The simulation

algorithms specify methods to execute any model that is described in accordance with the

formal model specification.

3.2 Discrete Event System Specification

The DEVS formalism was first introduced by Zeigler [68] in the 1970s. In [66] the authors

classify this formalism, position and compare it with other, more established modelling and

simulation formalisms. Several international research groups are working on the DEVS

formalism and are regularly publishing results at the annual DEVS Symposium at Spring

Simulation Conferences. Wainer [62] maintains a list of available DEVS tools. The DEVS

formalism is, in contrast to other modelling and simulation formalisms, not very widely used

in industrial practice. This situation exists despite the fact that the theory is a well-founded,

general formalism. It can only be assumed that one reason of the marginal acceptance is the

type of available software tools [34].

 Since its first publications, in [68] the formalism has been enhanced and many

extensions have been introduced. To differentiate among them the original formalism is

termed Classic DEVS.

3.2.1 Classic DEVS Modelling

DEVS is a modular, hierarchical modelling and simulation formalism. Every DEVS model

can be described by using two different model types, atomic and coupled. Both model types

have an identical, clearly defined input and output interface. An atomic model describes the

behaviour of a non-decomposable entity via input/output events and event driven state

transition functions. A coupled model describes the structure of a more complex model

through the aggregation of several entities and their couplings. These entities can be atomic

models as well as coupled models. Due to the identical interfaces and the complete

encapsulation of a model, a coupled model cannot differentiate between the different model

Chapter 3. Discrete Event System Specification and Simulation

[33]

types of its sub components. A coupled model does not need and does not even have any

information about the type of its sub-entities. The internal structure of each sub model is

completely encapsulated and separated from its parent. Due the possibility that several

entities together create a new entity which itself can be again part of another super-ordinate

entity the formalism is termed ‘closed under coupling’. Thus, the construction of modular,

hierarchical models is possible [66].

Figure 3.3 DEVS model example

Figure 3.3 shows a DEVS model example:

• Structure description:

The structure of the real-world system is depicted by the structure of the DEVS

model i.e. the aggregation of entities and sub-entities and their directed coupling

relations. The top most model i.e. the root model depicts the real-world system with

an interface to its environment. This external interface is defined by the input and

output ports of the root model. The environment is modelled in an Experimental

Frame as described in [11] [66]. An Experimental Frame makes the analysis of the

modular, hierarchical model possible, generates input events and analyses the output

events. The sub-entities input and output ports are connected over directed couplings

Chapter 3. Discrete Event System Specification and Simulation

[34]

with other sub-entities input and output ports and with the output port of the super-

ordinate coupled model, respectively. Each atomic and coupled model has one input

and one output port. Depending on source and destination port the coupling relations

are named:

o external input coupling (EIC) with the input port of a super-ordinate coupled

model as source and one or more sub-entities as destination

o external output coupling (EOC) with the output port of a sub-entity as

source and the output port of a super-ordinate coupled model as destination

o internal coupling (IC) with output and input port of sub-entities as source

and destination

Example:

The coupled model CM1 in figure 3.3 is the top most model i.e. the root model.

The root model has an external interface with input and output ports to handle or

create external input and output events received by or sent to the experimental

frame. It contains one atomic model am1 and one coupled model CM2. The

coupled model CM2 consists of two atomic models am2 and am3. As an EIC the

input port of CM1 is connected to the input port of am1. As an EOC the output

port of CM1 forwards events sent from the output port of am1. ICs are the

connections between the output port of am1 and the input port of CM2, output

port of CM2 and the input port of am1 and output port of am3 and the input port

of am2.

• Behaviour description:

The behaviour of a real-world system and sub system, respectively, is depicted by an

atomic model and its internal states, input/output events and event driven state

transition functions. At its input port it can receive external input events. An input

event is handled by an external state transition function. This function can

immediately but indirectly induce an internal event and subsequently an internal

Chapter 3. Discrete Event System Specification and Simulation

[35]

transition. With time controlled internal transitions an atomic model can react to

time events. Internal events are scheduled by a time advance function and their state

transitions are handled by an internal state transition function. After each external

and internal event the time advance function is called to schedule the next internal

event. With output events send from an output port the atomic model can influence

other entities connected to this port or create the output event of the super-ordinate

coupled model. Output events are created by an output function which is firstly

executed during internal event handling before calling the internal state transition

function.

Example:

The atomic model am1 in figure 3.3 executes the external state transition function

δext when it receives an input event. After initialisation and after each event

handling the next internal event is scheduled with the time advance function ta.

During the internal event handling by model am1 the internal state transition

function δint is called. Before the function δint is called an output event can be

created by executing the output function λ.

• Event handling:

All input events are received over the input port regardless of event source and type.

All output events are sent over the output port regardless of event type. An event

received at an input port of a coupled model is forwarded to the connected sub-

entity(s). An event send to an output port of a coupled model by a sub-entity is

received and handled by the super-ordinate coupled model. An event send by a sub-

entity to one or more sub-entities of the same coupled model is routed by this

coupled model from sending output to receiving input port.

Example:

When CM1 in figure 3.3 receives an event at its input port it is forwarded over

the EIC to am1. When CM2 forwards an output event to its output port, the event

Chapter 3. Discrete Event System Specification and Simulation

[36]

is forwarded to the input port of am1 over the IC. When am1 generates an output

event at its output port this event is forwarded to CM2 due to an IC and

simultaneously it represents an output event of CM1 due to an EOC.

3.2.2 Formal Concept of Classic DEVS Modelling

The Classic DEVS formal description defines coupled and atomic models as a combination

of sets and functions. The description of an atomic model is a 7- tuple [66]:

AM = (X, Y, S, δext, δint, λ, ta)

• X, Y and S specify the sets of discrete inputs, outputs and internal states.

• δext: Q × X → S where Q = {(s,e) | s ∈ S, 0<e<tnext ,

elapsed time e = t - tlast}

The external state transition function δext handles external input event at time t. It can

induce an internal transition with a rescheduling of the time of the next internal

event. The time of the external input event is stored in tlast.

• δint: S → S

The internal state transition function δint can establish a new internal state. The

execution of output function λ and internal state transition function δint is induced by

a time driven internal event. The time of an internal event is established by the time

advance function ta. The time of the internal event is stored in tlast.

• λ: S → Y

The output function λ can generate an output event. If and which output event is

generated depends on the internal state S.

• ta: S → ℜ�
�

 ∪ ∞

The time advance function ta schedules the time of the next internal event after each

state transition.

Figure 3.4 shows the dynamic behaviour of an atomic model. Listing B.1 in appendix B

shows a pseudo code skeleton of an atomic model.

Chapter 3. Discrete Event System Specification and Simulation

[37]

Figure 3.4 Dynamic behaviour of an atomic model

The description of a coupled model is a 9-tuple [66]:

CM = (dn, X, Y, D, { Md }, EIC, EOC, IC, SELECT)

• dn specifies the name of the coupled model.

• X and Y specify the sets of discrete inputs and outputs.

• D specifies the set of sub component names.

• Md

| d ∈ D

Md is the model of the sub component d

• EIC, EOC and IC are the sets of external input, external output and internal

couplings.

• The SELECT function prioritises concurrent internal events of sub components.

The figure 3.5 depicts the relations of the elements of a Classic DEVS coupled model.

Listing B.2 in appendix B shows a pseudo code skeleton of a coupled model.

Chapter 3. Discrete Event System Specification and Simulation

[38]

Figure 3.5 Coupled model elements

The Classic DEVS approach supports the specification of behavioural system dynamics in

atomic systems and the specification of static component aggregations in coupled systems. It

is not possible to describe structural system dynamics at the coupled model level, i.e. the

deletion or creation of components and couplings or changes of interfaces, although all

necessary structural information is also available during simulation time as is described in

section 3.2.3. The only possibility to realise a structural system dynamic is to specify it with

logical constructs at the atomic model level. However, this removes the advantages of

reusability and model clarity and increases modelling complexity.

3.2.3 Classic DEVS Simulation

Beside the formal definition the second part of the Classic DEVS formalism is the

description of abstract simulator algorithms for the execution of DEVS models. The

algorithms are named abstract because they are implemented as a general pseudo code. The

abstract simulator has a modular, hierarchical structure matching exactly the modular,

hierarchical structure of a DEVS model. A DEVS model can be directly transformed into an

executable simulator model using abstract simulator elements e.g. as in [48] [66] [67] shown.

The abstract simulator approach consists of three different elements namely root coordinator,

coordinator and simulator. The structure corresponds to the hierarchical DEVS model

Chapter 3. Discrete Event System Specification and Simulation

[39]

structure except the root coordinator added as the topmost entity. Each atomic model is

associated with a simulator element and each coupled model is associated with a coordinator

element.

 Figure 3.6 shows the transformation of a DEVS model to an executable simulation

model using associated abstract simulator elements. The two coupled models CM1 and CM2

are mapped to two coordinator elements. The three atomic models am1...am3 are mapped to

simulator elements.

Figure 3.6 An example of a Classic DEVS model with associated abstract simulator elements

The communication between root coordinator, coordinator and simulator instances is

message based. On top of the hierarchy the root coordinator initiates, controls and ends a

simulation cycle with different messages. It holds the simulation clock. Each coupled model

is associated to a coordinator instance. The coordinator instance forwards messages to its

subordinated coordinator and/or simulator instances. It holds the minimum time of the next

Chapter 3. Discrete Event System Specification and Simulation

[40]

internal transition event of its sub components in tnext. Each atomic model is associated with a

simulator instance. It holds the time of its own next internal events in tnext. It is important to

note that both coordinator and simulator instances have the same interfaces and receive the

same messages. Hence, a super-ordinate coordinator does not have to distinguish the type of

subordinate instances.

 With this concept one prerequisite of a parameter and structure optimisation

approach as introduced in section 2.3 is fulfilled. The modular modelling and flexible

simulation play a crucial role in model management and subsequent model generation.

Furthermore this concept enables that the modular hierarchical structure of a model

remains an unchanged part of the computational model during simulation runtime. The

preservation of the model structure is an essential prerequisite to the dynamic structure

modelling and simulation concept introduced later in this chapter. This dynamic structure

modelling and simulation concept fulfils another prerequisite of parameter and structure

optimisation approach.

 Figure 3.7 depicts the structure of a Classic DEVS model with the corresponding

abstract simulator instances. Moreover, the figure presents the different messages types

passed between the several instances of abstract simulator elements and the subsequent

DEVS model function calls. Because of complexity and clarity selected situations are shown

in sections:

i. (Figure 3.7a) initialisation phase with i-message handling:

During the initialisation phase model component’s init functions are called because

of an i-message handling.

ii. (Figure 3.7b) *-message handling created due to internal event of model am3 with a

subsequent x-message within the same coupled model:

The root coordinator advances the simulation clock and a *-message is firstly

created. The message is sent to the successor coordinator instance of coupled model

CM1. This coordinator instance determines that the sub component CM2 is

Chapter 3. Discrete Event System Specification and Simulation

[41]

responsible for handling this event. Hence, the event is forwarded to the successor

coordinator instance of CM2. The coordinator instance determines that one of its sub

components scheduled the event. The simulator instance of model am3 initiates the

internal message handling. Due to the current internal state of am3 an output

message is generated. With the internal coupling am2-am3 the message is received

as an x-message by simulator instance/model am2.

iii. (Figure 3.7c) *-message handling created due to an internal event of model am1 with

a subsequent x-message at different model levels:

The beginning of the message handling is similar to ii except the generated output

message is forwarded to another model level over internal and external input

couplings.

iv. (Figure 3.7d) *-message handling created due to concurrent internal events of

models am2 and am3:

The root coordinator advances the simulation clock and a *-message is firstly

created. The message is sent to the successor coordinator instance of coupled model

CM1. This coordinator instance determines that the sub component CM2 is

responsible for handling this event. Hence, the event is forwarded to the successor

coordinator instance of CM2. The coordinator instance determines that two sub

components scheduled the event. The coordinator instance will then call the select()

function to decide which sub components has a higher priority and forward the

message to the appropriate simulator instance. The simulator instance calls the

model functions λ and δint. A result of calling λ could be a y-message sent back to

the subordinate coodinator instance of CM2.

Chapter 3. Discrete Event System Specification and Simulation

[42]

Figure 3.7 An example of a Classic DEVS model with associated abstract simulator

elements, messages and model function calls during initialisation and simulation phases

The execution of the simulation model can be subdivided into two phases: initialisation

phase and simulation phase. Each phase is started and proceeded by several messages passed

between root coordinator, coordinator and simulator instances:

• The initialisation phase starts with an initialisation message (i-msg) generated by

the root coordinator. This message is redirected and handled by each coordinator

Chapter 3. Discrete Event System Specification and Simulation

[43]

instance and handled by each simulator instance, respectively. Each simulator

instance initialises the internal states S of the associated atomic model and

estimates the time of the first next internal event tnext. Each coordinator estimates

the minimum time of the first next internal events of all sub components. Due to

the hierarchical structure of the simulation model the root coordinator instance

gets the minimum time of the first internal event of all model components from

its direct successor coordinator after a complete i-msg handling.

• The simulation phase is started with the first *- message (*-msg) at the minimum

time of next internal event tnext estimated by the root coordinator as described

above. The consequence of a *-message are subsequent input and output

messages (x and y-msg). All simulator instances which received a *- or x-

message can change the time of their next internal event tnext. All coordinator

instances redirecting a *-, x- or y-message estimates the minimum time of next

internal events of their sub components. Due to the hierarchical structure of the

simulation model the root coordinator instance gets the minimum time of next

internal events after a complete *-message handling. The root coordinator

instance advances the simulation clock to that time and repeats the complete

process by sending the next *-message. Advancing the simulation clock and

message handling is repeated in a loop until the simulation end time tend is

reached or exceeded.

The different message types created and handled during initialisation and simulation phase

have the following characteristics:

• start-msg(tend)

The start-message is created and sent only once. It starts the simulation model

execution with the generation of an i-message.

• i-msg()

The i-message starts the model component initialisation at time t=0. The root

coordinator instance sends one i-message to its direct successor coordinator

Chapter 3. Discrete Event System Specification and Simulation

[44]

instance to initialise all model and simulation components. Each coordinator

instance sends further i-messages to its sub components.

• *-msg(t)

A *-message received by a simulator instance starts the processing of an internal

event by calling the output function λ, internal state transition function δint and

time advance function ta of the corresponding atomic model. The time of the *-

message is stored in tlast of the simulator instance. The output of function λ is

sent up to the parent coordinator instance as a y-message. The final execution of

function ta can cause a new time of the next internal event depending on the

internal state S of the atomic model and stored in tnext of the simulator instance.

A *-message received by a coordinator instance is sent to the successor

simulator or coordinator instance with the appropriate time tnext. For this purpose

the coordinator instance compares the actual simulation time with a list of tnext-

instance pairs. The time-instance-pairs of all next internal events of all sub

components are stored in an event chain of the coordinator instance. Concurrent

internal events i.e. different sub components have the same tnext are resolved by

the select function of the parent coupled model. After a complete handling of the

*-message the coordinator instance estimates the minimum time of next internal

events of all sub components and stores it in tnext.

• x-msg(t, x)

An x-message received by a simulator instance calls the external state transition

function δext and time advance function ta of the corresponding atomic model.

The time of the x-message is stored in tlast of the simulator instance. The final

execution of function ta can cause a new time of next internal event stored in tnext

of the simulator instance.

An x-message received by a coordinator instance is redirected to all sub

components with an appropriate EIC. After a complete x-message handling the

Chapter 3. Discrete Event System Specification and Simulation

[45]

coordinator instance estimates the minimum time of next internal events of all

sub components and stores it in tnext.

• y-msg(t, y)

The y-message is created by an atomic model/simulator instance. It is routed by

the super-ordinate coordinator instance according the coupling relations to other

successor simulator and/or coordinator instances or to the parent of the super-

ordinate coordinator instance. Receiving simulator or coordinator instances get

this message as an x-message.

Listings B.3, B.4 and B.5 in appendix B show pseudo codes of Classic DEVS root

coordinator, coordinator and simulator.

3.3 DEVS Extensions

Extensions of the Classic DEVS formalism expand the classes of system models that can be

represented by DEVS. Several DEVS extension are introduced e.g. in [9] [38] [48] [60] [62]

and [66]. At the regular DEVS symposium held at the annual Spring Simulation Multi

Conferences the current development of DEVS, DEVS extensions and DEVS related

developments are published. An incomplete list of DEVS extensions recently presented are:

• DEVS with Ports

The port extension adds additional input and output ports to atomic and coupled

models. The approach is introduced later in more detail.

• Parallel DEVS

Parallel DEVS (PDEVS) considers concurrent transition events. The approach is

introduced later in more detail.

• Dynamic Structure DEVS

Dynamic Structure DEVS (DSDEVS) enables model structure changes during a

simulation run. Several partial very different approaches exist. Dynamic structure

extensions introduced by Barros [9] and Pawletta et.al. [38] preserve the general

Chapter 3. Discrete Event System Specification and Simulation

[46]

structure of Classic DEVS modelling and simulation with additions to coupled

model definitions but unchanged atomic model definitions. Other dynamic structure

extensions e.g. Uhrmacher with an agent based DEVS [60] introduce more extensive

modifications. The approach of Pawletta et.al. is introduced in more detail in section

3.3.3.

• Symbolic DEVS

It represents occurring events in a symbolic definition [12]. In conventional DEVS,

the time base, its operations and relations are performed with real numbers. In

Symbolic DEVS, the objective is to explore multiple model behaviours

simultaneously e.g. with a symbolic result of the time advance function [66].

• Real Time DEVS

The DEVS model is developed in a conventional simulation environment. But it is

executed in real time rather than in model time. The time advance function delivers

time intervals rather than single values. The interval allows uncertainty when an

internal event has to take place.

• Fuzzy DEVS

Provides another possibility to enable uncertainty into the model set and model

function definitions.

The next sections introduce three DEVS extensions in more detail. The chosen extensions

are used as a basis of the subsequent unifying DEVS formalism introduced as a key element

of this research.

3.3.1 DEVS with Ports

The introduction of ports into the Classic DEVS formalism makes modelling easier and the

representation of information flow more clearly [66]. In Classic DEVS each model has only

a single input and a single output port. All events are received and sent over these ports.

With the port extension, a model has several input and output ports each dedicated for a

Chapter 3. Discrete Event System Specification and Simulation

[47]

specific employment i.e. event type. A model can have several output ports which can be

connected to input ports of other models as shown in figure 3.8. Hence, each event can use a

dedicated, well defined routing path. The modelling becomes more structured; a model can

become clearer and better understandable through differentiated interfaces.

atomic model

or

COUPLED MODEL

X0 Y0

Xn Yp atomic model

or

COUPLED MODEL

atomic model

or

COUPLED MODEL

atomic model

or

COUPLED MODEL

atomic model

or

COUPLED MODEL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 3.8 Models with multiple input and output ports

The formal description of Classic DEVS with Ports largely remains the same except the

extended definitions of X, Y for atomic and coupled models [66]:

X = {(p,v) | p ∈ InputPorts, v ∈ Xp}

Y = {(p,v) | p ∈ OutputPorts, v ∈ Yp}

• p is the input or output port of the model

• v is a discrete value

• Xp and Yp specify the sets of discrete inputs and outputs at port p

Whereas in Classic DEVS the coupling definitions consist of a sub model name as

destination and source, respectively, for EIC and EOC and a pair of sub model names for IC

the port extension necessitate a coupling definition extension, too:

• EIC = { (input_port, d.input_port) | input_port ∈ InputPorts, d ∈ D,

d.input_port ∈ InputPorts of Md }

The external input coupling definition of a coupled model is a set of pairs of an input

port name of the coupled model itself and an input port name of the destination sub

model.

Chapter 3. Discrete Event System Specification and Simulation

[48]

• IC = { (di.output_port, dk.input_port) | di,dk ∈ D, di.output_port ∈ OutputPorts of

���
, dk.input_port ∈ InputPorts of ���

, i<>k }

The internal coupling definition is a set of pairs of an output port name and an input

port name of sub models.

• EOC = { (d.output_port, output_port) | d.output_port ∈ OutputPorts of Md, d ∈ D,

output_port ∈ OutputPorts}

The external output coupling definition of a coupled model is a set of pairs of an

output port name of source sub component and an output port name of the coupled

model itself.

Listings B.6, B.7 and B.8 in appendix B show pseudo codes of an example Classic DEVS

with Ports atomic model and pseudo codes of simulator and coordinator. Differences to the

Classic DEVS pendants are marked in bold face type.

3.3.2 Parallel DEVS

Parallel DEVS (PDEVS) was introduced by Chow and Zeigler [13]. It adds new elements

and functions to the Classic DEVS formalism. It allows all imminent components to be

activated and enables sending their output to other components at the same time

concurrently. Multiple outputs are combined in a bag which is sent as a whole to a model’s

external state transition function. A bag is similar to a set, containing an unordered set of

elements, but allows multiple occurrences of an element. In Classic DEVS by contrast events

are handled individually. In PDEVS during the *-message handling firstly all outputs are

established before calling external and internal state transition functions. Each receiving

component is responsible for examining and interpreting its combined inputs in the correct

order. PDEVS gives the atomic model more control over the handling order of concurrent

external and internal events. In Classic DEVS a super-ordinate component, the coupled

model, is responsible for the execution order of concurrent internal events of different sub

Chapter 3. Discrete Event System Specification and Simulation

[49]

components using the select function. In PDEVS the order of simultaneous events is locally

controllable at atomic model level with an additional, third state transition function, the

confluent transition function δcon. Hence, it merges the decision logic of execution order of

concurrent events with the event handling functions at same level. Apart from that, there is

no difference in the principle of event handling to that described in section 3.2.

According to the extensions of PDEVS an atomic model is defined by the following 8- tuple

[13]:

AM = (X, Y, S, δext, δint, δcon, λ, ta)

• X, Y and S specify the sets of discrete input events, output events and sequential

states.

• δext: Q × X
b
 → S where X

b
 is a bag covering elements of X and Q = { (s,e) | s ∈ S,

0<e<tnext, elapsed time e = t - tlast }

The external state transition function δext handles a bag covering external inputs

X
b

 = {xi | xi ∈ X}.

• δint: S → S

The internal state transition function δint establishes a new internal state. The

execution of output function λ and internal transition function δint is induced by a

time driven internal event. The time of an internal event is established by the time

advance function ta.

• δcon: S × X
b
 → S

The confluent transition function δcon handles the execution sequence of δint and δext

functions in case of concurrent external and internal events.

o The definition δcon (s, X
b
) = δext(δint(s), 0, X

b
) with δext(s, e, X

b
) of the

confluent transition function is equivalent to the Classic DEVS behaviour

with a higher prioritised internal event handling.

Chapter 3. Discrete Event System Specification and Simulation

[50]

o The alternative defintion δcon(s, X
b
) = δint(δext(s, ta(s), X

b
)) with δint(s) of the

confluent function firstly handles external events.

o The execution of the confluent function with an empty bag δcon(s, null) calls

directly the internal transition function δint.

• λ: S → Y
b where Y

b
 is a bag covering elements of Y

The output function λ can generate a bag covering outputs Yb = { yi | yi ∈ Y }. The

generated output depends on the internal state S.

• ta: S → ℜ�
�

 ∪ ∞

The time advance function ta schedules the time of the next internal event after each

state transition.

The figure 3.9 shows the dynamic behaviour of an atomic PDEVS model in a situation with

concurrent external and internal events. Due to the concurrent events the confluent transition

function δcon is called. Depending on the specific implementation of function δcon sequence a)

or sequence b) is executed.

},,{ cba

b

u xxxX =
},{ ed

b

u yyY =

Figure 3.9 Dynamic behaviour of an atomic PDEVS model

The definition of a coupled model for PDEVS is the same as for Classic DEVS except for

the absence of the select function [13]:

CM = (dn, X, Y, D, { Md }, EIC, EOC, IC)

Chapter 3. Discrete Event System Specification and Simulation

[51]

The generation of an executable PDEVS model is carried out similarly to Classic DEVS i.e.

the same coupling of atomic models with simulator instances and coupled models with

coordinator instances and the perpetuation of the original hierarchical model structure.

Listings B.9 and B.10 in appendix B show pseudo codes of an example PDEVS atomic

model and a PDEVS simulator. Differences to the Classic DEVS pendants are marked in

bold face type.

3.3.3 Dynamic Structure DEVS

Several approaches extend the Classic DEVS to Dynamic Structure DEVS (DSDEVS).

Barros [9] [10] and Pawletta et.al. [42] introduce two DSDEVS variants with an extension of

the coupled model definition while the atomic model definition remains unchanged. With

theses extensions the coupled model is able to change its structure during simulation time.

Uhrmacher et.al. [60] introduce an agent based approach. It defines extensions for both

atomic and coupled systems. Another approach is Cell-DEVS, a combination of cellular

automata with the DEVS formalism where each cell consists of a single DEVS model [63].

 The different types of extensions are carried out due to different application fields or

problem definitions e.g. a typical Cell-DEVS application field is social and environmental

modelling and simulation. The approaches of Barros and Pawletta are extending the classic

formalism without changing its overall principle and thus the general application field of

Classic DEVS. This research is restricted to and continues the research of Pawletta. This

DSDEVS approach is introduced in detail in the following.

DSDEVS by Pawletta enables several types of structural dynamics:

• creation, destruction, cloning and replacement of sub components

• exchange of a sub component between two coupled models

• changing coupling definitions of a coupled system

Figure 3.10 shows an example of structure changes, the creation of a sub model with an

additional extension of the coupling definition.

Chapter 3. Discrete Event System Specification and Simulation

[52]

Figure 3.10 Examples of structure changes at coupled model level

Pawletta et.al. have introduced an extension of Classic DEVS to enable structure variability

during simulation time [38] ... [45] firstly named Variable Structure DEVS. To avoid name

and abbreviation confusions the name of this approach was changed to Dynamic Structure

DEVS (DSDEVS) in later publications [34] et seqq. The approach extends the coupled

model definition but the atomic model definition stays unchanged. During the simulation

time a coupled model can change its structures. Each structure can be seen as a structure

state si with s0, s1, ...,sn ∈ SDS. A single structure state si describes the structure relevant

elements of a coupled model i.e. it defines sub components with their couplings, the sets of

input and output events together with the concurrent internal event handling function select.

A structural change of a coupled model means the modification of the current structure state.

Additionally a structural state set HDS can store further structure information e.g. the number

of structure changes at the present time or the current structure number. External or internal

events, handled by the additional state transition functions δx&s and δint at coupled model

level, induce structure state changes and as a result model structure changes. This dynamic

structure extension of Classic DEVS was developed with a regard to hybrid systems, i.e.

systems with continuous and discrete event dynamics. In the following only the relevant

aspects for discrete event systems are taken into account.

A DSDEVS coupled model is defined by the following 6-tuple [38]:

CMDS = (dds , SDS , δx&s , δint , λ , ta)

• dds specifies the name of the coupled model.

Chapter 3. Discrete Event System Specification and Simulation

[53]

• According to the above definition of a coupled model, its structure consists of sets of

sub components and coupling relations. Structure changes means modifications of

these sets. Obviously, the sets of sub systems and coupling relations could be

interpreted as a structure state. The set of sequential structure states

{s0, s1, ...,sn} = SDS defines all structure variants of the variable structure coupled

model CMDS. Structure state changes can be induced by handling external or internal

events of the coupled model itself or by state events i.e. output events of

subordinated components. A structure state is defined by a 9-tuple:

si = (X, Y, HDS, D, { Md

}, EIC, EOC, IC, select)

• X and Y specify the sets of discrete input and output events. The sets exactly

match the sets X and Y in Classic DEVS.

• The set HDS represents additional structure related state variables. They are

equivalent to the state set S of an atomic model.

• D specifies the set of sub component names.

• Md | d ∈ D

Md is the model of the sub component d of the coupled model CMDS. The set

{ Md

} defines all sub components of CMDS.

• EIC, EOC and IC are the external input, external output and internal

couplings.

• The function select prioritises concurrent internal events of the coupled

model itself and its sub components.

• δx&s: QDS × X → HDS where QDS = {(h,e) | h ∈ HDS, 0<e<tnext, elapsed time e= t-tlast}

The external and state transition function δx&s handles external input events and state

events i.e. output events of sub components. However it is unreasonable to make

changes in the set of sub components or the coupling relations by this function

directly. This could lead to ambiguous event handling because external events could

Chapter 3. Discrete Event System Specification and Simulation

[54]

simultaneously influence the dynamic of sub components and the structure state.

Consequently the δx&s function is only allowed to modify structure related state

variables in the set HDS. However, it can induce a structure state change i.e. a change

of the model structure by scheduling an immediate internal event.

• δint: SDS → SDS

The internal transition function δint can change the structure state si to si+1 and as a

result induce a structure change of CMDS. The execution of output function λ and

internal transition function δint is induced by a time driven internal event. The time of

an internal event is established by the time advance function ta.

• λ: SDS → Y

The output function λ can generate output events.

• ta: SDS → ℜ�
�

 ∪ ∞

As with the dynamic of atomic models, internal events are scheduled by the time

advance function ta. After each state transition the next internal event is established

by the time advance function.

The dynamic behaviour of an atomic model is identical to the behaviour in Classic DEVS.

Figure 3.11 shows the dynamic behaviour of a variable structure coupled model. The figure

depicts two external input events and one internal event. Reasons for an input event handling

can be an external input event at the input port of the coupled model itself or an external

output event at the output port of a sub component Md of the coupled model. The handling of

both events by the coupled model is identically. As a result of an event the structure related

state variable set HDS can be changed and with the concluding call of the time advance

function an immediate internal event can be induced. An internal event is handled by a

coupled model similar to the internal event handling of an atomic model, i.e. the event

handling can induce a change of the structure state set SDS, and in this case a change in the

set of sub components {Md} and/or the coupling sets EIC, IC and EOC.

Chapter 3. Discrete Event System Specification and Simulation

[55]

},...{ 0 nDSu ssSs =∈ },...{ 01 nDSv ssSs =∈
+

Figure 3.11 Dynamic behaviour of a coupled DSDEVS model

Examples of sequential model structure changes are shown in figure 3.12 a-d. The following

definitions of the structure state set describe the insert and change of sub components and

couplings as a result of internal events and changes of the sequential structure state set

si ∈ SDS by the function δint. The subsets X, Y and HDS and the select function of a structure

state si ∈ SDS will not be detailed.

Figure 3.12 Examples of sequential structure changes of a coupled model

a) Figure 3.12a depicts a coupled model CM without sub components.

D, { Md }, EIC, EOC and IC are empty sets

Chapter 3. Discrete Event System Specification and Simulation

[56]

b) In figure 3.12b the coupled model contains one sub component, the atomic model

am1, created as a result of the handling of an internal structure event i.e. the

execution of function δint.

D = { am1 }

Md = { Mam1
 }

EIC, EOC and IC are empty sets

c) Figure 3.12c depicts external input and output couplings created as a result of the

handling of an internal structure event i.e. the execution of function δint.

D = { am1 }

Md = { Mam1
 }

EIC = { (CM.Input,am1.Input) }

EOC = { (am1.Output,CM.Output) }

IC is an empty set

d) Figure 3.12d depicts the insert of sub component am2 and the change/creation of

several couplings as a result of the handling of an internal structure event i.e. the

execution of function δint.

D = { am1, am2 }

Md = { Mam1
 , Mam2

 }

EIC = { (CM.Input,am1.Input) }

EOC = { (am2.Output,CM.Output) }

IC = { (am1.Output, am2.Input)}

3.4 Extended Dynamic Structure DEVS

Sections 3.2 and 3.3 introduced the Classic DEVS formalism and several DEVS extensions.

Every extension has its advantages and widens the application field of DEVS in a different

direction, PDEVS generalises the specification and handling of concurrent events, DEVS

with Ports enables a more structured modelling and DSDEVS introduces dynamic structure

Chapter 3. Discrete Event System Specification and Simulation

[57]

changes at coupled model level during simulation time and significantly eases the modelling

of larger real systems. The extensions have one joint attribute: they are based on the Classic

DEVS formalism. Hence, the decision on one DEVS extension inhibits the use of advantages

of another one. This principle leads to the idea of a merging formalism to combine the

advantages of different approaches and widen the application field of the resulting

formalism. In [66] a first step into this direction is undertaken, the introduced PDEVS

formalism is a combination of the original PDEVS and DEVS with Ports. Further steps into

this direction are not known. The Extended Dynamic Structure DEVS (EDSDEVS)

combines Classic DEVS with the extensions: PDEVS, DSDEVS and DEVS with Ports. The

fusion results in a DEVS formalism with the following main characteristics:

• Formal model description by sets and functions

• Exact definition of simulation algorithms

• Modular, hierarchical and dynamic structure modelling and simulation formalism

• Dynamic behaviour description at atomic model level

• Dynamic structure description at coupled model level

• Exact behaviour definition at critical situations with concurrent events

• Substantial similarity between real system and model

The next section introduces the formal concept of EDSDEVS modelling with formal

descriptions and dynamic behaviour of atomic and coupled models. Section 3.4.2 goes into

detail of the EDSDEVS simulation concept with abstract simulator algorithms, message

handling and model function calls.

3.4.1 Formal Concept of EDSDEVS Modelling

The EDSDEVS formal descriptions of coupled and atomic models as a combination of sets

and functions are similar structured as the Classic DEVS formal description as introduced in

section 3.2.2.

Chapter 3. Discrete Event System Specification and Simulation

[58]

An atomic EDSDEVS model is a fusion of PDEVS with DEVS with Port atomic model

definitions. The atomic EDSDEVS model AMEDS is defined as an 8- tuple:

AMEDS = (X, Y, S, δext, δint, δcon, λ, ta)

• X = {(p,v) | p ∈ InputPorts, v ∈ Xp}

Y = {(p,v) | p ∈ OutputPorts, v ∈ Yp}

The definitions of both sets are identical to the definitions in DEVS with Ports as

introduced in section 3.3.1.

• S specifies the set of internal states and is identical to internal state set S of an atomic

Classic DEVS model.

• δext: Q × 	

 → S with X

b
 = {xi | xi = (p,v), p ∈ InputPorts, v ∈ Xp } and

Q = {(s,e) | s ∈ S, 0 < e < tnext

, elapsed time e = t - tlast }

The external state transition function δext handles a bag covering external inputs.

Each input consists of a pair of a discrete input v ∈ Xp and an input port p ∈

InputPorts. The set XP is the set of discrete inputs at port p and InputPorts is the set

of input ports of model AM. The function δext can induce an internal event with a

rescheduling of the time of the next internal event.

This extended definition of δext is a fusion of the δext definitions of PDEVS and

DEVS with Port.

• δint: S → S

The internal state transition function δint can establish a new internal state. The

execution of output function λ and internal state transition function δint is induced by

a time driven internal event. The time of an internal event is established by the time

advance function ta.

The definition is identical to definition in Classic DEVS.

• δcon: S × 	

→ S

Chapter 3. Discrete Event System Specification and Simulation

[59]

The confluent transition function δcon handles the execution order of δint and δext

functions during concurrent external and internal events. In spite of the same

function signature δcon(s, X
b
) the parameter X

b is different to that in the PDEVS

definition as described in section 3.3.2. Anyhow the three δcon definitions also apply

here.

This extended definition of δcon is based on the PDEVS δcon function definition.

Unlike in PDEVS the function has to handle a bag covering inputs. Each input

consists of a pair of discrete input and input port.

• λ: S → Y
b
 with Y

b = {yi | yi = (p, v), p ∈ OutputPorts, v ∈ Yp}

The output function λ can generate a bag covering outputs Yb
. In spite of the same

function signature Yb
 = λ (s) the function result Yb is different to that in the PDEVS

definition as described in section 3.3.2. The function result is a bag covering outputs

Y
b
={ yi | yi = (p, v) } each consisting of a pair of discrete output v ∈ Yp and output

port p ∈ OutputPorts. The set YP is the set of discrete outputs at port p and

OutputPorts is the set of output ports of model AM. If and which outputs are

generated depends on the internal state S.

This extended definition of λ is based on the PDEVS λ function definition. Unlike in

PDEVS the function generates a bag covering outputs each consisting of pairs of

discrete output and output port as introduced in DEVS with Ports.

• ta: S → ℜ�
�

 ∪ ∞

The time advance function ta schedules the time of the next internal event after each

state transition. The definition is identical to the definition in Classic DEVS as

introduced in section 3.2.2.

The figure 3.13 shows the dynamic behaviour of an atomic EDSDEVS model amEDS. At time

tu the confluent transition function δcon handles two concurrent events. The first event

contains a bag covering external inputs received by the atomic model amEDS. The figure

Chapter 3. Discrete Event System Specification and Simulation

[60]

depicts an example bag covering three external inputs received at two different input ports. A

concurrent internal event at tu was scheduled by the previous execution of the time advance

function ta. Depending on the specific implementation of function δcon sequence a) or

sequence b) is executed. The execution of the output function λ creates a bag covering

outputs. The depicted example bag ��

 covers two outputs at two different output ports.

amEDS

ttu

concurrent

external and

internal

event at tu

tlast

.

.

.

.

.

.

},...{ 00 minport xxX = },...{ 00 poutport yyY =

},...{ 0 qoutport yyY
j

=

i,j number of input and output ports

m,n,p,q number of different X and Y events per port

r number of internal states

X
b bag of input events

Yb bag of output events

X
b
u bag of input messages at tu

tu time of concurrent external and internal message

su state at time tu

su,su+1,su+2 ∈ S = {s0, ...sr}

inport0

inporti

Xb={xk | xk = (v,p),

v Xp,

p InputPorts}

},...{ 0 ninport xxX
i

=

Yb={yk | yk = (v,p),

v Yp,

p OutputPorts}

)},(),,(),,{(100 inportxinportxinportxX cba

b

u =

a)

b) su+1 = δint(su, tu)

su+2 = δext(X
b
u, su+1, e)

su+1 = δext(X
b
u, su, e)

with e = (tu - tlast)

su+2 = δint(su+1, tu)

outport0

outportj

example input bag:

su+2 = δcon(su, X
b
u, e)

calling a) or b) depends on

specific implementation of δcon

)},(

),,{(

1

0

outporty

outportyY

e

d

b

u =

example output bag:

tnext=tu

Figure 3.13 Dynamic behaviour of an atomic EDSDEVS model

Listings B.11 in appendix B shows pseudo code of an atomic EDSDEVS model.

A coupled EDSDEVS model is defined by the following 7-tuple:

CMEDS = (dEDS, SEDS, δx&s, δint, δcon, λ, ta)

• dEDS specifies the name of the coupled model.

• In the EDSDEVS formalism the coupled model structure consists not only of sets of

sub components and coupling relations as in DSDEVS, introduced in section 3.3.3,

Chapter 3. Discrete Event System Specification and Simulation

[61]

but also of additional interface definitions i.e. input and output port definitions. The

set of sequential structure states {s0, s1, ...,sn} = SEDS has to define all structure

variants of the coupled model CMEDS. Two model structure variants can vary in

different interface definitions, in contrast to DSDEVS where each model has a non-

variable interface with a single input and a single output port. Hence, a structure

state has to incorporate interface definitions with sets of input and output ports

additionally to the structure state definition as introduced in section 3.3.3. An

EDSDEVS structure state is defined by a 10-tuple:

si = (X, Y, HEDS, D, { Md

}, InputPorts, OutputPorts, EIC, EOC, IC)

• X and Y specify the sets of discrete input and outputs. The sets exactly match

the extended definitions of X and Y as introduced in section 3.3.1 with the

introduction of DEVS with Ports.

• The sets HEDS, D and Md exactly match the sets HDS, D and Md of the

DSDEVS formalism introduced in section 3.3.3.

• InputPorts and OutputPorts specify the sets of input and output port names

of the coupled model CMEDS. These two elements of the structure state si are

introduced by the EDSDEVS formalism.

• EIC, EOC and IC are the external input, external output and internal

couplings of CMEDS. The definition of the coupling relations exactly match

the definition as introduced with the DEVS with Ports extension in section

3.3.1.

• δx&s: Q × X
b
 → HEDS where Xb

 is a bag covering input, input port pairs and

Q = {(h,e) | h ∈ HEDS, 0<e<tnext, elapsed time e = t - tlast }

The external and state transition function δext handles a bag covering inputs. Each

input consists of a pair of:

Chapter 3. Discrete Event System Specification and Simulation

[62]

o a discrete input v ∈ Xp and an input port p ∈ InputPorts. The set XP is the set

of discrete inputs at port p and InputPorts is the set of input ports of model

CMEDS.

o a discrete output v ∈ Md.Yp and an output port p ∈ Md.OutputPorts where Md

is the model of the sub component d of the coupled model CMEDS. The set

Md.YP is the set of discrete outputs at port p and Md.OutputPorts is the set of

output ports of model Md.

o a discrete input v ∈ Md.Xp and an input port p ∈ Md.InputPorts where Md is

the model of the sub component d of the coupled model CMEDS. The set

Md.XP is the set of discrete inputs at port p and Md.InputPorts is the set of

input ports of model Md.

This extended definition of δext is a fusion and extension of the δext definitions of

DSDEVS, PDEVS and DEVS with Ports. In DSDEVS only state events induced by

output events of sub components are handled. However, an output port can have

coupling relations to multiple input ports. In this case there is a difference in the

handling of a single output event of a single source sub model or multiple input

events of different destination sub models. Hence, the external and state transition

function of EDSDEVS can handle both output and input events. However, the

functionality is in accordance with the description of the DSDEVS external and state

transition function δx&s introduced in section 3.3.3.

• δint: SEDS → SEDS

ta: SN → ℜ�
�

 ∪ ∞

The internal state transition function δint, and the time advance function ta exactly

match the functions of the DSDEVS formalism introduced in section 3.3.3.

• δcon: SEDS × 	

→ SEDS

Chapter 3. Discrete Event System Specification and Simulation

[63]

The confluent transition function δcon handles the execution sequence of δint and δext

functions during concurrent external and internal events.

The EDSDEVS formalism introduces the confluent transition function also at

coupled model level due to the fusion of PDEVS and DSDEVS. A coupled

EDSDEVS model handles external, state and internal events itself instead of only

forwarding them as in PDEVS. Hence and in contrast to PDEVS, in EDSDEVS

concurrent external and internal events can occur also at coupled model level.

Consequently, a confluent transition function to handle concurrent events is also

necessary at this level. The functionality is in accordance with the description of the

confluent transition function δcon for atomic model in this section.

• λ: SEDS → Y
b

The output function λ can generate a bag covering outputs Yb = {yi}. An output yi

consists of a pair of discrete output v ∈ Yp and output port p ∈ OutputPorts. The set

YP is the set of discrete outputs at port p and OutputPorts is the set of output ports of

model CMEDS. If and which output event is generated depends on the internal state

SEDS.

The output function λ in the EDSDEVS formalism merges three sources:

o The output function λ at coupled model level is introduced by DSDEVS.

o The definition of the function creating a bag covering outputs is based on

PDEVS.

o The output event structure with pairs of output/output port is introduced by

DEVS with Ports.

The figure 3.14 shows the dynamic behaviour of a coupled EDSDEVS model CMEDS. At

time tu the confluent transition function δcon handles concurrent external and internal events.

The first event is a bag covering inputs received at input ports by the coupled model CMEDS.

The figure depicts an example bag covering three external inputs received at two different

input ports. A concurrent internal event at tu was scheduled by the last execution of the time

Chapter 3. Discrete Event System Specification and Simulation

[64]

advance function. Depending on the specific implementation of function δcon sequence a) or

sequence b) is executed. The execution of the internal state transition function δint can change

the structure state su to su+1 or su+1 to su+2 and therefore the model structure of CMEDS to

����
∗ . The execution of the output function λ creates a bag covering outputs ��

. The

depicted example bag ��

 covers two outputs at two different output ports.

 Listings B.12 in appendix B shows pseudo code of a coupled EDSDEVS model.

},...{ 00 minport xxX = },...{ 00 poutport yyY =

},...{ 0 qoutport yyY
j

=},...{ 0 ninport xxX
i

=

},...{ 00 rinport xxX =

},...{ 0 sinport xxX
k

=

},...{ 00 voutport yyY =

},...{ 0 woutport yyY
l

=

),,(1 eXss
b

uuconu δ=
+

)},(),,(),,{(100 inportxinportxinportxX cba

b

u =

b

uX

b

uX

)},(

),,{(

1

0

outporty

outportyY

e

d

b

u =

b

uX

Figure 3.14 Dynamic behaviour of a coupled EDSDEVS model

Chapter 3. Discrete Event System Specification and Simulation

[65]

3.4.2 EDSDEV Simulation

The simulation engine for EDSDEVS models is a combination and extension of the

simulation algorithms of Classic DEVS, PDEVS and DSDEVS. The message handling of

coordinators are largely similar to simulators. Each coordinator holds its own time of next

internal event in tnext_c and searches the minimum time of next internal event in tnext of sub

components and in its own tnext_c.

 Figures 3.15 and 16 depict an EDSDEVS model example with the associated

simulation model components i.e. root coordinator, coordinator and simulator instances and

the message handling. The figure is based on and extends figure 3.7 depicting a Classic

DEVS model example with associated simulation model components and message handling.

The overall structure is very similar to the Classic DEVS simulation model execution except

for additions at the levels of coordinator and associated coupled model. Because of

complexity and clarity selected situations are shown in sections:

i. (Figure 3.15a) initialisation phase with i-message handling:

During the initialisation phase model component’s init functions are called because

of an i-message handling similar to Classic DEVS. Additionally, after structure

changes i.e. modification of the sub component set during the simulation phase the

init function is called too.

ii. (Figure 3.16b) *-message handling created due to an internal event of model am2:

The root coordinator advances the simulation clock and a *-message is firstly

created. The message is sent to the successor coordinator instance of coupled model

CM1 (not depicted). This coordinator instance compares the actual simulation time t

with its own next internal event time stored in tnext_c and determines that it is not

responsible for handling this event. Hence, the event is forwarded to the successor

coordinator instance of CM2. The coordinator instance is again not responsible for

handling the message itself but knows that a sub component scheduled the event.

The coordinator instance will then forward the message to the appropriate simulator

Chapter 3. Discrete Event System Specification and Simulation

[66]

instance associated with am2. The simulator instance of am2 calls the model

functions λ and δint. A result of calling λ could be a y-message sent back to the

subordinate coodinator instance of CM2. This coordinator instance reacts with the

call of the model function δx&s of CM2 and a messge forward to the simulator

instance of am3 due to an appropriate IC coupling.

iii. (Figure 3.16c) *-message handling created due to an internal event of model CM2:

The depicted situation is similar to 3.16b except that the coordinator instance of

CM2 determines that simulation time t and its tnext_c are equal. Hence, it has to handle

the *-message itself with calling λ and δint model functions of CM2 with the

possibility of generating a y-message sent to a sub component and/or superordinated

coordinator instance and of changing its sequential structure state SEDS.

iv. (Figure 3.16d) concurrent event handling with the confluent transition function δcon:

The figure depicts the handling of concurrent external and internal messages by the

coodinator instance of CM2. The confluent function of CM2 is called to handle the

concurrent messages. Depending on the specific implementation of δcon the external

transition function δx&s and internal transition/output functions δint, respectively, are

firstly called.The external message is concurrently handled by the function δcon and

forwarded to the simulator instance of sub component am2 as a x-message due to an

appropriate EIC. Calling the output function λ could cause a y-message sent to a sub

component and/or superordinated coordinator instance.

v. (Figure 3.16e) x-message handling:

(i) x-message at input0 of CM2 and due to an appropriate EIC at input0 of am2:

The first x-message is received by the coordinator instance of CM2. This

message is handled by the function δx&s of the coupled model itself and

concurrently forwarded to the simulator instance am2 due to an appropriate

EIC. Because no concurrent internal event exists the function δcon is not called.

Chapter 3. Discrete Event System Specification and Simulation

[67]

(ii) y-message at output0 of am2 and due to an appropriate IC forwarded as x-

message to input0 of am3:

Due to an internal event the model am2 generates a y-message. This y-message

is handled by the super-ordinate coordinator instance which calls the function

δx&s of its associated model CM2. The coordinator instance concurrently

forwards the y-message as an x-message to the simulator instance of am3

because an IC exists between the output port output0 of am2 and the input port

input0 of am3.

Figure 3.15 An EDSDEVS model example with associated abstract simulator elements,

messages and model function calls during initialisation phase

Chapter 3. Discrete Event System Specification and Simulation

[68]

Figure 3.16 An EDSDEVS model example with associated abstract simulator elements,

messages and model function calls during simulation phase

Chapter 3. Discrete Event System Specification and Simulation

[69]

Listings B.13 and B.14 in appendix B show pseudo codes of EDSDEVS coordinator and

simulator algorithms.

 The EDSDEVS formalism developed from this research is a fusion of Classic DEVS

with several extensions. It widens significantly the application area. This part of the research

is an as generic as possible modelling and simulation formalism based on DEVS. Further

extensions are desirable and essential. To establish a widely accepted modelling and

simulation approach extensions for parallel computing and graphical modelling are

necessary. There are also approaches for hybrid DEVS extensions i.e. the support of

continuous state changes. These proposals are recommended as further research.

Chapter 4. Model Management – Model Set Specification and Organisation

[70]

Chapter 4

Model Management – Model Set Specification and

Organisation

Zeigler introduced in [66] a simulation based system design approach. It is a plan –

 generation – evaluation process. The plan phase organises design alternatives with different

model structures and model parameters within defined system boundaries to satisfy given

design objectives. During the generation phase a specific model design is chosen and the

corresponding model is generated. This model is simulated during the evaluation phase using

an experimental frame derived from the design objectives.

 The System Entity Structure/Model Base framework (SES/MB) [52] [66] is such a

simulation based system design approach. It is specifically configured to define, organise

and generate modular, hierarchical models and was developed to assist an analyst in model

organisation and generation. To represent a set of modular, hierarchical models, the SES/MB

framework is able to describe three relationships: decomposition, taxonomy and coupling.

Decomposition means the formalism is able to decompose a system object called ‘entity’ into

sub-entities. Taxonomy means the ability to represent several possible variants of an entity

called ‘specialisation’. To interconnect sub-entities the definition of a coupling relationship

is necessary.

 The literature e.g. [52], [65] [66] and [69] describes slightly different specifications

of the SES/MB framework. Hence, section 4.1 defines a classic SES/MB framework

according to [52] and [66] as a basis for further extensions introduced in section 4.2.

Chapter 4. Model Management – Model Set Specification and Organisation

[71]

4.1 Classic System Entity Structure/Model Base Framework

The SES/MB framework approach is [52] [66]:

• The framework consists of two parts: (i) the system entity structure and (ii) the

model base.

• A modular, hierarchical model is constructed based on: (i) the declarative system

knowledge coded in a SES and (ii) predefined basic system models stored in a MB.

• The partitioning of a modular, hierarchical model is highly dependent on the design

objectives. Model parameters are a typical example. They are not really a part of the

model composition structure but nevertheless they can become a part of the system

entity structure if they are crucial for describing design alternatives.

• The model generation from a SES/MB is a multistage process. The first step is a

graph analysing and pruning process to extract a specific system configuration.

Based on this information a modular, hierarchical model is generated.

The SES is represented by a tree structure containing alternative edges starting at decision

nodes. With the aid of different edge types and decision nodes a set of different model

variants can be defined. To choose a specific design and to create a specific model variant

the SES has to be pruned. The pruning process decides at decision nodes which alternative(s)

to chose as a consequence of specified structure conditions and selection rules. The result of

this process is a Pruned Entity Structure (PES) that defines one model variant. A

composition tree is derived from a PES. The composition tree contains all the necessary

information to generate a modular hierarchical model using predefined basic components

from the model base (MB). Figure 4.1 shows the principal organisation and the

transformation process: SES → PES → Composition Tree + MB → Modular, Hierarchical

Model.

Chapter 4. Model Management – Model Set Specification and Organisation

[72]

Figure 4.1 SES/MB formalism based model generation

The used SES definition is based on definitions published in [52] and [66]. A SES is a

labelled tree consisting of different nodes with optional properties and different edge types.

Figure 4.2 depicts a SES example which is referenced by the definition.

Figure 4.2 A SES example

The SES formalism differentiates four types of nodes: (i) entity, (ii) specialisation, (iii)

aspect and (iv) multi-aspect. An entity node represents a system object. There are two

subtypes of entity nodes – (v) atomic entity and (vi) composite entity. An atomic entity

(figure 4.2 (v)) cannot be broken down into sub-entities. The model base contains a

corresponding model for each atomic entity. Atomic models (described in chapter 3) and

atomic entities must not be mixed at this point i.e. an atomic entity can also correspond to a

coupled model in the model base. A composite entity (figure 4.2 (vi)) is defined in terms of

other entities, which can be of type atomic or composite entity. Thus, the root node of a tree

is always of type composite entity, while all leaf nodes are always of type atomic entity. The

root node and each composite entity node of the tree has at least one successor node of type -

Chapter 4. Model Management – Model Set Specification and Organisation

[73]

specialisation (figure 4.2 (ii)), aspect (figure 4.2 (iii)) or multiple-aspect (figure 4.2 (iv)).

That means there is an alternate mode between entity nodes and the other node types. The

definition of the different node types can be briefly summarised as follows:

atomic entity node = (name, {av1,… avn},selection constraints}

composite entity node = (name, successors, {av1,… avn})

An entity node is defined by a name and is of type atomic or composite. Both node types

may have attached variables av. A composite entity node can have a single successor node of

type specialisation or multi-aspect or multiple successor nodes of type aspect. An atomic

entity node can have attached selection constraints when it is a successor of a specialisation

node.

specialisation node = (name, successors, selection rules)

A specialisation node is defined by a name and a set of successor nodes. In the tree it is

indicated by a double-line edge. A specialisation node defines the taxonomy of a

predecessor entity node and specifies how the entity can be categorised into specialised

entities. A specialisation node always has successor nodes of type atomic entity to represent

the possible specialisations. A specialisation node can define additional selection rules to

control the way in which a specialised entity is selected during the pruning process. Selection

constraints are added to successor entity nodes of a specialisation node. The specialisation

node A in figure 4.2 has two specialisations defined by the nodes A1 and A2. During the

pruning process one of these specialisations is chosen. Due to the selection rule at node A2 it

is mandatory to chose node Bdec1 when node A2 is chosen.

aspect node = (name, successors, coupling specification)

An aspect node is defined by a name, a set of successor nodes and coupling information. It is

indicated by a single-line edge in a SES tree. An aspect node defines a single possible

decomposition of its parent node and can have multiple successors of type atomic and/or

Chapter 4. Model Management – Model Set Specification and Organisation

[74]

composite entity. The coupling specification is a set of couplings and describes how the sub-

entities, represented by the successor nodes, have to be connected. Each coupling is defined

by a 2-tuple. Each tuple consists of sub-entity source and destination information, e.g.

(SourceEntity.outputport, DestinationEntity.inputport). The composite entity B in figure 4.2

has two decomposition variants defined by the aspect nodes Bdec1 and Bdec2. During the

pruning process one of the decomposition variants has to be chosen.

Using SES/MB to describe a DEVS model an aspect node defines the composition of a

coupled model.

multiple aspect node = (name, successor, coupling specification, number range property)

The definition of a multiple aspect node is similar to an aspect node. However, it defines

additionally a number range property and has only one successor node of type atomic entity.

It is indicated by a triple-line edge in a SES tree. A multiple aspect node also defines a

decomposition of a composite entity, but all sub-entities have to be of the same entity. Only

the number of sub-entities is variable according to the attached number range property. The

multiple aspect node Cmaspec in figure 4.2 illustrates the decomposition of composite entity C

that may be composed by one, two or three sub-entities L.

A multiple aspect node also defines the composition of a coupled model.

In figure 4.3 a SES/MB example points up the complete process of model generation from a

SES/MB to a modular hierarchical model. The SES tree defines a coupled model CM1 with

two structure variants. The two variants are defined by the specialisation node CM2_spec

and specialisations CM2.1 and CM2.2. The model base contains several basic components

which are referenced by the SES. The different possible pruning results are PES variant1 and

variant2. After a transformation to a composition tree and a model generation, with the basic

components taken from the model base, the final results are the modular hierarchical model

variant1 and variant2, respectively. The SES tree does not define selection rules or selection

Chapter 4. Model Management – Model Set Specification and Organisation

[75]

constraints. Hence, an analyst has to use other, external criteria to decide which alternative

structure should be chosen during the pruning process.

Figure 4.3 Detailed pruning and model generation example

4.2 Extension of the System Entity Structure/Model Base Framework

Originally the SES/MB framework was developed to assist an analyst during the model

variant selection and a subsequent model generation. Pruning as a part of these processes is a

Chapter 4. Model Management – Model Set Specification and Organisation

[76]

stepwise procedure with decisions at decision nodes under the control of selection rules and

structure constraints. Both rules and constraints represent supplementary

structure-knowledge as an addition to the structure-knowledge coded in the SES tree. The

supplementary structure-knowledge is used to support the selection of design alternatives

and to avoid invalid structures. This knowledge representation is customised to its usage

during the pruning. The upper part of figure 4.4 depicts the steps of the original pruning

process. An analyst initialises attached variables and makes decisions as long as unpruned

decision nodes exist. A decision at a specific decision node can cause the pruning at other

nodes according selection rules and structure constraints. The pruning in classic SES is a

n-step procedure (n is equal or less than the number of decision nodes) with the goal to

synthesise one valid model configuration.

 In this research a new pruning principle is introduced. The lower part of figure 4.4

depicts the steps of the new pruning process. The new process is based on information

delivered by the optimisation method as depicted in figure 2.5 and is carried out in a single

step. A structure validation based on structure-knowledge is carried out after the pruning -

not during - as in the original SES/MB framework. This important development means that

the new pruning procedure requires another representation for structure-knowledge

originally coded in selection rules and structure constraints. The new pruning of a SES tree is

carried out in one step based on the structure parameter set XSi. The model structure is

verified in a second, following step. The new pruning algorithm is a 2-step procedure. Figure

4.4 identifies the differences between the original and new principle. A detailed description

of the new approach is given in chapter 5.

 Structure conditions as a new, alternative structure-knowledge representation are

added to composite entity nodes. They are used as the alternative to selection rules and

structure constraints as defined in [52] and [66]. During the pruning sub trees are removed.

The remaining structure conditions are evaluated to verify the PES. Only if all structure

conditions are true the PES is valid.

Chapter 4. Model Management – Model Set Specification and Organisation

[77]

Figure 4.4 Comparison original pruning – new pruning principle

Figure 4.5 shows an example SES with a structure condition added to the composite entity

node ROOT. The SES defines 12 different design variants whereas not all variants are valid

according the structure condition. The figure depicts two variants, one valid and one invalid.

If the generated model structure contains the atomic entity nodes A2, D, E, F, L, it would be

valid because the structure condition p1+p2+1*p3=3+3+1*3<12 is true. The second model

structure variant contains the atomic entity nodes A2, D, E, F, L, L. It is not valid because the

structure condition p1+p2+2*p3=3+3+2*3<12 is false.

Chapter 4. Model Management – Model Set Specification and Organisation

[78]

Figure 4.5 SES example with a structure condition

 Chapter 5 provides the description of the application of the extended SES/MB

framework. The chapter describes the combination of the introduced EDSDEVS formalism

and SES/MB approach with an optimisation method to the simulation based parameter and

structure optimisation as introduced in principle in section 2.3. The descriptions of the

pruning and the terminal model generation processes, as a part of the SES/MB framework

description, are provided in the context of other algorithms in chapter 5.

Chapter 5. A Framework for Modelling, Simulation and Optimisation

[79]

Chapter 5

A Framework for Modelling, Simulation and

Optimisation

Chapter 2 introduced the key research concept - simulation based parameter and structure

optimisation as a merging framework of three methods, optimisation, model management,

and modelling and simulation. Chapter 3 introduced EDSDEVS as a modular, hierarchical

modelling and flexible simulation formalism as applied in the framework, and chapter 4

defines the SES/MB approach as a suitable model management framework. In this chapter a

complete framework for combined parameter and structure optimisation experiments is

proposed. After a brief description of the general framework structure, its methods are

discussed in detail and the entire algorithm is summarised. Finally implementation details to

describe a SES/MB structure with XML are introduced.

5.1 General Framework Structure

A fundamental overview of a simulation based parameter and structure optimisation

experiment is shown in figure 2.5. A more detailed structure of the framework with concrete

elements and information flow is depicted in figure 5.1. The interface definitions between

the three modules are a fundamental part of this approach. They bind the named methods

together to synthesise a simulation based parameter and structure optimisation.

On closer examination of the framework it is crucial to divide an optimisation experiment

into two phases:

Chapter 5. A Framework for Modelling, Simulation and Optimisation

[80]

1. Initialisation phase

The model management reads and analyses a meta-model. Results of the analysis

are information about the multidimensional search space (XS, XP, DS ,DP). The

optimisation module is initialised with this information.

2. Optimisation phase

During the optimisation phase the optimisation method explores the search space

within a loop. Each examined search space point i.e. an ordered set of values

(��
, 	��

) is delivered to the model management module. This module starts up the

processes: structure synthesis, model generation, model simulation and performance

estimation. The optimisation loop ends when a stop criterion is fulfilled. Examples

of stop criteria are (i) going below a minimum alteration rate or (ii) exceeding the

maximum number of optimisation cycles. The result of a successful finished

optimisation phase is a parameter and structure optimised model.

Figure 5.1 Structure of the simulation based optimisation framework

Chapter 5. A Framework for Modelling, Simulation and Optimisation

[81]

The simulation based optimisation framework is segmented into the following modules,

methods and interfaces as depicted in figure 5.1:

1. Model Management Module: meta-model specification

A meta-model definition is read and interpreted by the model management during

the initialisation phase. A meta-model is defined in the form of a platform and

implementation independent XML file. The basic components of a MB are regular

EDSDEVS model components. They are referenced by the XML file with a model

name and a model instance name. The result of this step is a data structure with an

SES tree and references to a MB.

2. Interface Model Management Module – Optimisation Module: meta-model analysis

In a second step during the initialisation phase the model management module

analyses the SES tree and establishes the search space. The search space is defined

by a set of variables with their domains. These sets XS, DS, XP and DP are sent to the

optimisation module.

3. Interface Optimisation Module – Model Management Module: transformation of a

search space points into a model configuration

The model management module receives a search space point (XSi XPi) within the

optimisation loop. The sets XSi and XPi are used to prune the SES, to synthesise the

model structure and to parameterise the model. The selected model structure and

model parameters are sent to a model generator as a platform and implementation

independent XML files.

4. Model Generation Method

Based on the received XML file with model structure information and references to

basic components the model generator creates an EDSDEVS model.

5. Simulation Method

Chapter 5. A Framework for Modelling, Simulation and Optimisation

[82]

The EDSDEVS model is executed by an EDSDEVS simulator. In this research the

modelling and simulation method is based on the EDSDEVS formalism. Principally

this approach is not limited to EDSDEVS or DEVS formalisms exclusively.

6. Interface Model Management and Simulator – Objective Function

In this approach the objective function gets both simulation results from the

simulator and model structure selection results from the model management module

to establish the performance of the current model structure and parameter set.

7. Optimisation Method

The optimisation method establishes the next search space points to examine in a

loop until the stop criterion is fulfilled. The search space points are chosen based on

the search space definition and on previous objective function results.

5.2 Interface: Optimisation Module – Model Management Module

During the initialisation phase, the Model Management Module has to analyse the SES tree

to transform formal meta-model structure information into numerical data useable by the

Optimisation Module. Together with the model parameters the information is sent as

initialisation data to the Optimisation Module. The information, coded in the four sets XS, DS,

XP and DP is used to build the set X
*
 = XP ∪ XS and the corresponding domain set

D
*
 = DP ∪ DS. During the optimisation phase repeated in each optimisation loop cycle the

optimisation method calculates a numerical data set 	�
∗= XPi ∪ XSi. The set 	�

∗ is sent to the

Model Management Module, which determines based on this information a new model

configuration, i.e. a new model structure and initial model parameters. Both transformations

are described by an example illustrated in figures 5.2 and 5.3.

 The main task of the first transformation is to convert SES structure information to a

structure parameter set XS and the corresponding domain set DS. This is done by a tree

analysis starting at the root node, traversing the tree in a defined direction and considering

every node. If a node is a decision node, i.e. it is a specialisation node, multiple aspect node

Chapter 5. A Framework for Modelling, Simulation and Optimisation

[83]

or composite entity node with alternative successor nodes, a structure parameter xSi is added

to the structure parameter set XS and a corresponding domain dSi to the domain set DS. The

domains of specialisation node and composite entity node are {1, ..., number of variants}.

The domain of a multiple aspect node is defined by its attached number range property.

 Two general principles can be applied to traverse the tree: (i) depth-first and (ii)

breadth-first analysis. An advantage of the breadth-first analysis is the arrangement of the

variables. If it can be assumed that variant decisions at a higher level of the SES tree have

larger effects on the overall model structure than decisions near the leafs, a breadth-first

analysis should be preferred. The breadth-first analysis sorts the elements of XS and DS as

follows: elements on the left hand side of the ordered set correspond to higher levels of the

SES; elements on the right hand side correspond to decision nodes nearer the leafs. An

optimisation method could take this into account. Figure 5.2 illustrates the algorithm for

creating structure parameter set XS and the corresponding domain set DS based on SES tree

information. The analysis and XS, DS set build-up order is marked with small sequence

numbers.

Figure 5.2 Transformation SES → set XS and set DS

Chapter 5. A Framework for Modelling, Simulation and Optimisation

[84]

The breadth-first analysis starts at the root node A, a non-decision node. Next nodes are non-

decision nodes Adec and B. The composite entity node C is the first decision node. It has two

alternative successors. A first parameter xS1 is added to set XS with the domain dS1 = {1, 2}.

The next examined nodes are Bdec, Cdec1, Cdec2, D, E, F, G, H and I - they are non-decision

nodes. The next examined node, the multiple aspect node Dmaspec is a decision node. The

value of its number range property is {2, 3, 4}. A second parameter xS2 is added to XS with

the domain dS2 = {2, 3, 4}. The next node, the specialisation node Espec is again a decision

node. It has three alternative successor nodes. A third parameter xS3 is added to XS with the

domain dS3= {1, 2, 3}. The last nodes analysed K, E1, E2 and E3 are non-decision nodes. The

example SES has three decision nodes. The resulting structure parameter set is

XS = {xS1, xS2, xS3} with the corresponding domain set DS = {dS1, dS2, dS3} with the above

determined domains. On the basis of the combination of these sets XS, DS, the model

parameter set XP and its corresponding domain set DP the optimisation method is able to

search the search space. Additional SES tree information e.g. the structure condition at node

A and the attached variables p1 and p2 in figure 5.2 are irrelevant during the initialisation

phase.

 The second transformation is the reverse of the first. The Model Management

Module receives a point in the search space from the Optimisation Module i.e. the numerical

data set 	�
∗= XPi ∪ XSi, where set XSi codes a specific model structure and set XPi codes its

model parameters. It has to synthesise the corresponding model structure and has to infer the

model parameters. The transformation has to traverse the tree in the same direction as during

the first in the initialisation phase. At each decision node the next element of current

structure parameter set XSi is used to decide: (i) which successor of a composite entity node

with alternative successors nodes is chosen, (ii) which specialisation of a specialisation node

is chosen or (iii) how many successors of a multiple aspect node are incorporated into the

PES. After pruning the model structure is verified with the evaluation of all structure

conditions. If a structure is invalid the specific set 	�
∗ will be refused and this information is

Chapter 5. A Framework for Modelling, Simulation and Optimisation

[85]

sent to the Optimisation Module. It marks this point in the search space as prohibited and

determines a new one. Figure 5.3 illustrates the principle of this transformation. The analysis

and pruning order is marked again with small sequence numbers.

Figure 5.3 Transformation XSi + SES → PES

The breadth-first analysis starts at the root node A and continues as already described before.

The first decision node of the SES tree in figure 5.3 is composition entity node C. The first

element in XSi is xS1=1, i.e. the first aspect node Cdec1 is chosen for the PES. The next

decision node is the multiple aspect node Dmaspec and the corresponding set element is xS2=4,

i.e. the PES contains four nodes K. The last decision node is specialisation node Espec and the

corresponding set element is xS3=2, i.e. the PES contains the second specialisation of node

Espec. After pruning, the attached variables are calculated and the PES is verified by

evaluating the relevant structure conditions. In the example in figure 5.3, the aspect node

Cdec1 and four atomic entity nodes K were chosen. Therefore, the structure condition at node

Chapter 5. A Framework for Modelling, Simulation and Optimisation

[86]

A is evaluated as follows: p1 + ∑p2i = 4 + 8 < 13 and from this it follows that the PES is

valid.

5.3 Interface: Model Management Module – Modelling and

Simulation Module

Each optimisation cycle requires a change and adaptation of the simulation model. If the

structure parameters in XSi are changed, a new simulation model structure has to be

generated. Otherwise, if just the model parameters in XPi are changed, it is adequate to re-

initialise the model parameters. As illustrated in figure 5.1 all necessary information is sent

from the Model Management Module to the Model Generator of the Modelling and

Simulation Module. The Model Management Module creates XML files describing the

model structure. EDSDEVS basic components, predefined in the MB, XML files and current

model parameters coded in set XPi are used by the Model Generator to generate the entire

EDSDEVS model.

 The use of a standardised XML model description for information exchange

decouples the two modules. It is based on W3C XML schema Finite Deterministic DEVS

Models introduced in [30] and [31]. The XML interface uses the atomic and coupled model

interface descriptions with model and port names. The coupled model description described

in [31] is currently work in progress and does not contain all necessary description elements

for this approach. Therefore, the composition description of coupled models additionally

defines sub model names and coupling specification. The coupling specification defines

external input (EIC), external output (EOC) and internal coupling information (IC). An

example with corresponding XML files is illustrated in figure B.1 and listings B.17 and B.18

in appendix B.

 The decoupling of Model Management Module and Modelling and Simulation

Module using XML files eases the modelling and verification of the basic components

Chapter 5. A Framework for Modelling, Simulation and Optimisation

[87]

without the Model Management Module. Additionally it will enable and ease the use of

different simulator implementations; however this will be the subject of future work.

5.4 Interface: Modelling and Simulation Module – Optimisation

Module

The objective function, defined in the Optimisation Module, (figure 5.1), estimates the

performance of the current model structure and parameter values. The function gets its input

parameters from the Modelling and Simulation Module. These are the simulation results

Yi(XSi, XPi) and simulation response function results R(Yi(XSi, XPi)) respectively. Further input

parameters are delivered by the Model Management Module. These are the model structure

results Pi(XSi), which are based on evaluation of attached variables after pruning the SES. An

example is illustrated in figure 5.2. The aspect nodes Cdec1 and Cdec2 and the atomic entity

node K define the attached variables p1 and p2i. After the pruning process illustrated in figure

5.3 the values of p1 and p2 are calculated as follows: Pi(XSi) = {p1;∑p2i} = {4;8}. These

values may be used as further objective function parameters.

 The result F
*
(R(Yi), Pi) of the objective function is evaluated by the optimisation

method. As a consequence of the often stochastic nature of simulation problems, a random

based optimisation method is preferable. Two established random based algorithms inspired

by the principle of the evolution of life are the Genetic Algorithm (GA) introduced by

Holland [20] and the Evolutionary Strategy (ES) introduced by Rechenberg [50]. The origins

of ES are continuous parameter problems whereas current GAs support hybrid problems.

There is an extensive and varied body of literature on this topic. Genetic algorithms have

delivered robust solutions for various simulation based optimisation problems e.g. in [47]

and [49]. Experiments realised within the scope of this research have shown that a GA is

applicable as an optimisation method for the simulation based optimisation approach.

 The methods of the simulation based parameter and structure optimisation

framework described in this chapter are integrated into a general GA algorithm (listing B.19

Chapter 5. A Framework for Modelling, Simulation and Optimisation

[88]

in appendix B). The resulting algorithmic summary of the whole framework is introduced in

the next section.

5.5 Algorithmic Summary of the Framework

As described in the preceding sections, the proposed simulation based parameter and

structure optimisation framework is composed of different methods that form a uniform

optimisation approach. The following algorithm, based on the general description in [54],

summarises the fundamental operations using a GA as optimisation method.

Initialisation Phase:

0. Analyse the SES and establish X*
 = XP ∪ XS and D*

= DP ∪ DS

1. Initialise a population of individuals (generation 0) with different 	�
∗ = XPi ∪ XSi

Optimisation Phase (repeat until stop criterion is fulfilled):

2. Estimate the fitness of all individuals of the current generation

Repeat for each individual

2.1. Prune SES with XSi

2.2. If structure condition is valid, establish Pi(XSi) or otherwise mark current

individual as invalid and continue with next individual

2.3. Generate EDSDEVS model

2.4. Simulate EDSDEVS model and get result Yi(XSi, XPi)

2.5. Evaluate the simulation response function R(Yi(XSi, XPi)) by repeating step 2.4

2.6. Evaluate the objective function F*
(R(Yi), Pi)

3. Select pairs with m individuals and create descendants using crossover

4. Mutate the descendants

5. Exchange individuals of the current generation with descendants based on a

substitution schema to create a new generation

A disadvantage of a conventional GA is the missing memory. It is possible that in different

generations the same individual is repeatedly examined. Because of the time consuming

Chapter 5. A Framework for Modelling, Simulation and Optimisation

[89]

fitness estimation of one individual in simulation based optimisation, the addition of a

memory method is vitally important. It has to store already examined individuals with their

resulting F*
(R(Yi), Pi). This extension leads to the following, final algorithm summarising the

fundamental operations of the simulation based parameter and structure optimisation

approach using a GA as optimisation method:

Initialisation Phase:

0. Analyse the SES and establish X*
 = XP ∪ XS and D*

= DP ∪ DS

1. Initialise a population of individuals (generation 0) with different 	�
∗ = 	��

∪ 	��

Optimisation Phase (repeat until stop criterion is fulfilled):

2. Estimate the fitness of all individuals of the current generation

Repeat for each individual

2.1. Check memory if current individual is known. In case of ‘true’: continue with

next individual

2.2. Prune SES with XSi

2.3. If structure condition is valid, establish Pi(XSi) or otherwise mark current

individual as invalid and continue with next individual

2.4. Generate EDSDEVS model

2.5. Simulate EDSDEVS model and get result Yi(XSi, XPi)

2.6. Evaluate the simulation response function R(Yi(XSi, XPi)) by repeating step 2.5

2.7. Evaluate the objective function F*
(R(Yi), Pi)

2.8. Store 	�
∗ and F*

(R(Yi), Pi) in memory

3. Select pairs with m individuals and create descendants using crossover

4. Mutate the descendants

5. Exchange individuals of the current generation with descendants based on a

substitution schema to create a new generation

Chapter 5. A Framework for Modelling, Simulation and Optimisation

[90]

5.6 Definition of a Model Set with XML SES/MB

In chapter 4 the extended SES/MB framework for the simulation based optimisation

framework was formally introduced. This section describes the meta-model definition with

the framework in detail. In this approach an SES/MB meta-model definition is based on

XML [64]. Therewith the definition is platform and implementation independent. The usage

of XML has the potential to enable the development of further extensions e.g. a graphical

model designer. Figure 5.4 depicts the UML 2.0 [61] class and composition structure

diagram of the XML schema and listing B.15 in appendix B contains the document type

description (DTD [64]). Both the schema and the DTD are describing the structure of an

SES/MB XML file.

The structure is divided into three main sub structures (i) SES tree, (ii) MB, (iii) properties:

1. The SES tree sub structure is defined within the ses sub tree of the XML structure.

The six nodes (i) composite, (ii) atomic, (iii) multiaspect, (iv) aspect,

(v) specialisation and (vi) specialisation-entity correspond to the different entity

types of the formal SES/MB description as introduced in chapter 4. An exception is

the specialisation-entity node which matches an atomic node. It is introduced to

eases the SES XML file verification. The connections within the UML class and

composition diagram defines the container class/contained class relationship and the

m:n relations between both components. Each component has one attribute, the

entity name esname. This name is used to logically connect XML elements within

the XML SES, MB and property sub structures e.g. an atomic entity definition from

the ses sub tree with the mb_atomic model implementation definition from the

modelbase sub tree.

2. The MB is defined within the modelbase sub structure. The sub structure references

(a) model implementations and defines (b) model interfaces:

a. Nodes of the type mb_atomic and mb_specializationentity references basic

components. The models are not directly defined within an SES/MB XML

Chapter 5. A Framework for Modelling, Simulation and Optimisation

[91]

file. The above nodes refer to a model implementation. The attribute

classname refers to the model implementation class name and the attribute

modelname names the specific model instance name. Both class and instance

names are necessary to enable multiple usage of a component. The node

mb_aspect is not a reference to a model implementation but is used to

synthesise a model during model generation.

b. Nodes of the type atomic, specialization and aspect have attached coupling

information. Hence the corresponding modelbase nodes mb_atomic,

mb_aspect and mb_specialization define interfaces with input and output

ports. Each model i.e. the corresponding structure in the modelbase can have

several inports and outports named with the attribute name and combined in

list structures inports and outports. Even though a specialisation node does

not have a model implementation it has a definition in the modelbase sub

tree. All child nodes of a specialisation share the same interface description

which is defined once at parent node level.

3. To avoid scattered node property definitions all properties are defined in the

properties sub structure. An aspect node defines a coupled model i.e. besides the

sub components defined within the ses sub structure additional coupling information

are necessary. A modelcouplings sub structure with a corresponding name in the

esname attribute describes the coupling information in eic, eoc and ic lists. The

number of possible children of a multiple aspect node is defined by the

varNumberOfComponent structure. Nodes can have attached variables defined

within the var structure and coupled with the esname attribute to the corresponding

ses sub structure. Optional structure conditions are defined within the constraint

structure.

Chapter 5. A Framework for Modelling, Simulation and Optimisation

[92]

Figure 5.4 UML Diagram of SES/MB XML Schema

The example SES in figure 5.5 defines two structure variants through two different

specialisations A1 and A2 at Aspec. With the structure condition at the ROOT entity the PES

can be verified after pruning. Figure 5.5 depicts the structure variants after pruning and

model generation. Due to the structure condition only one model variant is valid. The listing

B.16 in appendix B shows the corresponding meta-model definition with an SES/MB XML

file. The three sub structures ses, modelbase and properties are separated with an empty line,

XML elements, attributes and values are highlighted with different colours.

Chapter 5. A Framework for Modelling, Simulation and Optimisation

[93]

Figure 5.5 An SES/MB XML example – SES tree with both valid and invalid model

structure variants

The next chapter starts with an overview of modelling and simulation of manufacturing

systems and demonstrates the application of the introduced framework with a project from

industry.

Chapter 6. Parameter and Structure Optimisation of Manufacturing Systems

[94]

Chapter 6

Parameter and Structure Optimisation of

Manufacturing Systems

This chapter demonstrates the application of the introduced framework for a simulation

based parameter and structure optimisation with a real industrial project. It starts with a short

review of types, components and complexity of manufacturing systems in the context of

modelling and simulation. Current manufacturing system planning concepts and a range of

modelling and simulation concepts for manufacturing system simulation are presented in an

overview.

 A broad choice of modelling and simulation packages is commercially available,

developed to reflect the changing requirements of manufacturing applications. As discussed

in chapter 2 not all demands of manufacturing modelling and simulation are satisfied

optimally. A real life example using the approach developed in this research demonstrates

how this can be accomplished.

6.1 Manufacturing Systems

The focus of manufacturing is the combination and transformation of raw material to a

product with a market potential using industrial machines [21] [22]. This is a very simple

principle but is difficult to achieve and maintain. The challenge is that the market potential

and the requirements of manufacturing system are changing continuously. A manufacturer

who does not adapt will lose competitiveness and vice versa a company that handles these

Chapter 6. Parameter and Structure Optimisation of Manufacturing Systems

[95]

changes most effectively will succeed. A major issue for managers and engineers is the

continuous analysis of manufacturing system performance and the use of methods to

improve operations and adapt to new market situations. Analysis using modelling and

simulation is potentially a powerful management method.

 Depending on the point of view it is possible to differentiate between several types

of manufacturing systems. Two widely used, described in more detail in [5] are the

following:

• serial system

An assembly line as a typical example of a serial system is a sequential set of

workstations connected by material handling systems. Component parts are

assembled or machined to produce a finished product in a line. The assembly

activity can be divided into work elements as the smallest unit of productive work. A

subset of work elements are assigned to each workstation. A work piece passes the

complete line in a sequence. After leaving the final workstation the product is

complete. Such systems are often used to produce a high volume of a small number

of similar products. Figure 6.1 shows an example of a serial system with several

lines with sub assembly manufacturing and a final end product assembly line.

Figure 6.1 General assembly system layout (source [5])

Chapter 6. Parameter and Structure Optimisation of Manufacturing Systems

[96]

• shop scheduling system

In contrast to a serial system a job scheduling system manufactures a variety of

different products. Work pieces can follow different routes with significant different

processing time at a workstation. Regularly work pieces are combined in batches or

jobs of one or more parts which are manufactured on the same route i.e. with the

same production sequence and similar processing time. If all batches are processed

in the same sequence of workstations the system is named flow shop. In contrast, in a

job shop each batch type has the same production sequence. With a growing

flexibility and pressure to decrease manufacturing cost the complexity of job shop

systems is increasing considerably. Hence the planning of job shop systems is

making greater than ever demands.

6.2 Modelling and Simulation of Manufacturing Systems

The simulation of manufacturing and material handling systems is one of the most important

applications of discrete event modelling and simulation techniques [7]. These techniques

have been successfully used as an aid in the design of new systems as well as an evaluation

tool for improvements to existing systems, as a daily staffing, material and operation

planning tool and so on.

 Even though both the types of manufacturing systems and the analysis issues vary

substantially the different modelling and simulation techniques share some common

characteristics as described in the following sections.

6.2.1 Simulation Model Level of Detail

In principle every model is an approximation of the real world. Depending on the analysis

objectives irrelevant characteristics and details can be omitted when creating a model. In

simulation literature this principle is called level of abstraction [51] because the model is an

abstraction or approximation of the real system. The appropriate level of detail can

Chapter 6. Parameter and Structure Optimisation of Manufacturing Systems

[97]

distinguish between valid and invalid or successful and unsuccessful simulation experiments.

It is claimed that a good rule is to add details step by step during a model validation process

because starting with a low level of detail usually leads to fewer simulation results to be

validated [51]. The analyst stops the process when the model is close enough to real system

behaviour to provide results for analysis. This validation approach is an iterative process that

results in a sufficiently accurate model. Figure 6.2 depicts the correlation between model

detail and validation time [51]. The asymptotic behaviour of the relationship may mean more

effort to increase the level of detail from 95% to 100% than creation of the initial model with

95% accuracy.

Figure 6.2 Model detail during model validation (source [51])

6.2.2 Fundamental Components

Manufacturing systems produce a wide range of products with many types of production

methods using many different system layouts. Nevertheless there are common components

that can describe many manufacturing operations. These common components are the basis

elements of a simulation model [51]. Table 6.1 depicts these basic elements.

Chapter 6. Parameter and Structure Optimisation of Manufacturing Systems

[98]

Product Resource Demand Control

Parts/pieces Equipment layout Customer orders Warehouse management

Routings Equipment costs Start date Inventory control

Process time Number of machines Due date Shop floor control

Setup time Failure WIP inventory WIP tracking

Bill of material Maintenance Restricted resources

Yield Number of operators Station rules

Rework Shift schedules

Table 6.1 Fundamental components of manufacturing systems (source [51])

Product. Parts or pieces are the products manufactured. Products may be handled as a

single item or production unit or combined to batches depending on the manufacturing

process named batch or job. A batch can be described as a production unit in a subsequent

process. Products are manufactured in a defined sequence, the routings. Depending on the

manufacturing process and on the product the routing can be sequential e.g. in an automobile

assembly line i.e. a serial system or complex e.g. in a semiconductor production process i.e.

a job scheduling system. For each manufacturing step the setup and processing time

determine the total cycle time. These times depend on the machine and/or product and can be

deterministic or stochastic.

 A product can be assembled from several items, i.e. sub assemblies, defined by the

product structure file or bill of material (BoM). Each item in the BoM can be the result of a

production process. During the manufacturing process all BoM items must be available at a

defined point of time relative to the final product assembly or product due date. The

modelling of manufacturing systems with a delivery or production of sub assemblies Just-In-

Time to minimise waste and inventory is an important manufacturing paradigm today. The

typical example of this principle is the automobile industry.

 Yield and rework are found in many manufacturing processes. The reasons are

imperfect processes and operations. Both factors influence the process throughput and other

Chapter 6. Parameter and Structure Optimisation of Manufacturing Systems

[99]

characteristics e.g. the costs. With a lower level of detail both characteristics can also be

omitted.

Resources. Resources include machines and human operators, mobile and immobile

equipment, material and storage systems etc. They are used to manufacture a product. The

equipment layout and the number of machines have an effect on the production flow and the

speed of operation. The equipment costs influence amongst others the manufacturing cost of

a product. Staff number can be a restricted resource, e.g. the number of machines and with

these the necessary number of operators is higher than the available number of operators. In

this context shift schedules have to be possibly considered.

 The equipment has unplanned and planned down times, random failures or regular

maintenance. During these times production has to stop or product flow has to be rerouted

when alternatives are available.

Demand. Costumer orders define the demands on a manufacturing process. Start and due

dates are determined by these customer orders for products. An important question of

production management is the determination of the latest start date for BoM items to

complete the order before the due date.

Normally production does not start from an idle state instead there is some work-in-

process (WIP) e.g. in buffers, on conveyors or in machines. The modeller can decide to

accept an initialisation phase until the model contains a certain amount of WIP to start the

real experiment or initialise the model with work-in-process data.

Control. Control systems determine how products flow through the manufacturing

processes, collect status information about products and/or resources, inspect the compliance

of resource or demand constraints and decide about the use of the restricted recourses. A

control algorithm can influence a simulation with changes of input data e.g. a changed

Chapter 6. Parameter and Structure Optimisation of Manufacturing Systems

[100]

semi finished part order in an assembly line or changes in inwards and outwards goods

movements in a warehouse management system. A shop floor or/and an inventory control

algorithm can change model properties and model structure e.g. a storage area extension or

reduction or an equipment layout modification of a manufacturing system. A WIP tracking

system can deliver current process status information for control strategies. Station rules

define local scheduling decisions, e.g. the working sequence in a manufacturing cell from

simple first in, first out control strategy to a more complex such as a custom order dependant

priority control strategy.

6.2.3 Measures of Performance

The methods to evaluate the performance of a real system and model have to be the same

otherwise it will be difficult to have confidence in simulation and analysis results. Because

both the real system and its model are based on random events the performance measure is a

statistical analysis of real system and simulation system results. The following measurements

are typical for a manufacturing system [51]:

• Throughput of sub model (such as a machine or process) or the complete model

• Cycle time at a process or overall

• Queueing time or length

• Response time of material handling equipment

• WIP

• Resource utilisation

• System specific performance measures (scrap rate, waiting time at a process etc.)

Due to the fact that a manufacturing system is a complex system it is important to note that

model changes to improve one measure usually change other measures, for optimisation this

is an important issue.

Chapter 6. Parameter and Structure Optimisation of Manufacturing Systems

[101]

6.2.4 Analysis Issues

Using the measures described in chapter 5 an analyst experiments with a model to

understand coherences of model elements and the behaviour of the whole system using input

value, model parameter and model structure changes. Among others the following are typical

analysis questions [51]:

• Determining bottlenecks

• Determining required staffing levels

• Evaluating the scheduling of staff

• Evaluating the scheduling of tasks

• Evaluating the control system

• Recovering strategies for random events

The identification of bottlenecks is often an analysis issue. The problem is the direct

influence of the experiment on the bottleneck. With changes of anything in the model the

primary bottleneck can move to other elements of the model. So the identification of a

bottleneck can be a complex task and requires the examination at both local and global

model levels.

 A second important analysis issue is the determination of resource levels.

Manufacturing systems with a fluctuating production volume, e.g. with seasonal

dependencies, require such an analysis. An example is the staff requirement. It can change

constantly and has to be planned regularly. An associated issue is the scheduling of staff

between manufacturing system elements. With intelligent scheduling strategies it may be

possible to employ fewer staff and still maintain sufficient throughput or to increase the

throughput without increasing staff costs.

6.3 Introduction to the Photofinishing Industry

The application in this research uses developments and problems in the photofinishing

industry and investigates a small part of a production process to validate the key research

Chapter 6. Parameter and Structure Optimisation of Manufacturing Systems

[102]

concept. The photofinishing industry specialises in high volume production of thousands to

millions of pictures per day but has nevertheless a relatively broad range of different

products. As a consequence of significant changes in the photography market, notably the

introduction of digital cameras with a considerable reduction of analogue and an increase of

digital orders during recent years, a mix of analogue and digital production facilities are

used. The change of the main production material from analogue to digital material has lead

to concentration from many, local working, smaller laboratories to few, large, nationwide

working laboratories and fierce competition between them. The situation is driving an urgent

need to be as cost effective as possible.

 Figure 6.3 shows general structure and product flow through the different

departments of a typical photofinishing laboratory. It is possible to differentiate between

three main production departments to depict the production flow analogue film/digital image

– photographic picture:

I. The material arrives in several forms at the login process. After sorting the product

mixes, some 10 to some 100 single orders are combined into batches. Each batch

contains only one production material and one product type, e.g. undeveloped

analogue film and specific paper width and surface. The batch creation is done with

different machine types: (i) a splicer combines undeveloped film rolls onto a large

film reel, (ii) a universal reorder station (URS) combines analogue reorders to a strap

of film strips, (iii) a digital URS scans the analogue reorders and creates a digital

batch, (iv) a digital splicer handles digital data carriers (CDs, flash cards etc.) and (v)

software applications combine digital images collected by a web server. Steps (i) and

(ii) creates analogue and steps (iii)...(v) digital batches.

II. Undeveloped analogue batches have to be developed. Analogue material can be

scanned for the next steps which could be CD production and digital printing. As an

alternative, the analogue batches are printed at an analogue printer. The result of

both printer types is a huge reel of exposed photographic paper.

Chapter 6. Parameter and Structure Optimisation of Manufacturing Systems

[103]

III. After the development of a photographic paper reel the final step is cutting.

Regarding paper cutting both cutter and digital cutter are comparable. A DigiCutter

is specialised for paper cutting without a film cutter but possibly equipped with

several paper cutters each able to cut different paper widths. Finally items are

packed and identified for delivery to customers.

Figure 6.3 General product flows of a photofinishing lab

Figures C.1 ... C.4 in appendix C show a selection of photofinishing machines.

Chapter 6. Parameter and Structure Optimisation of Manufacturing Systems

[104]

 The product flow splicer/URS – development – analogue printer – development –

cutter was the common production flow before the digital era and is typical serial

manufacturing system. Nowadays there are several possible material routes through

production with the same end product but different processing time, machine and operator

requirements and costs i.e. a photofinishing lab now appears more as a job scheduling

system. It is possible to employ fewer operators than available workstations and produce on

time if an appropriate production structure and effective organization method are used to

manage production. In a typical company with staff of some 10 to some 100, possibly more

than one employee is necessary to organise the complete production.

6.4 Photofinishing Lab – An Optimisation Application

The validation is based on developments and problems in the photofinishing industry and

investigates a small part of a production process to demonstrate the approach. The germ of

the idea to this example comes from a project enquiry made by the Kodak Photofinishing

Department (closed down) to Syntax Software [58] 6 years ago.

6.4.1 Problem Description

For this project the login and splicer departments are studied in detail with a structure as

depicted in figure 6.4.

Figure 6.4 Product flow of the considered example

Chapter 6. Parameter and Structure Optimisation of Manufacturing Systems

[105]

• System description

The source materials, unsorted, single orders, are sorted by product type manually or

automatically into boxes. These sorted orders are combined to batch reels at splicers. An

automatic sorter is handled by one or two operators, whereas manual sorting is done by

the number of available operators without the need of a machine. A splicer is handled

by one operator. Operators can be moved between machines. The handling time of the

machines is listed in table 6.2.

Machine Order handling time (s)
automatic in sorter 0.5
manual in sorter 1.7 ≤ 2 (equal distribution)
splicer 0.9 ≤ 1 (equal distribution)

Table 6.2 Order handling times

Sorting and splicing of a defined amount of orders takes a production time depending

on type of machines, number of operators and organisation strategies. The production

time is estimated by simulation.

A specific production system causes costs. In this case study the costs depends on the

number of operators as shown in table 6.3.

of operators Costs
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8

Table 6.3 Production costs

• Simulation model level of detail and fundamental components

Each workstation is taken as a black box with a defined processing time and resource

utilisation. Workstations need a specific number of operators to manufacture and can be

enabled or disabled. Further properties do not exit.

Source material is modelled as a data structure with material type and planed end

product type.

Chapter 6. Parameter and Structure Optimisation of Manufacturing Systems

[106]

A production or department manager is modelled as a control model. The model can

enable and disable workstations and organise material flow depending on the

availability of operators, unhandled source material and queue lengths.

The number of operators is a model property used by the control model. Operators are

moved between departments and workstations to enable and disable workstations.

Operator movements does not cost any time.

To minimise complexity additional considerations e.g. setup time, maintenance and

failure are not modelled. Shift schedules and other components in connection with

operators are not modelled too.

• Performance Measurement

For a performance measurement the sorting and splicing of a defined number of orders

are simulated. The simulation output of a single run delivers the production time and

cost Y = {yproduction time, ycosts} of the current model variant.

The simulation response function calculates the average over 50 runs. They are passed

to the objective function that is defined by the term:

F = F(Y) = α1 * r1 * ��production time + α2 * r2 * ��costs → minimum

The factors α1 and α2 normalise the values of the variables, y�production time and y�costs. The

factors r1 and r2 define the relevance of the variables, y�production time and y�costs. With the

factors α1=1/max_production_time, α2=1/max_costs, r1=1 and r2=1 both variables are

within the range between 0 and 1 and have the same relevance. The maximal value of

the production time can be calculated with a minimal production system i.e. one

operator, manual sorting and one splicer. The maximal value of the costs is defined by

the upper bound of the parameter number of operators. In this case study for both

variables, y�production time and y�costs the same relevance is chosen. Depending on the analysis

objectives a different relevance of y�production time and y�costs can be used.

The result of the funtion F is the performance of the investigated model variant.

• Analysis issues

Chapter 6. Parameter and Structure Optimisation of Manufacturing Systems

[107]

The production time and consequently the cost for a specific number of orders varies

depending on the type and number of machines used, number of operators and the

strategy to organise operators i.e. the initial distribution and succeeding movement of

operators between machines and departments. The challenge for modelling is to

minimise the combination of the production time of a given number of orders and the

costs i.e. employing a minimal number of operators.

6.4.2 Implementation Details

Figure 6.5 shows the SES, describing possible model structures and the model parameter

number of operators. Both the SES and the model parameter are the open quantities of the

optimisation problem. The model structure variants are characterised by the use of: (i)

automatic and/or manual sorting, (ii) one to eight splicers and (iii) one of three different

department organisation strategies to share operators between machines and departments.

Depending on selected alternative nodes during the pruning process several structure related

attached variables will be initialised with different values. The SES defines 72 model

structure variants in all. In addition there is one model parameter, the number of operators

with a range of one to eight. The combination results in 576 model variants. Not all model

variants define useful combinations. For example a model with four operators and eight

splicers delivers the same result as a model with four operators and four splicers since in

both variants only four splicers at all can be used. To exclude the useless variants the root

node MODEL defines a structure condition that reduces the valid number of model variants

to 275.

The following list describes the nodes and basic components, respectively:

• DEP_LOGIN

The login department model can have three different sorting configurations. The first

configuration applies only manual, the second only automatic and the third combines

both sorting types. The number of available operators in this department is managed

Chapter 6. Parameter and Structure Optimisation of Manufacturing Systems

[108]

by the controllerspec model. Decisions of the controllerspec model may be a function of

the queue_order length.

• DEP_SPLICER

The splicer department model can consist of a different number of splicers. The

number of available operators in this department is managed by the controllerspec

model. Decisions of the controllerspec model may be a function of the queue_box2

length.

• controllerspec

The specialisation node controllerspec has three successor nodes each implementing

another staff organisation strategy:

o ctrl1:

The strategy starts with employing operators in the login department. If

more staff is available than needed they are employed in the splicer

department. After sorting is finished all staff is employed in the splicer

department.

o ctrl2:

The strategy starts with employing operators in the login department. If

more staff is available than needed they are employed in the splicer

department. If the queue_box length is larger or equal than four all staff is

employed in the splicer department. If the queue_box length is smaller than

four the initial staff arrangement is recovered.

o ctrl3:

The strategy starts with employing half of operators in the login department

and the other half in the splicer department. After sorting is finished all staff

is employed in the splicer department.

Chapter 6. Parameter and Structure Optimisation of Manufacturing Systems

[109]

Figure 6.5 Model parameter and SES of the application

To solve this example, the search space has to be defined in terms of a structure parameter

set, a model parameter set and their corresponding domain sets. Using the principle

introduced in section 5.2 the structure parameter set and the corresponding domain set are

defined by:

XS = {xDEP_LOGIN, xcontrollerspec, xsplicermaspec}

DS = {dDEP_LOGIN, dcontrollerspec, dsplicermaspec} with

 dDEP_LOGIN = {1; 2; 3}

 dcontrollerspec = {1; 2; 3}

 dsplicermaspec = {1; 2; 3; 4; 5; 6; 7; 8}

The model parameter set and the corresponding domain set are defined by:

XP={x#_of_operators}

DP={d#_of_operators} with d#_of_operators = {1; 2; 3; 4; 5; 6; 7; 8}

Hence, the resulting search space is defined by:

X = XP ∪ XS

X = { xDEP_LOGIN, xcontrollerspec, xsplicermaspec, x#_of_operators}

Chapter 6. Parameter and Structure Optimisation of Manufacturing Systems

[110]

Each model variant defines one point in the search space. With the principle introduced in

section 5.2 a PES can be derived and a corresponding model can be generated. One point of

the search space is X132 = {2; 2; 2; 2}. This means that the aspect node DEP_LOGINdec2 and

the specialisation ctrl2 are chosen, the number range property value of the multiple aspect

node splicermaspec is two and the model parameter #_of_operators is also two. Figure 6.6

depicts the PES of model variant 132. The generated EDSDEVS model is illustrated in

figure 6.7.

Figure 6.6 PES of 132th variant

Chapter 6. Parameter and Structure Optimisation of Manufacturing Systems

[111]

Figure 6.7 Model structure of 132th variant

All model variants use intensively the dynamic structure characteristics of the EDSDEVS

formalism. The model of the department manager (model ctrl2 in figure 6.7) activates and

deactivates several atomic models (models sorter_auto, splicer1 and splicer2 in figure 6.7)

and creates and destroys couplings respectively based on the department manager algorithm

and the current model state. Figure 6.8 shows a sequence diagram section of one simulation

run. Depending on queue lengths messages are generated and sent to the control model that

enables/disables models and creates/destroys couplings.

Chapter 6. Parameter and Structure Optimisation of Manufacturing Systems

[112]

Figure 6.8 A sequence diagram section of one simulation run

Numerous commercial and non-commercial GA implementations exist. In this research the

commercial toolbox MATLAB® GA toolbox [59] released by The MathWorksTM is used.

The default MATLAB GA parameter settings were used, except for a decreased population

size of 15 and an adjusted stop criterion:

if the weighted average change in the fitness function value over x generations (x=20 in

1st and x=5 in 2nd experiment) is less than 0.01, the algorithm stops.

In the following all GA parameters and their values are listed. A description and lists of

possible values as well as the algorithm description can be found in [59].

Population:

• Population type: Double Vector

• Population size: 15

• Creation function: Uniform

• Initial population: []

• Initial scores: []

• Initial range: [0; 1]

Fitness scaling:

Chapter 6. Parameter and Structure Optimisation of Manufacturing Systems

[113]

• Scaling function: Rank

Selection:

• Selection function:: Stochastic uniform

Reproduction:

• Elite count: 2

• Crossover fraction: 0.8

Mutation:

• Mutation function: Gaussian

• Scale: 1.0

• Shrink: 1.0

Crossover:

• Crossover function: Scattered

Migration:

• Direction: Forward

• Fraction: 0.2

• Interval: 20

Algorithm settings:

• Initial penalty: 10

• Penalty factor: 100

Hybrid function:

• Hybrid function: None

Stopping criteria:

• Generations: 100

• Time limit: Inf

• Fitness limit: -Inf

• Stall generations: 20 (1st experiment)

 5 (2nd experiment)

Chapter 6. Parameter and Structure Optimisation of Manufacturing Systems

[114]

• Stall time limit: 20

• Function tolerance: 0.01

• Nonlinear constraint tolerance: 0.000001

Display to command window:

• Level of display: Final

Vectorize:

• Fitness function is vectorized: Off

The population size and the stop criteria are adapted for this case study. It is possible that

changes of other parameters would lead to better optimisation results but further experiments

are not undertaken in the scope of this research.

 Each simulation run estimates the production time of 200 orders with a random

production type mixture. The optimisation was repeated 50 times for each stop criterion with

different random number generator initialisations. Listing 6.1 shows a Matlab code section

of the optimisation initialising and executing the GA.

% ses tree is initialised outside of this function

function example_optim_exp(ses)

% function uses two parameters, the ses object (global

variable) and a search room point
fitnessFunction = @exec_simu;

% Bounds
% e.g. LB = [1 1 1 1];
% e.g. UB = [3 3 8 8];
[LB UB] = ses.generateBounds();

% Number of Variables
nvars = size(LB,2);

% Start with default options
options = gaoptimset;

% Modify some parameters
options = gaoptimset(options,'PopulationSize' ,15);
options = gaoptimset(options,'StallGenLimit' ,20); %1st exp.
% options = gaoptimset(options,'StallGenLimit' ,5);%2nd exp.
options = gaoptimset(options,'TolFun' ,0.01);

% Run GA
[X,FVAL,REASON,OUTPUT,POPULATION,SCORES] =

Chapter 6. Parameter and Structure Optimisation of Manufacturing Systems

[115]

ga(fitnessFunction,nvars,Aineq,Bineq,Aeq,Beq,LB,UB,nonlconFu

nction,options);

Listing 6.1 Matlab code section with GA initialisation and execution

6.4.3 Results

To validate the research framework the global optimum estimated through simulation of all

system variants is compared with the result of an optimisation experiment. In both

experiments the performance rating of a variant is established by the same objective function

using the following function definition:

F = F(Y) = α1 * r1 * ��production time + α2 * r2 * ��costs

r1 = r2 = 1 – same relevance of both paramters

α1 = 1/566 – maximal production time with a minimal production system is 566 (1st line

in table 6.4)

α2 = 1/8 – maximal costs are 8

The simulation results of all 275 variants are shown in table 6.4. The columns control

strategy, login and # of splicers specifies the model structure and the column # of operators

specifies the model parameter as described in subsection 6.4.2. The production time values

are the simulation result of the production of 200 orders. The costs correspond to the number

of operators and the fitness is calculated with the above objective function.

Chapter 6. Parameter and Structure Optimisation of Manufacturing Systems

[116]

ctrl

strat.

login # of

splicer

of

ops

prod.

time

costs fitness

1 1 1 1 566,0 1 1,1250

1 1 1 2 357,0 2 0,8807

1 1 1 3 209,0 3 0,7443

1 1 1 4 208,0 4 0,8675

1 1 1 5 209,0 5 0,9943

1 1 1 6 208,0 6 1,1175

1 1 1 7 208,0 7 1,2425

1 1 1 8 207,0 8 1,3657

1 1 2 2 288,0 2 0,7588

1 1 2 3 208,0 3 0,7425

1 1 2 4 208,0 4 0,8675

1 1 2 5 207,0 5 0,9907

1 1 2 6 208,0 6 1,1175

1 1 2 7 209,0 7 1,2443

1 1 2 8 207,0 8 1,3657

1 1 3 3 209,0 3 0,7443

1 1 3 4 199,0 4 0,8516

1 1 3 5 208,0 5 0,9925

1 1 3 6 208,0 6 1,1175

1 1 3 7 208,0 7 1,2425

1 1 3 8 209,0 8 1,3693

1 1 4 4 208,0 4 0,8675

1 1 4 5 207,0 5 0,9907

1 1 4 6 208,0 6 1,1175

1 1 4 7 208,0 7 1,2425

1 1 4 8 208,0 8 1,3675

1 1 5 5 208,0 5 0,9925

1 1 5 6 197,0 6 1,0981

1 1 5 7 208,0 7 1,2425

1 1 5 8 208,0 8 1,3675

1 1 6 6 209,0 6 1,1193

1 1 6 7 208,0 7 1,2425

1 1 6 8 208,0 8 1,3675

1 1 7 7 198,0 7 1,2248

1 1 7 8 200,0 8 1,3534

1 1 8 8 208,0 8 1,3675

1 2 1 1 279,5 1 0,6188

1 2 1 2 229,5 2 0,6555

1 2 1 3 179,8 3 0,6926

1 2 2 2 139,75 2 0,4969

1 2 2 3 119,5 3 0,5861

1 2 2 4 99,5 4 0,6758

1 2 3 3 99,8 3 0,5512

1 2 3 4 89,5 4 0,6581

1 2 3 5 69,3 5 0,7474

1 2 4 4 79,3 4 0,6400

1 2 4 5 69,5 5 0,7478

1 2 4 6 59,8 6 0,8556

1 2 5 5 59,3 5 0,7297

1 2 5 6 59,5 6 0,8551

1 2 5 7 59,5 7 0,9801

1 2 6 6 59,8 6 0,8556

1 2 6 7 59,3 7 0,9797

1 2 6 8 59,3 8 1,1047

1 2 7 7 59,5 7 0,9801

1 2 7 8 59,5 8 1,1051

1 2 8 8 59,5 8 1,1051

1 3 1 2 219,5 2 0,6378

1 3 1 3 204,0 3 0,7354

1 3 1 4 189,8 4 0,8352

1 3 1 5 149,5 5 0,8891

1 3 1 6 160,0 6 1,0327

1 3 1 7 159,5 7 1,1568

1 3 1 8 169,5 8 1,2995

1 3 2 2 149,3 2 0,5137

1 3 2 3 124,0 3 0,5941

1 3 2 4 119,5 4 0,7111

1 3 2 5 109,8 5 0,8189

1 3 2 6 89,8 6 0,9086

1 3 2 7 89,8 7 1,0336

1 3 2 8 79,8 8 1,1409

1 3 3 3 104,0 3 0,5587

1 3 3 4 99,8 4 0,6762

1 3 3 5 89,5 5 0,7831

1 3 3 6 69,8 6 0,8732

1 3 3 7 59,5 7 0,9801

1 3 3 8 59,8 8 1,1056

1 3 4 4 79,8 4 0,6409

1 3 4 5 79,8 5 0,7659

1 3 4 6 69,8 6 0,8732

1 3 4 7 59,8 7 0,9806

1 3 4 8 60,0 8 1,1060

1 3 5 5 69,5 5 0,7478

1 3 5 6 59,5 6 0,8551

1 3 5 7 59,5 7 0,9801

1 3 5 8 49,5 8 1,0875

1 3 6 6 59,8 6 0,8556

1 3 6 7 59,8 7 0,9806

1 3 6 8 50,0 8 1,0883

1 3 7 7 49,8 7 0,9629

1 3 7 8 49,8 8 1,0879

1 3 8 8 49,8 8 1,0879

2 1 1 1 404,0 1 0,8388

2 1 1 2 265,0 2 0,7182

2 1 1 3 309,0 3 0,9209

2 1 1 4 329,0 4 1,0813

2 1 1 5 330,0 5 1,2080

2 1 1 6 329,0 6 1,3313

2 1 1 7 328,0 7 1,4545

2 1 1 8 308,0 8 1,5442

2 1 2 2 213,0 2 0,6263

2 1 2 3 214,0 3 0,7531

2 1 2 4 219,0 4 0,8869

2 1 2 5 227,0 5 1,0261

2 1 2 6 228,0 6 1,1528

2 1 2 7 237,0 7 1,2937

2 1 2 8 237,0 8 1,4187

2 1 3 3 191,0 3 0,7125

2 1 3 4 208,0 4 0,8675

2 1 3 5 209,0 5 0,9943

2 1 3 6 205,0 6 1,1122

2 1 3 7 218,0 7 1,2602

2 1 3 8 208,0 8 1,3675

2 1 4 4 183,0 4 0,8233

2 1 4 5 197,0 5 0,9731

2 1 4 6 192,0 6 1,0892

2 1 4 7 210,0 7 1,2460

2 1 4 8 190,0 8 1,3357

2 1 5 5 187,0 5 0,9554

2 1 5 6 196,0 6 1,0963

2 1 5 7 190,0 7 1,2107

2 1 5 8 200,0 8 1,3534

2 1 6 6 191,0 6 1,0875

2 1 6 7 189,0 7 1,2089

2 1 6 8 202,0 8 1,3569

2 1 7 7 187,0 7 1,2054

2 1 7 8 183,0 8 1,3233

2 1 8 8 192,0 8 1,3392

2 2 1 1 271,0 1 0,6038

2 2 1 2 253,8 2 0,6983

Chapter 6. Parameter and Structure Optimisation of Manufacturing Systems

[117]

2 2 1 3 215,8 3 0,7562

2 2 2 2 133,5 2 0,4859

2 2 2 3 161,0 3 0,6595

2 2 2 4 135,5 4 0,7394

2 2 3 3 104,3 3 0,5592

2 2 3 4 140,3 4 0,7478

2 2 3 5 105,0 5 0,8105

2 2 4 4 94,0 4 0,6661

2 2 4 5 104,8 5 0,8101

2 2 4 6 95,8 6 0,9192

2 2 5 5 83,8 5 0,7730

2 2 5 6 106,3 6 0,9377

2 2 5 7 85,3 7 1,0256

2 2 6 6 74,0 6 0,8807

2 2 6 7 90,8 7 1,0353

2 2 6 8 75,3 8 1,1330

2 2 7 7 74,3 7 1,0062

2 2 7 8 88,5 8 1,1564

2 2 8 8 74,8 8 1,1321

2 3 1 2 244,3 2 0,6815

2 3 1 3 202,3 3 0,7323

2 3 1 4 187,0 4 0,8304

2 3 1 5 184,3 5 0,9505

2 3 1 6 204,0 6 1,1104

2 3 1 7 194,8 7 1,2191

2 3 1 8 194,0 8 1,3428

2 3 2 2 133,8 2 0,4863

2 3 2 3 145,0 3 0,6312

2 3 2 4 119,8 4 0,7116

2 3 2 5 115,8 5 0,8295

2 3 2 6 115,0 6 0,9532

2 3 2 7 115,0 7 1,0782

2 3 2 8 114,8 8 1,2027

2 3 3 3 87,3 3 0,5292

2 3 3 4 113,5 4 0,7005

2 3 3 5 99,3 5 0,8004

2 3 3 6 96,0 6 0,9196

2 3 3 7 94,0 7 1,0411

2 3 3 8 84,8 8 1,1497

2 3 4 4 72,5 4 0,6281

2 3 4 5 107,5 5 0,8149

2 3 4 6 78,5 6 0,8887

2 3 4 7 76,5 7 1,0102

2 3 4 8 75,0 8 1,1325

2 3 5 5 62,8 5 0,7359

2 3 5 6 93,8 6 0,9156

2 3 5 7 78,0 7 1,0128

2 3 5 8 65,3 8 1,1153

2 3 6 6 62,8 6 0,8609

2 3 6 7 80,5 7 1,0172

2 3 6 8 67,8 8 1,1197

2 3 7 7 53,8 7 0,9700

2 3 7 8 79,0 8 1,1396

3 1 1 1 566,0 1 1,1250

3 1 1 2 394,0 2 0,9461

3 1 1 3 209,0 3 0,7443

3 1 1 4 208,0 4 0,8675

3 1 1 5 209,0 5 0,9943

3 1 1 6 208,0 6 1,1175

3 1 1 7 208,0 7 1,2425

3 1 1 8 207,0 8 1,3657

3 1 2 2 406,0 2 0,9673

3 1 2 3 208,0 3 0,7425

3 1 2 4 208,0 4 0,8675

3 1 2 5 207,0 5 0,9907

3 1 2 6 208,0 6 1,1175

3 1 2 7 209,0 7 1,2443

3 1 2 8 207,0 8 1,3657

3 1 3 3 209,0 3 0,7443

3 1 3 4 199,0 4 0,8516

3 1 3 5 208,0 5 0,9925

3 1 3 6 208,0 6 1,1175

3 1 3 7 208,0 7 1,2425

3 1 3 8 209,0 8 1,3693

3 1 4 4 208,0 4 0,8675

3 1 4 5 207,0 5 0,9907

3 1 4 6 208,0 6 1,1175

3 1 4 7 208,0 7 1,2425

3 1 4 8 208,0 8 1,3675

3 1 5 5 208,0 5 0,9925

3 1 5 6 197,0 6 1,0981

3 1 5 7 208,0 7 1,2425

3 1 5 8 208,0 8 1,3675

3 1 6 6 209,0 6 1,1193

3 1 6 7 208,0 7 1,2425

3 1 6 8 208,0 8 1,3675

3 1 7 7 198,0 7 1,2248

3 1 7 8 200,0 8 1,3534

3 1 8 8 208,0 8 1,3675

3 2 1 1 279,5 1 0,6188

3 2 1 2 189,0 2 0,5839

3 2 1 3 179,8 3 0,6926

3 2 2 2 149,5 2 0,5141

3 2 2 3 119,5 3 0,5861

3 2 2 4 99,5 4 0,6758

3 2 3 3 99,8 3 0,5512

3 2 3 4 89,5 4 0,6581

3 2 3 5 89,3 5 0,7827

3 2 4 4 79,3 4 0,6400

3 2 4 5 79,5 5 0,7655

3 2 4 6 69,8 6 0,8732

3 2 5 5 69,3 5 0,7474

3 2 5 6 69,5 6 0,8728

3 2 5 7 69,5 7 0,9978

3 2 6 6 59,8 6 0,8556

3 2 6 7 59,3 7 0,9797

3 2 6 8 59,3 8 1,1047

3 2 7 7 59,5 7 0,9801

3 2 7 8 59,5 8 1,1051

3 2 8 8 59,5 8 1,1051

3 3 1 2 179,0 2 0,5663

3 3 1 3 189,5 3 0,7098

3 3 1 4 189,5 4 0,8348

3 3 1 5 164,0 5 0,9148

3 3 1 6 154,3 6 1,0225

3 3 1 7 159,5 7 1,1568

3 3 1 8 169,5 8 1,2995

3 3 2 2 148,5 2 0,5124

3 3 2 3 119,5 3 0,5861

3 3 2 4 99,3 4 0,6754

3 3 2 5 84,0 5 0,7734

3 3 2 6 84,0 6 0,8984

3 3 2 7 89,8 7 1,0336

3 3 2 8 79,8 8 1,1409

3 3 3 3 99,5 3 0,5508

3 3 3 4 79,5 4 0,6405

3 3 3 5 84,0 5 0,7734

3 3 3 6 74,0 6 0,8807

3 3 3 7 59,5 7 0,9801

3 3 3 8 59,8 8 1,1056

3 3 4 4 79,5 4 0,6405

3 3 4 5 74,0 5 0,7557

Chapter 6. Parameter and Structure Optimisation of Manufacturing Systems

[118]

3 3 4 6 64,0 6 0,8631

3 3 4 7 59,8 7 0,9806

3 3 4 8 60,0 8 1,1060

3 3 5 5 64,0 5 0,7381

3 3 5 6 54,0 6 0,8454

3 3 5 7 59,5 7 0,9801

3 3 5 8 49,5 8 1,0875

3 3 6 6 54,0 6 0,8454

3 3 6 7 59,8 7 0,9806

3 3 6 8 50,0 8 1,0883

3 3 7 7 49,8 7 0,9629

3 3 7 8 49,8 8 1,0879

3 3 8 8 49,8 8 1,0879

Table 6.4 Simulation results of all model structure and parameter variants with resulting production time, costs and fitness

Chapter 6. Parameter and Structure Optimisation of Manufacturing Systems

[119]

The fitness values of all 275 model variants are shown graphically in figure 6.9.

Figure 6.9 Fitness values of all variants with the optimum at X132

The limits of the objective function parameters i.e. model generation and simulation results

and objective function results are shown in table 6.5. The solution X132 has the minimal

fitness value 0.4859 i.e. this solution is the global optimum. Figure 6.6 shows the PES and

figure 6.7 the model structure of this variant.

 min max

production time 49,5 566

costs 1 8

fitness 0.4859 1,5442

Table 6.5 Limits of fitness function parameters and results

Beside the global minimum several local minima exist with a very close fitness value, as can

be seen in figure 6.9. Table 6.6 lists the global optimum (green line) and all near optimal

solutions with a maximal variation of 3% of the maximal fitness value of 2. The solutions 2,

4 and 7 are identical to solutions 1, 3 and 6 due to the preferred assignment of the two

available operators to the automatic login i.e. the manual login is not used in variants 2, 4, 7.

The solutions 1, 3 and 6 differ in the control strategy whereas the most flexible control

strategy 2 delivers the optimal result. Solutions 3 and 5 are based on different system

configurations. With the used same weighting of production time and costs the solution 3 is

the optimal solution, with a higher weighting of production time solution 5 would be a better

variant.

optimum

0,4859

0

0,4

0,8

1,2

1,6

0 20 40 60 80 100 120 140 160 180 200 220 240 260

fi
tn

e
ss

model

variant

Chapter 6. Parameter and Structure Optimisation of Manufacturing Systems

[120]

no. ctrl

strat.

login

typ

of

splicers

of

ops

 prod.

time

costs fittness

1 1 2 2 2 139,8 2 0,4969

2 1 3 2 2 149,3 2 0,5137

3 2 2 2 2 133,5 2 0,4859

4 2 3 2 2 133,8 2 0,4863

5 2 3 3 3

87,3 3

0,5291

6 3 2 2 2 149,5 2 0,5141

7 3 3 2 2 148,5 2 0,5124

Table 6.6 Optimal and near optimal solutions

With other relevance factors r1 and r2 the optimal system configuration is different. E.g.

without the consideration of costs two global optima with a production time of 49.5 exist

(X86 and X267). These solutions produce the specified number of orders in the shortest time.

 In each of the two GA optimisation experiments the optimisation was repeated 50

times to estimate average values because of the stochastic nature of GA. Each optimisation

experiment uses one stop criterion as described in section 6.4.2.

 The results with average number of investigated individuals, optimum and near

optima found are shown in table 6.7. The results show that the number of investigated

individuals (194 and 102) is significant less than the number of all variants (275). The

probability to find the optimal or near optimal solution is high (68% and 50%) but the

finding is not guaranteed. Both, the number of investigated individuals and the finding

probability depend highly on chosen GA parameters as can be seen when comparing the

results of optimisation experiment 1 and 2 in table 6.7.

 Stop criterion 1
(uses weighted average
change over 20 generation)

Stop criterion 2 (uses
weighted average change
over 5 generation)

Average number of
investigated individuals to
find an optimum

194 102

Optimum X132 47% 21%
Near optimal

results with max
3.2% error

21% 29%

Table 6.7 Results of 50 optimisation experiments

Chapter 6. Parameter and Structure Optimisation of Manufacturing Systems

[121]

An example of the development of individual fitness values, best and average generation

fitness during a single optimisation experiment is shown in figure 6.10. The diagram shows

the fast convergence of the average fitness of the generations. After two generations each

generation contains the optimal solution once in minimum and after the 7th generation the

fitness value does not change anymore.

Figure 6.10 Individual fitness, best and average fitness of generations of one GA run

The results show that the optimisation approach developed in this research delivers an

optimal solution with a high probability and with significantly less simulation runs in

comparison to a complete simulation study of all model variants. Consequently the new

approach of a simulation based parameter and structure optimisation is validated with a first

real industrial example. There is a potential to increase the probability and/or decrease the

number of simulation runs to estimate the optimal solution through adaptations of the GA

parameters or with the use of other search methods.

 For a potential application of the introduced approach it is necessary to extend the

model to a complete Photofinishing Laboratory. Although the model of the case study is

relative small the computing time of an optimisation experiment is on average between some

10 minutes and a few hours. However, the case study is carried out with a prototypical

implementation of the simulation method and ideal parallelisation possibilities of GAs are

not used. Hence, it can be assumed that there is a huge potential of runtime optimisation.

0

0,4

0,8

1,2

1,6

0 15 30 45 60 75 90 105 120

fi
tn

e
ss

of individual

best fitness of generation

fitness

avarage fitness of generation

Chapter 6. Parameter and Structure Optimisation of Manufacturing Systems

[122]

 The introduced case study stands for many flexible production systems. It can be

assumed that the developed framework can be applied to other, comparable systems with the

ability of modular, hierarchical modelling.

Chapter 7. Conclusions and further Work

[123]

Chapter 7

Conclusions and further Work

7.1 Conclusions

Simulation in a manufacturing context focuses on modelling the behaviour and the structure

of manufacturing organisations, processes and systems. Many manufacturing systems have

the potential to be optimised and to exploit this potential simulation based optimisation

techniques are an important step forward. The overall goal of applying of these techniques is

the identification of improved user selected system parameters. This research deals with a

fundamental optimisation problem in discrete event simulation. Optimisation is well

established but restricted to the optimisation of system parameters. Model structure is

considered to be fixed, defined during model development. In simulation based optimisation

using automated model parameter changes and manual model structure adaptations the

global optimal system configuration cannot be guaranteed. With the growing use of flexible

manufacturing systems and the increasing demand for product customisation the number of

manufacturing system variants increases consequently the demand for structure optimisation

is becoming increasingly more important.

 This research has developed a simulation based optimisation method to solve the

limitations of the established techniques. A crucial difference to established simulation based

parameter optimisation is the application of a method based on meta-modelling to manage a

set of models. The new optimisation method can simultaneously control both model

Chapter 7. Conclusions and further Work

[124]

parameter changes and model structure selection. The result of a successful optimisation

experiment using this approach is a parameter and structure optimised model. The key

research aim to develop an approach to replace conventional manual structural changes i.e.

to develop a combined, simulation based parameter and structure optimisation has been

achieved.

 An essential prerequisite of the new approach is a modular, hierarchical modelling

and simulation method with a strict separation of model and simulator. This research

determined the DEVS formalism as a suitable method. DEVS as a two-part definition

consisting of a formal model specification and a simulation algorithm to model execution

was introduced in the 70s and since then has been continuously developed. Many DEVS

extensions have one joint attribute: they are based on the original DEVS formalism and have

not taken advantage of the potential in combining extensions. For this reason the research

has been followed the idea of a merging formalism to combine the advantages of different

approaches. The new EDSDEVS formalism developed from this research is a fusion of

Classic DEVS with selected extensions. It is an as generic as possible, powerful modelling

and simulation formalism based on DEVS. A second key research aim to develop a

modelling and simulation method based on DEVS and DEVS extensions to create a merging

formalism has been achieved.

 A further prerequisite for simulation based optimisation is an appropriate model

management method. This research determined the SES/MB approach as a suitable method.

Originally the SES/MB framework was developed to assist an analyst during a manual

model variant selection. Changes to the SES/MB approach and algorithms to embed it into

the simulation based optimisation have been developed within the research.

 The final prerequisite is a suitable search method to find the optimal model

configuration in the general multidimensional search space. Many search algorithms exist.

One category widely used in both research and commercial applications are genetic and

Chapter 7. Conclusions and further Work

[125]

evolutionary algorithms. For a practical investigation of the fundamental simulation based

parameter and structure optimisation framework a commercial GA is used.

 Validation of the work has been achieved using an industrial problem where the

ability to control manufacturing system structure is an important optimisation factor. The

photo-processing industry relies on management of the process flow to achieve profitability

and this application demonstrates both how the new framework functions and the validity of

the GA used in a real world situation. In two optimisation experiments it has been shown that

the results are significantly dependent on the GA parameters. However in both experiments

the probability to find an optimal or near-optimal model configuration is equal to or greater

than 50%. An increased probability of an optimal solution is preferable however this will be

the subject of further work.

 The framework is implemented as MATLAB toolboxes and uses a commercial GA

toolbox respectively. In the prototypical implementation of the framework and the validation

of the work it has been shown that the use of MATLAB has both advantages and

disadvantages. It is a powerful and productive environment to solve scientific and

engineering problems and to implement prototypical applications. A disadvantage is the

interpretative operation method. Particularly in simulation based optimisation where

numerous, time consuming simulation runs lead to long execution times. However, there are

parallel computing MATLAB toolboxes which support several aspects of parallelisation. The

algorithmic summary shown using a GA is a promising approach to improve execution time

by parallelisation.

 During the research project the important steps have been published in a peer-

reviewed journal, at international conferences and as a book chapter. Appendix C presents

the publications.

Chapter 7. Conclusions and further Work

[126]

7.2 Suggestions for further work

This research has established an approach to simulation based parameter and structure

optimisation. Whilst this thesis presents the ideas, principles and a first example, it also

opens up several future research directions. Future research directions can be divided into

two areas (i) investigations of simulation based optimisation framework (ii) EDSDEVS

formalism.

i. The introduced approach defines the model structure variants at the meta-model

level as a static structure. Otherwise it uses a dynamic structure modelling and

simulation method to execute the selected model configuration. The dynamic

changes of the model structure during the simulation time are not considered in this

approach i.e. the optimisation regards only the initial model structure as a static

structure. It seems feasible to add dynamic structure changes during the model

lifetime as an additional criterion to the optimisation. An example is the length of

stay of a sub model. This approach considers the initial existence of the sub model

but its lifetime may play an important role in the search for an optimal model

configuration.

 With the SES XML definition a platform and implementation independent

meta-modelling definition already exists. The manual modelling based on direct

writing a XML file is not straightforward. General XML editors can assist the

modelling but cannot replace a dedicated SES XML editor. A graphical SES/MB

modelling application is a reasonable extension.

 As already shown in section 6.4.3 the optimisation results and the number of

optimisation cycles depends on the GA parameters. There is much literature about

GA methods and parameterisation. The experience gained in this research has shown

that further investigations in this direction are necessary. Hence, the optimisation of

GA parameters is a further research topic.

Chapter 7. Conclusions and further Work

[127]

 There are also other promising search methods. Another nature analogue

method is the Particle Swarm Optimisation (PSO) approach based on swarm

intelligence of social groups. This group of algorithms is relative new, introduced

around 10 years ago. The number of publications and applications is growing fast.

The literature review has shown evidence that this algorithm group can solve

problems like the simulation based optimisation as well as GAs.

ii. The new EDSDEVS formalism developed from this research is a fusion of Classic

DEVS with several extensions. This part of the research is a step to a generic

modelling and simulation formalism based on DEVS. Further extensions are

desirable and essential e.g. extensions for parallel computing and graphical

modelling. There are also approaches for hybrid DEVS extensions i.e. the support of

continuous state changes. These are proposals for further research. The last proposal,

the hybrid DEVS, is already a current research project topic of the Research Group

CEA.

The importance and topicality of the idea behind this research can be seen in two brand new

research proposals, the first currently in preparation and the second announced at

30.03.2009:

 A research proposal at the Deutsche Forschungsgemeinschaft (DFG German

Research Foundation) for further developments of the simulation based parameter and

structure optimisation approach and its application to the optimisation of energy efficiency

of process chains and manufacturing structures is currently in preparation. The optimisation

of energy efficiency of process chains i.e. among other things the structure optimisation of

process chains is a planned priority programme of DFG.

 In a call for proposal of the Federal Ministry of Education and Research of Germany

a sponsorship is announced with the topic ‘safeguarding competitiveness by versatile

manufacturing systems’. One matter of the proposed research is covered by the optimisation

technique introduced in this thesis.

References

[128]

Appendix A. References

[1] Amnn W. (1994) Eine Simulationsumgebung für Planung und Betrieb von

Produktionssystemen. Springer.
[2] April J., Marco Better M., Glover F., Kelly J., Laguna M. (2006) Enhancing

Business Process Management with Simulaiton Optimization. Proceedings of the
2006 Winter Simulation Conference.

[3] April J., Kelly J., Glover F., Laguna M. (2003) Practical Introduction to Simulation

Optimization. Proceedings of the 2003 Winter Simulation Conference.
[4] April J., Glover F., Kelly J., and Laguna M. (2001) Simulation/Optimization using

“Real-World” Applications Proceedings of the 2001 Winter Simulation Conference,
pages 134-138.

[5] Askin R.G., Standridge C.R. (1993) Modeling an Analysis of Manufacturing Systems.
John Wiley & Sons.

[6] Azadivar F. (1999) Simulation Optimization Methodologies. Proceedings of the 1999

Winter Simulation Conference, pages 93-100.
[7] Banks J., Carson II J.S., Nelson B.L., Nicol D.M. (2003) Discrete-Event System

Simulation. Prentice Hall.
[8] Barnett M. (2003) Modeling & Simulation in Business Process Management. BP

Trends Newsletter, White Papers & Technical Briefs, 1-10.
http://www.bptrends.com [accessed November 20, 2008].

[9] Barros F.J. (1996) Modeling and Simulation of Dynamic Structure Discrete Event

Systems: A General Systems Theory Approach. PhD thesis. University of Coimbra.
[10] Barros F.J. (1996) The dynamic structure discrete event system specification

formalism. Transactions of The Society for Modeling and Simulation International,
Mar 1996, vol. 13.

[11] Breitenecker F. (1992) Models, methods and experiments – A new structure for

simulation systems. Mathematics and Computer in Simulation 34, 1-30, Amsterdam:
North Holland.

[12] Chi S.D. (1997) Model-based Reasoning Methodology Using the Symbolic DEVS

Simulation. Transaction of SCS 14(3) p.141-152.
[13] Chow A.C., Zeigler B.P. (1994) Parallel DEVS: A Parallel, Hierarchical, Modular

Modeling Formalism. Proceedings of the 1994 Winter Simulation Conference.
[14] FU M.C., Glover F.W. (2005) Simulation Optimization: A Review, New

Developments, and Applications. Proceedings of the 2005 Winter Simulation
Conference.

[15] Fu M. C., Andradóttir S., Carson J. S., Glover F., Harrell C. R., Yu-Chi Ho, Kelly J.
P., Robinson S. M. (2000) Integrating Optimization and Simulation: Research and

Practise. Proceedings of the 2000 Winter Simulation Conference.
[16] Hagendorf O., Pawletta Th. (2008) An Approach for Simulation Based Structure

Optimisation of Discrete Event Systems. Proceedings of the 2008 Spring Simulation
Conference.

[17] Hagendorf O., Pawletta T., Pawletta S., Colquhoun G. (2006) An approach for

modelling and simulation of variable structure manufacturing systems. ICMR 2006
Liverpool/UK.

[18] Hagendorf O., Colquhoun G., Pawletta T., Pawletta S. (2005) A DEVS - Approach to

ARGESIM Comparison C16 ‘Restaurant Business Dynamics’ using MatlabDEVS.

Simulation News Europe, no.44/45, (December).

References

[129]

[19] Heilala J., Montonen J., Salmela A., Järvenpää P. (2007) Modeling and Simulation

for Customer Driven Manufacturing System Design and Operations Planning.
Proceedings of the 2007 Winter Simulation Conference.

[20] Holland J.H. (1975) Adaptation in Natural and Artificial Systems: An Introductory

Analysis with Applications to Biology, Control and Artificial Intelligence. The
University of Michigan Press.

[21] Ireson W.G. (1963) Factory Planning and Plant Layout. Prentice-Hall Englewood
Cliffs, NJ.

[22] Kalasky D.R. (1996) Manufacturing Systems: Modeling and Simulation in Systems

Modeling and Comupter Simulation. Ed. Kheir N.A. Marcel Dekker, Inc.
[23] Kremp M., Pawletta T., Colquhoun G. (2004) Optimisation of manufacturing

control strategies using online simulation. In Proceedings of the 5th EUROSIM
Congress on Modeling and Simulation, eds. G.Attiya & Y.Hamam (6 pages). Paris.
SCS-European Publishing House, Ghent (Belgium).

[24] Kremp M., Pawletta T., Pawletta S., Colquhoun G. (2004) Simulation based control

of a flexible manufacturing system, published in German. Proc. of 11th symposium
of maritime electrical engineering, electronics und information technology.
(workshop: control and feedback control systems, pp. 15-18). University of Rostock.

[25] Law A.M., Kelton W.D. (2000) Simulation Modeling and Analysis. McGraw-Hill
2000 3rd Edition.

[26] Law A. M., McComas M. G. (1999) Simulation of Manufacturing Systems.
Proceedings of the 1999 Winter Simulation Conference.

[27] Lucie-Smith E. (1983) A History of Industrial Design. Phiadon Press Limited
Oxford.

[28] Maletzki G., Pawletta T., Pawletta S., Dünow P., Lampe B. (2008) Simulation Model

based Rapid Prototyping of Complex Robot Control Applications. (German) In: atp-
Automatisierungstechnische Praxis, Oldenbourg Verlag, München, 50(2008)8, pages
54-60.

[29] Milberg J. (1992) Wettbewerbsfaktor Zeit in Produktionsunternehmen. (German) In:
Tagungsband Münchner Kolloquium 91, Springer, pages 13-31.

[30] Mittal S. (2007) DEVS Unified Process for Integrated Development and Testing of

Service Oriented Architectures. PhD Thesis, University of Arizona.
[31] Mittal S. (2007) W3C XML schema Finite Deterministic DEVS Models.

http://www.saurabh-mittal.com/fddevs/ [accessed November 21, 2008].
[32] Olafsson S., Kim J. (2002) Simulation Optimization. Proceedings of the 2002 Winter

Simulation Conference.
[33] Ören T. I. (1989) Simulation Model: Taxonomy. in: Encyclopaedia of Systems and

Control, (Ed.) Singh, M., Pergamon Press.
[34] Pawletta T., Deatcu C., Pawletta S., Hagendorf O., Colquhoun G. (2006) DEVS-

Based Modeling and Simulation in Scientific and Technical Computing

Environments. Proceedings of the 2006 Spring Simulation Conference, Huntsville/Al
USA.

[35] Pawletta T., Pawletta S. (2004) A DEVS-based simulation approach for structure

variable hybrid systems using high accuracy integration methods. Proceedings of
CSM2004 - Conference on Conceptual Modeling and Simulation, Part of the
Mediterranean Modelling Multiconference (I3M), Genova, Italy, October 28-31
2004.

[36] Pawletta T., Lampe B., Pawletta S., Drewelow, W. (2002) A DEVS-Based Approach

for Modeling and Simulation of Hybrid Variable Structure Systems. Modeling,
Anlysis, and Design of Hybrid Systems. Engel S., Frehse G., Schnieder E. (Ed.),
Lecture Notes in Control and Information Sciences 279, Springer, pages 107-129.

[37] Pawletta T., Pawletta S., Drewelow W. (1998) Integration of discrete event

simulation methods in interactive scientific and technical computing environments.

References

[130]

In R. Zobel, editor, Proceedings of the 12th European Simulation Multiconference,
pages 251-255. SCS European Publishing House, 1998. Manchester, June, 16-19.

[38] Pawletta T., Lampe B.P., Pawletta S., Drewelow W. (1996) Dynamic structure

simulation based on discrete events. In ASIM-Mitteilungen Nr. 53, pages 7-11, 9.
Workshop Simulation and AI, Ulm, Germany, Februar 1996.

[39] Pawletta T., Lampe B.P., Pawletta S., Drewelow W. (1996) Modeling and

Simulation of Variable Structure Systems. Proc. of the 3rd International Symposium
on Methods and Models in Automation and Robotics - MMAR'96 (IEEE),
Miedzyzdroje, Poland, Ed.: Banka, S.; Domek, S. and Emirsajilow, Z.; 1996, Vol. 3,
pages 1219-1223.

[40] Pawletta T., Lampe B.P., Pawletta S., Drewelow W. (1996) A new Approach for

Simulation of Variable Structure Systems. Proceedings of the 41th Conference
KoREMA (IEEE), Ed.: Vukic, Z.; Opatia, Croatia, September 1996 September 1996,
Vol. 4, pages 83-87.

[41] Pawletta T., Lampe B.P., Pawletta S., Drewelow W. (1996) An object oriented

Framework for modeling and simulation of variable structure systems. Proceedings
of the SCS Summer Computer Simulation Conf., Portland, Oregon, July 1996, pages
8-13.

[42] Pawletta T., Pawletta S. (1995) Design of a Simulator for Structure Variable

Systems. Proceedings of the 5th International IMACS-Symposium on System
Analysis and Simulation, Berlin, SAMS 1995 Vol.18-19, Ed. Sydow, A., Gordon &
Breach, 1995, pages 471-474.

[43] Pawletta T., Pawletta S. (1995) Object-Oriented Simulation of Continuous Systems

with Discrete Changes in Structure. Proceedings of the 9th European Simulation
Multiconference, Prag, Ed.: Snorek, M.; Sujansky, A. and Verbraeck, A., SCS
International, 1995, pages 627-630.

[44] Pawletta T., Pawletta S. (1995) Simulation of modular hierarchical systems with

discrete structure changes. Proceedings of the 40th Anniversary Conference
KoREMA (IEEE), Zagreb, Ed. Vukic, Z.; April 1995, Vol. 1, pages 356 - 359.

[45] Pawletta T., Pawletta S., Dimitrov E. (1994) Modelling and Simulation of Structure

Variable Systems. (German) Advances in Simulation (Fortschritte in der
Simulationstechnik), Ed.: Kampe, G. and Zeitz, M., Vieweg Verlag, Braunschweig,
1994, pages 59-64.

[46] Pawletta T. (1992) Comparison 2 - Modelling of a flexible manufacturing system,

System EXTEND. Simulation News Europe, (1992)6, pages 32-33.
[47] Pierreval H., Caux C., Paris J. L. , Viguier F. (2003) Evolutionary approaches to the

design and organization of manufacturing systems. Computers and Industrial
Engineering Volume 44, Issue 3 (March 2003).

[48] Praehofer, H. (1992) CAST Methods in Modelling. Pichler, F., Schwärtzel, H.
Springer Pub.

[49] Ray J. P., Tomas S. C. (1998) Simulation optimisation using a genetic algorithm.
Simulation Practice and Theory 6 (1998), pages 601–611.

[50] Rechenberg I. (1972) Evolutionsstrategie. (German) Friedrich Frommann Verlag.
 [51] Rohrer M.W. (1998) Simulation of Manufacturing and Material Handling Systems.

In: Handbook of Simulation ed. Banks J. John Wiley & Sons, Inc.
[52] Rozenblit J.W., Zeigler B.P. (1985) Concepts for Knowledg--Based System Design

Environments. Proceedings of the 1985 Winter Simulation Conference.
[53] Sarjoughian H., Huang D. (2005) A multi-formalism modeling composition

framework: Agent and discrete-event models. Paper presented at the 9th IEEE
International Symposium on Distributed Simulation and Real Time Applications,
Montreal, Quebec, Canada.

[54] Schönberg E., Heinzmann F., Feddersen S. (1994) Genetic Algorithms and

Evolutionary Strategies. (German) Addison-Wesley.

References

[131]

[55] Swisher J.R. (2003) Discrete-Event Simulation Optimization using Ranking,

Selection, and Multiple Comparison Procedures: A Survey. ACM Transaction
04.2003.

[56] Swisher, J.R. Hyden, P.D. (2000) A Survey of Simulation Optimization Techniques

and Procedures. Proceedings of the 2000 Winter Simulation Conference.
[57] The ACM Digital Library (2009) http://portal.acm.org.
[58] The MathworksTM (2008) MATLAB

TM
. http://www.mathworks.com/products/matlab/.

[59] The MathworksTM (2008) Genetic Algorithm and Direct Search Toolbox
TM

.
http://www.mathworks.com/products/gads/.

[60] Uhrmacher A.M., Arnold R. (1994) Distributing and maintaining knowledge: Agents

in variable structure environment. 5th Annual Conference on AI, Simulation and
Planning of High Autonomy Systems, pages 178-194.

[61] Unified Modeling Language http://www.uml.org/ (2009).
[62] Wainer, G. A. (2005) DEVS Tools. DEVSStandardization Group,

http://www.sce.carleton.ca/faculty/wainer/standard/tools.htm.
[63] Wainer G., Giambiasi N. (2001) Application of the Cell-DEVS paradigm for cell

spaces modelling and simulation. SIMULATION Transactions of The Society for
Modeling and Simulation International, Jan 2001; vol. 76.

[64] World Wide Web Consortium http://www.w3c.org/XML/ (2009).
[65] Zeigler B. P., Hammonds P. E. (2007) Modeling And Simulation-Based Data

Engeneering. Elsevier Academic Press.
[66] Zeigler B.P., Praehofer H., Kim T.G. (2000) Theory of Modelling and Simulation.

3rd edition, Academic Press.
[67] Zeigler B.P. (1984) Multifacetted Modelling and Discrete Event Simulation.

Academic Press.
[68] Zeigler B.P. (1976) Theory of Modelling and Simulation. 1st edition, John Wiley &

Sons.
[69] Zhang G., Zeigler B.P. (1989) The system Entity Structure: Knowledge

Representation for Simulation Modeling and Design. In: Artificial Intelligence,
Simulation, and Modeling. Widman L.E., Loparo K.A., Nielsen N.R. (Ed.), John
Wiley & Sons Inc, pages 47-73.

Coding Examples

[132]

Appendix B. Coding Examples

atomic_model

variables:

 tlast time of last event

 s internal state

 function init()

 // initialise state variable set S and tnext with the time of the first internal event

 end function

 function δext(e, x)

 t = tlast + e

 // do something with x.value

 end function

 function δint(t)

 SK → SK+1 // calculate next internal state SK+1 from current internal state SK

 end function

 function t = ta()

 t = . . . // calculate next internal state event

 end function

 function y = λ()

 y.value = . . . // set value of y-message

 end function

end atomic_model

Listing B.1 Pseudo code skeleton of an atomic Classic DEVS model

Coding Examples

[133]

coupled_model

 function Md* = select(imminent)

 Md* = . . . // choose one of the sub component from component list imminent

 end function

end coupled_model

Listing B.2 Pseudo code skeleton of a coupled Classic DEVS model

Coding Examples

[134]

variables:

 t simulation clock

 tend simulation end time

when receive start-msg(tend)

 send i-msg() to sub-ordinate DEVS coordinator

 t := tnext of sub-ordinate coordinator

 while t < tend

 send *-msg(t) to sub-ordinate DEVS coordinator

 t := tnext of sub-ordinate coordinator

Listing B.3 Pseudo code of a Classic DEVS root coordinator

Coding Examples

[135]

variables:

 tlast time of last event

 tnext time of next internal state event

 am associated atomic model

when receive i-msg()

 am.init()

 tlast := 0

 tnext := am.ta()

when receive *-msg(t) at time t

 if t <> tnext

 error: bad synchronisation

 y := am.λ()

 send y in y-message to parent coordinator

 am.δint(t)

 tlast := t

 tnext := tlast + am.ta()

when receive x-msg(t, x) at time t with value x

 if not (tlast ≤ t ≤ tnext)

 error: bad synchronisation

 am.δext(t-tlast, x)

 tlast := t

 tnext := tlast + am.ta()

Listing B.4 Pseudo code of a Classic DEVS simulator

Coding Examples

[136]

variables:

 tlast time of last event

 tnext time of next internal state event

 CM associated coupled model

when receive i-msg()

 foreach sub component Md ∈ CM.M

 send i-msg() to Md

 tlast := 0

 // determine time of next scheduled internal state event of all sub components

 tnext := min({ Md.tnext | Md ∈ CM.M })

when receive *-msg(t) at time t

 if t <> tnext

 error: bad synchronisation

 // find all sub components with a true condition tnext=t

 imminent := { Md | Md ∈ CM.M ∧ Md. tnext= t }

 // call select function to determin one sub component to send the *-msg

 Md* := select(imminent)

 send *-msg(t) to Md*

 tlast := t

 // determine time of next scheduled internal state event of all sub components

 tnext := min({ Md.tnext | Md ∈ CM.M })

when receive x-msg(t, x) at time t with value x

 if not (tlast ≤ t ≤ tnext)

 error: bad synchronisation

 // get all sub components Md* with an appropriate EIC

 receivers := subcomponents {Md | Md∈CM.M} with {coupling | coupling∈ CM.EIC}

Coding Examples

[137]

 // forwards the x-msg to all appropriate sub components

 foreach sub component Md* in receivers

 send x-msg(t, x) to Md*

 tlast := t

 // determine time of next scheduled internal state event of all sub components

 tnext := min({Md.tnext | Md ∈ CM.M})

when receive y-msg(t, y) at time t with value y

 // forwards y-msg to super-ordinate model if an appropriate EOC exists

 if exist coupling in CM.EOC

 send y-msg(t, y) to parent model

 // get all sub components Md* with an appropriate IC

 receivers := subcomponents {Md |M d∈CM.M} with {coupling | coupling∈ CM.IC}

 // creates from y-msg and sends it as an x-msg to all appropriate sub components

 foreach sub component Md* in receivers

 send x-msg(t, y→x) to Md*

Listing B.5 Pseudo code of a Classic DEVS coordinator

Coding Examples

[138]

atomic_model

variables:

 tlast time of last event

 s internal state

 function δext(e, x)

 t = tlast + e

 switch x.port

 case inputport0

 // do something with x.value received at input port inputport0

. . .

 case inputportn

 // do something with x.value received at input port inputportn

. . .

 end switch

 end function

 function y = λ()

 y.port = . . . // set output port of y-message

 y.value = . . . // set value of y-message

 end function

Listing B.6 Pseudo code skeleton of an atomic Classic DEVS with Ports model

Coding Examples

[139]

when receive *-msg(t) at time t

 if t <> tnext

 error: bad synchronisation

 y := am.λ()

 send value y.value in y-message to parent coordinator at port y.port

am.δint(t)

 tlast := t

 tnext := tlast + am.ta()

when receive x-msg(t, x, p) at time t with value x at port p

 if not (tlast ≤ t ≤ tnext)

 error: bad synchronisation

 am.δext(t-tlast, x, p)

 tlast := t

 tnext := tlast + am.ta()

Listing B.7 Pseudo code of a Classic DEVS with Ports simulator

Coding Examples

[140]

when receive x-msg(t, x, p) at time t with value x at port p

 if not (tlast ≤ t ≤ tnext)

 error: bad synchronisation

 // get all sub components Md* with an appropriate EIC

 receivers := subcomponents {Md | Md∈ CM.M} with {coupling | coupling∈ CM.EIC}

 // forwards the x-msg to all appropriate sub components

 foreach sub component Md* in receivers

 send x-msg(t, x, Md*.p) to Md* at port p

 tlast := t

 // determine time of next scheduled internal state event of all sub components

 tnext := min({Md.tnext | Md ∈ CM.M})

when receive y-msg(t, y, p) at time t with value y at port p

 // forwards y-msg to super-ordinate model if an appropriate EOC exists

 if exit coupling in CM.EOC

 // coupling is a structure with the elements {sub component, psource, pdestination}

 foreach coupling in CM.EOC

 send y-msg(t, y, coupling.pdestination) to parent model

 // get all sub components Md* with an appropriate IC

 receivers := subcomponents {Md |M d ∈ CM.M} with {coupling | coupling∈ CM.IC}

 // creates x-msg from y-msg and sends it as an x-msg to all appropriate

sub components

 foreach sub component Md* in receivers

 foreach coupling in CM.IC with coupling between y.source and Md*.p

 send x-msg(t, y→x, Md*.p) to Md* at port p

 Listing B.8 Pseudo code of a Classic DEVS with Ports coordinator

Coding Examples

[141]

atomic_model

variables:

 tlast time of last event

 s internal state

 function init()

 // initialise state variable set S and tnext with the time of the first internal state

event

 end function

 function δδδδcon(t, x_bag)

 // default implementation of a confluent function matches Classic DEVS

functionality

 δδδδint(t)

 δδδδext(0, x_bag)

 end function

 function δext(e, x_bag)

 t = tlast + e

 foreach x in x_bag

 // do something with x.value

 end function

 function δint(t)

 SK → SK+1 // calculate next internal state SK+1 from current internal state SK

 end function

 function t = ta()

 t = . . . // calculate next internal state event

 end function

 function y_bag = λ()

Coding Examples

[142]

 y.value = . . . // set value of y-message

 y_bag += y

 end function

end atomic_model

Listing B.9 Pseudo code skeleton of an atomic PDEVS model

Coding Examples

[143]

when receive *-msg(t) at time t

 if t <> tnext

 error: bad synchronisation

 y_bag := am.λ()

 send y_bag in y-message to parent coordinator

when receive x-msg(t, x_bag) at time t with x_bag

 if not (tlast ≤ t ≤ tnext)

 error: bad synchronisation

 if t=tnext and x_bag is not empty

 // concurrent external and internal event

 am.δδδδcon(t, x_bag)

 else if t=tnext and x_bag is empty

 // internal event

 am.δδδδint(t)

 else

 // external event

 am.δδδδext(t-tlast, x_bag)

 end if

 tlast := t

 tnext := tlast + am.ta()

Listing B.10 Pseudo code of a PDEVS simulator

Coding Examples

[144]

atomic_model

variables:

 tlast time of last event

 s internal state

 function init(t)

 // initialise state variable set S and tnext with the time of the first internal state

event

 // t=0 initialisation at simulation start

 // t>0 initialisation after structure change

 end function

 function δcon(t, x_bag)

 // default implementation of a confluent function matches Classic DEVS

functionality

 δint(t)

 δext(0, x_bag)

 end function

 function δext(e, x_bag)

 t = tlast + e

 foreach x in x_bag

 // do something with x.value received at x.port

 switch x.port

 case inputport0

 // do something with x.value received at input port inputport0

 . . .

 case inputportn

 // do something with x.value received at input port inputportn

Coding Examples

[145]

 . . .

 end switch

 end function

 function δint(t)

 su → su+1 // calculate next internal state su+1 from current internal state su

 end function

 function t = ta()

 t = . . . // calculate next internal state event

 end function

 function y_bag = λ()

 y.value = . . . // set value of y-message

 y.port = . . . // set output port of y-message

 y_bag += y

 end function

end atomic_model

Listing B.11 Pseudo code skeleton of an atomic EDSDEVS model

Coding Examples

[146]

coupled_model

variables:

 tlast time of last event

 s internal state

 function init(t)

 // initialise structure and state variable set S and tnext with the time of the first

internal

 // state event

 // t=0 initialisation at simulation start

 // t>0 initialisation after structure change

 end function

 function δcon(t, x_bag)

 // default implementation similar to an atomic model

 functionality

 δint(t)

 δx&s(0, x_bag)

 end function

 function δx&s(e, x_bag)

 t = tlast + e

 foreach x in x_bag

 // do something with x.value received at x.port

 switch x.port

 case inputport0

 // do something with x.value received at input port inputport0

 . . .

 case inputportn

Coding Examples

[147]

 // do something with x.value received at input port inputportn

 . . .

 end switch

 end function

 function δint(t)

 su → su+1 // calculate next internal state su+1 from current internal state su

 end function

 function t = ta()

 t = . . . // calculate next internal state event

 end function

 function y_bag = λ(t)

 y.value = . . . // set value of y-message

 y.port = . . . // set output port of y-message

 y_bag += y

 end function

end coupled_model

Listing B.12 Pseudo code skeleton of a coupled EDSDEVS model

Coding Examples

[148]

variables:

 tlast time of last event

 tnext time of next internal state event

 am associated atomic model

when receive i-msg(t)at time t

// t=0 initialisation at simulation start

// t>0 initialisation after structure change

 am.init(t)

 tlast := t

 tnext := am.ta()

when receive *-msg(t) at time t

 if t <> tnext

 error: bad synchronisation

 y_bag := am.λ()

 send y_bag in a y-message to parent coordinator

when receive x-msg(t, x_bag) at time t with value x_bag containing x.value und x.port pairs

 if not (tlast ≤ t ≤ tnext)

 error: bad synchronisation

 if t=tnext and x_bag is not empty

 // concurrent external and internal event

 am.δcon(t, x_bag)

 else if t=tnext and x_bag is empty

 // internal event

 am.δint(t)

 else

 // external event

Coding Examples

[149]

 am.δext(t-tlast, x_bag)

 end if

 tlast := t

 tnext := tlast + am.ta()

Listing B.13 Pseudo code of an EDSDEVS simulator

Coding Examples

[150]

variables:

 tlast time of last event

 tnext time of next internal state event of the coupled model or a sub component

 tnext_c time of next internal state event of the coupled model

 CM associated atomic model

 // CM.st current, sequential structure state

 IMM // imminent children

mail // output mail bag

// t=0 initialisation at simulation start

// t>0 initialisation after structure change

when receive i-msg(t)at time t

 CM.init(t)

 foreach sub component Md ∈ CM.st.M

 send i-msg(t) to Md

 tlast := t

 // determine time of next scheduled internal state event of coupled model

 tnext_c := CM.ta()

 // determine time of next scheduled internal state event of coupled model and all

 // sub components

 tnext := min(tnext_c, { Md.tnext | Md ∈ CM.st.M })

when receive *-msg(t) at time t

 if t <> tnext & t<>tnext_c

 error: bad synchronisation

 // internal state transition event of the coupled model CM itself

 if t=tnext_c

 y_bag := CM.λ()

Coding Examples

[151]

 send bag of value/output port pairs in a y-message to parent coordinator

 // internal state transition event of a sub component of CM

 else if t=tnext

 // find all sub components with a true condition tnext=t

 IMM := { Md | Md ∈ CM.st.M ∧ Md. tnext= t }

 foreach Md in IMM

 send *-msg(t) to Md

when receive x-msg(t, x_bag) at time t with value x_bag containing pairs of x.value/x.port

 if not (tlast ≤ t ≤ tnext_c)

 error: bad synchronisation

 if t=tnext_c and x_bag is not empty

 CM.δcon(t, x_bag) // concurrent external and internal event

 else if t=tnext_c and x_bag is empty

 CM.δint(t) // internal event

 else

 CM.δx&s(t-tlast, x_bag) // external event

 end if

 // get all sub components Md* with an appropriate EIC

 receivers := subcomponents {Md | Md∈ CM.st.M} with {coupling | coupling∈

CM.st.EIC}

 // forwards the x-msg to all appropriate sub components

 foreach sub component Md* in receivers

 CM.δx&s(t-tlast, x_bag) // external event of sub component

 send x-msg(t, x_bag, Md*.p) to Md* at port p

 foreach sub component Md* in IMM and not in receivers

 send x-msg(t, NULL, NULL) to Md* // send empty bag, input port is ignored

Coding Examples

[152]

 tlast := t

 tnext_c := tlast + CM.ta()

 tnext := min(tnext_c, { Md.tnext | Md ∈ CM.st.M })

when receive y-msg(t, y_bag, d) at time t with y_bag with value/port pairs from d

 // collect all y-messages from all sub components

 if d is not the last not reporting d in IMM

 add (y_bag, d) to mail

 mark d in IMM as reporting

 // all sub components now handled their *-message

 else if d is the last not reporting d in IMM

 CM.δx&s(t-tlast, mail)

 // check external coupling to form sub-bag of parent output

 y_bagparent = NULL

 foreach d in mail where (y_bag and d) has an appropriate EIC

 add y_bag to y_bagparent

 send y-msg(t, y_bagparent,, CM) to parent model

 // check IC to get children Md* with an appropriate IC who receives a sub bag

 receivers := subcomponents {Md |d in mail, M d∈ CM.st.M} with {coupling |

coupling∈ CM.st.IC}

 foreach sub component Md* in receivers

 creates sub bag x_bag from mail with elements where Md* is receiver

 send x-msg(t, x_bag) to Md*

 mark d in IMM as sending

 foreach sub component Md* in IMM where Md* is not sending

 send x-msg(t, NULL) to Md*

 tlast := t

 tnext_c := tlast + CM.ta()

Coding Examples

[153]

 tnext := min(tnext_c, { Md.tnext | Md ∈ CM.st.M })

Listing B.14 Pseudo code of an EDSDEVS coordinator

Coding Examples

[154]

<?xml version="1.0" encoding="us-ascii"?>

<!--

 DTD for an SES.

-->

<!ELEMENT top (ses_mb)>

<!ELEMENT ses (modelbase | ses | properties)*>

<!ELEMENT modelbase ((mb_composite | mb_atomic | mb_aspect |

mb_specialization | mb_specializationentity | mb_multiAspect)+)>

<!ELEMENT ses (composite)>

<!ELEMENT properties ((modelcouplings | var | varNumberOfComponent |

constraint)+)>

<!ELEMENT modelcouplings ((eic | eoc | ic)+)>

<!ATTLIST modelcouplings

 esname CDATA #REQUIRED>

<!ELEMENT mb_composite EMPTY>

<!ATTLIST mb_composite

 esname CDATA #REQUIRED>

<!ELEMENT composite ((aspect | specialization | multiAspect)*)>

<!ATTLIST composite

 esname CDATA #REQUIRED>

<!ELEMENT mb_atomic ((inports | outports)*)>

<!ATTLIST mb_atomic

 esname CDATA #REQUIRED

 classname CDATA #REQUIRED

 modelname CDATA #REQUIRED>

<!ELEMENT atomic EMPTY>

<!ATTLIST atomic

 esname CDATA #REQUIRED>

<!ELEMENT mb_aspect ((inports | outports)*)>

<!ATTLIST mb_aspect

 esname CDATA #REQUIRED

 classname CDATA #REQUIRED

 modelname CDATA #REQUIRED>

<!ELEMENT aspect ((entity | specialization | multiAspect |

atomic)*)>

<!ATTLIST aspect

 esname CDATA #REQUIRED>

<!ELEMENT mb_specialization ((inports | outports)*)>

<!ATTLIST mb_specialization

 esname CDATA #REQUIRED>

<!ELEMENT mb_specializationentity EMPTY>

<!ATTLIST mb_specializationentity

 esname CDATA #REQUIRED

Coding Examples

[155]

 classname CDATA #REQUIRED

 modelname CDATA #REQUIRED>

<!ELEMENT specialization (specializationentity+)>

<!ATTLIST specialization

 esname CDATA #REQUIRED>

<!ELEMENT specializationentity EMPTY>

<!ATTLIST specializationentity

 esname CDATA #REQUIRED>

<!ELEMENT mb_multiAspect EMPTY>

<!ATTLIST mb_multiAspect

 esname CDATA #REQUIRED>

<!ELEMENT multiAspect (atomic)>

<!ATTLIST multiAspect

 esname CDATA #REQUIRED>

<!--

internal var will be set internally in the ses

external var references an external variable

-->

<!ELEMENT var EMPTY>

<!ATTLIST var

 name CDATA #REQUIRED

 esname CDATA #REQUIRED

 typ (internal|external) "internal"

 external_name CDATA #IMPLIED

 value CDATA #IMPLIED>

<!ELEMENT varNumberOfComponent EMPTY>

<!ATTLIST varNumberOfComponent

 esname CDATA #REQUIRED

 min CDATA #REQUIRED

 max CDATA #REQUIRED>

<!ELEMENT inports (inport+)>

<!ELEMENT outports (outport+)>

<!ELEMENT inport EMPTY>

<!ATTLIST inport

 name CDATA #REQUIRED>

<!ELEMENT outport EMPTY>

<!ATTLIST outport

 name CDATA #REQUIRED>

<!ELEMENT eic EMPTY>

<!ATTLIST eic

 inport CDATA #REQUIRED

 component CDATA #REQUIRED

 component_inport CDATA #REQUIRED>

<!ELEMENT eoc EMPTY>

<!ATTLIST eoc

 component CDATA #REQUIRED

Coding Examples

[156]

 component_outport CDATA #REQUIRED

 outport CDATA #REQUIRED>

<!ELEMENT ic EMPTY>

<!ATTLIST ic

 component1 CDATA #REQUIRED

 component1_outport CDATA #REQUIRED

 component2 CDATA #REQUIRED

 component2_inport CDATA #REQUIRED>

<!ELEMENT constraint EMPTY>

<!ATTLIST constraint

 name CDATA #REQUIRED

 typ (entity|parameter) #REQUIRED

 action (enable|valid) #IMPLIED

 condition (gt|lt|eq|gteq|lteq|neq) #IMPLIED

 var_name1 CDATA #IMPLIED

 var_name2 CDATA #IMPLIED

 destination CDATA #IMPLIED>

Listing B.15 DTD describing the structure of SES/MB XML

Coding Examples

[157]

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE ses SYSTEM "ses.dtd" []>

<ses_mb>

 <ses>

 <composite esname="ROOT">

 <aspect esname="ROOTdec">

 <composite esname="A">

 <specialization esname="Aspec">

 <specializationentity esname="A1"/>

 <specializationentity esname="A2"/>

 </specialization>

 </composite >

 <composite esname="B">

 <aspect esname="Bdec">

 <atomic esname="D"/>

 <atomic esname="E"/>

 </aspect>

 </composite >

 </aspect>

 </composite >

 </ses>

 <modelbase>

 <mb_aspect esname="ROOTdec" classname="ROOT" modelname="root"/>

 <mb_specialization esname="Aspec">

 <outports>

 <outport name="Aout1"/>

 <outport name="Aout2"/>

 </outports>

 </mb_specialization>

 <mb_aspect esname="Bdec" classname="B" modelname="b">

 <inports>

 <inport name="Bin1"/>

 <inport name="Bin2"/>

 </inports>

 <outports><outport name="Bout"/></outports>

 </mb_aspect>

 <mb_atomic esname="D" classname="D" modelname="d">

 <inports><inport name="Din"/></inports>

 <outports><outport name="Dout"/></outports>

 </mb_atomic>

 <mb_atomic esname="E" classname="E" modelname="e">

 <inports>

 <inport name="Ein1"/>

 <inport name="Ein2"/>

 </inports>

 <outports><outport name="Eout"/></outports>

 </mb_atomic>

 </modelbase>

 <properties>

 <modelcouplings esname="ROOTdec">

 <ic component1="A" component1_outport="Aout1"

 component2="B" component2_inport="Bin1"/>

 <ic component1="A" component1_outport="Aout2"

 component2="B" component2_inport="Bin2"/>

 </modelcouplings>

 <modelcouplings esname="Bdec">

 <eic inport="Bin1" component="D" component_inport="Din"/>

 <eic inport="Bin2" component="E" component_inport="Ein2"/>

Coding Examples

[158]

 <ic component1="D" component1_outport="Dout"

 component2="E" component2_inport="Ein1"/>

 <eoc component="E" component_outport="Eout" outport="Bout"/>

 </modelcouplings>

 <var esname="ROOT" name="pmax" typ="internal" value="6"/>

 <var esname="A1" name="p1" typ="internal" value="2"/>

 <var esname="A2" name="p1" typ="internal" value="3"/>

 <var esname="D" name="p2" typ="internal" value="3"/>

 <constraint name="sc1" condition="lt" var_name1="p1+p2"

 var_name2="pmax" action="valid" typ="parameter"/>

 </properties>

</ses_mb>

Listing B.16 SES/MB XML example – XML file

Coding Examples

[159]

Figure B.1 A coupled model example

<?xml version="1.0" encoding="utf-8"?>

<atomic modelName="server" xmlns="AtomicDevs">

 <inports/>

 <outports>

 <outport>job_out</outport>

 </outports>

</atomic>

<?xml version="1.0" encoding="utf-8"?>

<atomic modelName="transducer" xmlns="AtomicDevs">

 <inports>

 <inport>job_in</inport>

 </inports>

 <outports/>

</atomic>

Listing B.17 Two atomic model XML files

<?xml version="1.0" encoding="utf-8"?>

<coupled modelName="MODEL" xmlns="CoupledDevs">

 <Models>

 <Model><devs>server</devs></Model>

 <Model><devs>transducer</devs></Model>

 </Models>

 <inports/>

 <outports/>

 <EIC/>

 <IC>

 <Coupling>

 <SrcModel>server</SrcModel><outport>job_out</outport>

 <DestModel>transducer</DestModel>

 <inport>job_in</inport>

 </Coupling>

 </IC>

 </EOC>

</coupled>

Listing B.18 Coupled model XML file

Coding Examples

[160]

0. Define the search space and chose an appropriate information encoding in chromosomes

1. Initialise a population of individuals with different chromosomes (generation 0)

Repeat until stop criterion is fulfilled

2. Estimate the fitness of all individuals of the current generation

3. Select pairs with m individuals and create descendants using crossover

4. Mutate the descendants

5. Exchange individuals of the current generation with descendants based on a

substitution schema to create a new generation

Listing B.19 A general GA algorithm

Photofinishing Machines

[161]

Appendix C. Photofinishing Machines

Figure C.1 Splicer (left) and URS

Figure C.2 DigiURS (left) and High-speed film scanner

Photofinishing Machines

[162]

Figure C.3 Analogue (left) and digital printer

Figure C.4 Manual (left) and automatic cutter

Publications in the Course of this Research

[163]

Appendix D. Publications in the Course of this

Research

Hagendorf O., Pawletta T. (2009) Extended Dynamic Structure DEVS. Proceedings of the

21st European Modeling and Simulation Symposium (submitted and accepted).

Hagendorf O., Pawletta T. (2009) A Framework for Simulation Based Structure and

Parameter Optimization of Discrete Event Systems. book project by CRC Press, editor: G.

Wainer and P. Mosterman, 30 pages (submitted and accepted 2008/2009) .

Hagendorf O. Pawletta T. (2008) An Approach for Simulation Based Structure Optimisation

of Discrete Event Systems. Proceedings of the 2008 Spring Simulation Conference.

Hagendorf O., Pawletta T., Pawletta S., Colquhoun G. (2006) An approach for modelling

and simulation of variable structure manufacturing systems. ICMR 2006 Liverpool/UK.

Pawletta T., Deatcu C., Pawletta S., Hagendorf O., Colquhoun G. (2006) DEVS-Based

Modeling and Simulation in Scientific and Technical Computing Environments. Proceedings

of the 2006 Spring Simulation Conference DEVS/HPC/MMS 2006 Huntsville/Al USA.

Hagendorf O., Colquhoun G., Pawletta T., Pawletta S. (2005) A DEVS - Approach to

ARGESIM Comparison C16 ‘Restaurant Business Dynamics’ using MatlabDEVS.

Simulation News Europe, no.44/45, (December).

EXTENDED DYNAMIC STRUCTURE DEVS

Olaf Hagendorf
(a)

, Thorsten Pawletta
(b)

, Christina Deatcu
(c)

(a)

 Liverpool John Moores University, School of Engineering, UK
(a, b, c)

 Hochschule Wismar, University of Applied Sciences: Technology, Business and Design, Germany

(a)

 oh@ibhagendorf.de,
(b)

thorsten.pawletta@hs-wismar.de,
(c)

christina.deatcu@hs-wismar.de

ABSTRACT

Since the first publication of DEVS, the formalism was

enhanced and many extensions have been introduced.

Every extension holds some advantages over the other,

e.g. Parallel DEVS generalizes the specification and

handling of concurrent events, DEVS with Ports

enables a more structured modeling and Dynamic

Structure DEVS introduces dynamic structure changes

at coupled model level during simulation time. The

extensions have one joint attribute: they are extending

the Classic DEVS formalism and don’t incorporate the

advantages of each other. Hence, the decision on one

DEVS extension inhibits the use of advantages of

another one. This lack leads to the idea of a merging

formalism to combine the advantages of different

approaches. The Extended Dynamic Structure DEVS

combines the Classic DEVS with some of the existing

extensions: Parallel DEVS, Dynamic Structure DEVS

and DEVS with Ports.

Keywords: Discrete Event Simulation, DEVS,

DSDEVS, PDEVS, EDSDEVS

1. INTRODUCTION

The DEVS formalism was first introduced by Zeigler

(Zeigler 1976) in the 1970s. In (Zeigler et.al. 2000) the

authors classify this formalism, position and compare it

with other, more established modeling and simulation

formalisms. Several international research groups are

working on the DEVS formalism and are regularly

publishing results at the annual DEVS Symposium at

Spring Simulation Conferences, European Modeling

and Simulation Symposia and others. Wainer (Wainer

2009) maintains a list of available DEVS tools. The

DEVS formalism is, in contrast to other modeling and

simulation formalisms, not very widely used in

industrial practice. This situation persists despite the

fact that the theory is a well-founded, general

formalism. It can only be assumed that one reason of

the marginal acceptance is the type of available

software tools (Pawletta et.al. 2006).

There are several publications to extend the

application field or to ease the use of DEVS e.g. Parallel

DEVS generalizes the specification and handling of

concurrent events, DEVS with Ports enables a more

structured modeling and Dynamic Structure DEVS

introduces dynamic structure changes at coupled model

level during simulation time and significantly eases the

modeling of larger real systems. The extensions have

one joint attribute: they are based on the Classic DEVS

formalism and extending it in a specific direction.

Hence, the decision on one DEVS extension inhibits the

use of advantages and application fields of another one.

This lack leads to the idea of a merging formalism to

combine the advantages of different approaches and

widen the application field of the resulting formalism.

The Classic DEVS formalism with the formal

modeling concept and simulation algorithms is

introduced in chapter 2. After a short introduction of a

few DEVS extensions, three of them are described in

detail in chapter 3. The fusion of Classic DEVS with the

introduced extensions to the new Extended Dynamic

Structure DEVS approach is presented with formal

concept, simulation principles and algorithms in chapter

4. The conclusions in chapter 5 complete this

contribution.

2. CLASSIC DEVS

DEVS is a modular, hierarchical modeling and

simulation formalism. Every DEVS model can be

described by using two different model types, atomic

and coupled. Both model types have an identical,

clearly defined interface through input and output ports.

An atomic model describes the behavior of a non-

decomposable entity via input/output events and event

driven state transition functions. A coupled model

describes the structure of a more complex model

through the aggregation of several entities and their

couplings. These entities can be atomic models as well

as coupled models. The DEVS formalism consists of

two parts: (i) a formal DEVS model definition and (ii)

simulator algorithms.

2.1. Formal Concept

The formal Classic DEVS description defines coupled

and atomic models as a combination of sets and

functions. The description of an atomic model is a

7-tuple (Zeigler et.al. 2000):

am = (X, Y, S, δext, δint, λ, ta)

• X, Y and S specify the sets of discrete inputs,

outputs and internal states.

• δext: Q × X → S where Q = {(s,e) | s ∈ S,

0<e<tnext}

The external state transition function δext handles

external input events.

• δint: S → S

The internal state transition function δint

establishes a new internal state.

• λ: S → Y

The output function λ generates an output event

depending on the internal state S.

• ta: S → ℜ�
�

 ∪ ∞

The time advance function ta schedules the time of

the next internal event after each state transition.

Figure 1 shows the dynamic behavior of an atomic

model.

Fig. 1 Dynamic Behavior of an Atomic Model

The description of a coupled model is a 9-tuple (Zeigler

et.al. 2000):

CM = (dn, X, Y, D, { Md }, EIC, EOC, IC, SELECT)

• dn specifies the name of the coupled model.

• X and Y specify the sets of discrete inputs and

outputs.

• D specifies the set of sub component names.

• Md

| d ∈ D

Md is the model of the sub component d

• EIC, EOC and IC are the sets of external input,

external output and internal couplings.

• The SELECT function prioritizes concurrent

internal events of sub components.

Figure 2 depicts the relations of the elements of a

Classic DEVS coupled model.

Fig. 2 Coupled Model Elements

The Classic DEVS approach supports the specification

of behavioral system dynamics in atomic systems and

the specification of static component aggregations in

coupled systems. It is not possible to describe structural

system dynamics at the coupled model level, i.e. the

deletion or creation of components and couplings or

changes of interfaces, although all necessary structural

information is also available during simulation time.

The only possibility to realize a structural system

dynamic is to specify it with logical constructs at the

atomic model level. However, this removes the

advantages of reusability and model clarity and

increases modeling complexity.

2.2. Classic DEVS Simulation

Beside the formal definition the second part of the

Classic DEVS formalism is the description of abstract

simulator algorithms for the execution of DEVS

models. The algorithms are named abstract because they

are implemented as a general pseudo code. The abstract

simulator has a modular, hierarchical structure matching

exactly the modular, hierarchical structure of a DEVS

model. A DEVS model can be directly transformed into

an executable simulator model using abstract simulator

elements e.g. as shown in (Praehofer 1992; Zeigler et.al.

2000).

The abstract simulator approach consists of three

different elements namely root coordinator, coordinator

and simulator. Each atomic model is associated with a

simulator element and each coupled model is associated

with a coordinator element. The root coordinator is

added to that structure as topmost ruling entity.

3. DEVS EXTENSIONS

Extensions of the Classic DEVS formalism increase the

classes of system models that can be represented by

DEVS. Several DEVS extensions are introduced e.g. in

(Barros 1996; Chow et.al. 1994; Hagendorf et.al. 2006;

Pawletta et.al. 1996; Praehofer 1992; Uhrmacher et.al.

1994; Wainer 2009; Zeigler et.al. 2000). An incomplete

list of DEVS extensions recently presented is:

• DEVS with Ports: The port extension adds

additional input and output ports to models.

• Parallel DEVS: Parallel DEVS (PDEVS) considers

concurrent transition events.

• Dynamic Structure DEVS: Dynamic Structure

DEVS (DSDEVS) enables changes during a

simulation run. Several partial very different

approaches exist. Dynamic structure extensions

introduced by Barros (Barros 1996) and Pawletta

(Pawletta et.al. 1996) keep the general structure of

Classic DEVS modeling and simulation with

additions to coupled model definitions but

unchanged atomic model definitions. Other

dynamic structure extensions e.g. an agent based

DEVS (Uhrmacher et.al. 1994) introduce more

extensive modifications.

• DSDEVS-hybrid: The extension of discrete state

changes by continuous state changes as introduced

by DSDEVS-hybrid enables a complete new

application field and can ease the modeling of

several problems (Deatcu et.al. 2009).

• Real Time DEVS: The DEVS model is executed

in real time rather than in model time. The time

advance function delivers time intervals which

allow uncertainty when an internal event has to

take place.

The next sections introduce some of these DEVS

extensions in more detail. They are used as basis of the

subsequently introduced, unifying DEVS formalism.

3.1. DEVS with Ports
The introduction of ports into the Classic DEVS

formalism makes modeling easier and the representation

of information flow more clearly (Zeigler et.al. 2000).

In Classic DEVS each model has only one single input

and one single output port. All events are received and

sent through these ports. With the port extension, a

model has several input and output ports each dedicated

for a specific task i.e. event type. A model can have

several output ports which can be connected to input

ports of other models as shown in figure 3. Hence, each

event can use a dedicated, well defined routing path.

The modeling becomes more structured; a model can

become clearer and better understandable through

differentiated interfaces.

Fig. 3 Model with Multiple Input and Output Ports

The formal description of Classic DEVS with Ports

largely remains the same except the extended

definitions of X, Y for atomic and coupled models

(Zeigler et.al. 2000):

X = {(p,v) | p ∈ InputPorts, v ∈ Xp}

Y = {(p,v) | p ∈ OutputPorts, v ∈ Yp}

• p is the input or output port of the model

• v is a discrete value

• Xp / Yp specify discrete inputs/outputs sets at port p

Whereas in Classic DEVS the coupling definitions

consist of a sub model name as destination and source,

respectively, for EIC and EOC and of a pair of sub

model names for IC, the port extension necessitates a

coupling definition extension, too:

• EIC = { (input_port, d.input_port) |

input_port ∈ InputPorts, d ∈ D,

d.input_port∈InputPorts of Md }

• IC = { (di.output_port, dk.input_port) | di,dk ∈ D,

di.output_port∈ OutputPorts of ���
,

dk.input_port ∈ InputPorts of ���
, i<>k }

• EOC = { (d.output_port, output_port) |

d.output_port ∈ OutputPorts of Md, d ∈ D,

output_por ∈ OutputPorts}

3.2. Parallel DEVS

Parallel DEVS (PDEVS) was introduced by Chow

(Chow et.al 1994). It adds new elements and functions

to the Classic DEVS formalism. It allows all imminent

components to be activated simultaneously and enables

sending their output to other components at the same

time concurrently. Multiple outputs are combined in a

bag which is sent as a whole to a model’s external state

transition function. A bag is similar to a set, containing

an unordered set of elements, but allows multiple

occurrences of an element. In Classic DEVS by contrast

events are handled individually. In a PDEVS simulator

(Zeigler et.al. 2000) during the *-message handling first

all outputs are established before calling external and

internal state transition functions. Each receiving

component is responsible for examining and

interpreting its combined inputs in the correct order.

PDEVS gives the atomic model more control over the

handling order of concurrent external and internal

events. In Classic DEVS a super-ordinate component,

the coupled model, is responsible for the execution

order of concurrent internal events of different sub

components using the select function. In PDEVS the

order of simultaneous events is locally controllable at

atomic model level with an additional, third state

transition function, the confluent transition function

δcon. Hence, it merges the decision logic of execution

order of concurrent events with the event handling

functions at a same level.

According to the extensions of PDEVS an atomic

model is defined by the following 8- tuple (Chow et.al.

1994):

am = (X, Y, S, δext, δint, δcon, λ, ta)

• X, Y and S specify the sets of discrete input events,

output events and sequential states.

• δext: Q × X
b
 → S where X

b
 is a bag covering

elements of X and Q = { (s,e) | s ∈ S, 0<e<tnext }

The external state transition function δext handles a

bag covering external inputs X
b

 = {xi | xi ∈ X}.

• δint: S → S

The internal state transition function δint

establishes a new internal state.

• δcon: S × X
b
 → S

The confluent transition function δcon handles the

execution sequence of δint and δext functions during

concurrent external and internal events.

o The confluent function definition

δcon(s, X
b
) = δext(δint(s), 0, X

b
) with

δext(s, e, X
b
) is equivalent to the Classic

DEVS behavior with a higher prioritized

handling of internal events.

o The alternative confluent function defintion

δcon(s, X
b
) = δint(δext(s, ta(s), X

b
)) with δint(s)

first handles external events.

o The execution of the confluent function with

an empty bag δcon(s, null) calls directly the

internal transition function δint.

• λ: S →Y
b
 where Y

b
 is a bag covering elements of Y

The output function λ generates a bag covering

outputs Y
b
 = { yi | yi ∈ Y } depending on the

internal state S.

• ta: S → ℜ�

�
 ∪ ∞

The time advance function ta schedules the time of

the next internal event after each state transition.

The definition of a coupled model for PDEVS is the

same as for Classic DEVS except for the absence of the

select function (Zeigler et.al. 2000):

CM = (dn, X, Y, D, { Md }, EIC, EOC, IC)

The execution of a PDEVS model is carried out

similarly to Classic DEVS with some changed details in

the message handling (Zeigler et.al. 2000).

3.3. Dynamic Structure DEVS

Several approaches extend the Classic DEVS to

Dynamic Structure DEVS (DSDEVS). Barros (Barros

1996) and Pawletta (Pawletta et.al. 1996) introduce two

DSDEVS variants with an extension of the coupled

model definition while the atomic model definition

remains unchanged. With theses extensions the coupled

model is able to change its structure during simulation

time. Uhrmacher (Uhrmacher et.al. 1994) introduces an

agent based approach. It defines extensions for both

atomic and coupled systems. Another approach is Cell-

DEVS, a combination of cellular automata with the

DEVS formalism where each cell consist of a single

DEVS model (Wainer 2001).

The different types of extensions are carried out

due to different application fields or problem definitions

e.g. a typical Cell-DEVS application field is social and

environmental modeling and simulation. The

approaches of Barros and Pawletta are extending the

classic formalism without changing its overall principle

and thus without changing the general application field

of Classic DEVS. The DSDEVS approach of Pawletta

enables several options to specify structural dynamics:

• Creation, destruction, cloning and replacement of

sub components

• Exchange of a sub component between two

coupled models

• Changing coupling definitions of a coupled system

The DSDEVS approach extends the coupled model

definition but the atomic model definition stays

unchanged. During the simulation time a coupled model

can change its structure. Each structure can be seen as a

structure state si with s0, s1, ...,sn ∈ SDS. A structure state

si describes all structure relevant elements of a coupled

model. Additionally a structural state set HDS can store

further structure information e.g. the number of

structure changes at the present time or the current

structure number. External or internal events, handled

by the additional state transition functions δx&s and δint

at coupled model level, induce structure state changes

and as a result model structure changes. This dynamic

structure extension of Classic DEVS was developed

with a regard to hybrid systems, i.e. systems with

continuous and discrete event dynamic. In the following

only the relevant aspect for discrete event systems are

taken into account.

A DSDEVS coupled model is defined by the

following 6-tuple (Pawletta et.al. 1996):

CMDS = (dds , SDS , δx&s , δint , λ , ta)

• dds specifies the name of the coupled model.

• According to the above definition of a coupled

model, its structure consists of sets of sub

components and coupling relations. Structure

changes mean modifications of these sets.

Obviously, the sets of sub systems and coupling

relations could be interpreted as a structure state.

The set of sequential structure states

{s0, s1, ..., sn} = SDS defines all structure variants of

the variable structure coupled model CMDS.

Structure state changes can be induced by handling

external or internal events of the coupled model

itself or by state events i.e. output events of

subordinated components. A structure state is

defined by a 9-tuple:

si = (X, Y, HDS, D, { Md

}, EIC, EOC, IC, select)

o X and Y specify the sets of discrete input and

output events. The sets exactly match the sets

X and Y in Classic DEVS. As an extension of

DSDEVS the coupled model can directly

handle external input events and can create

external output events itself.

o The set HDS represents additional structure

related state variables. They are equivalent to

the state variable set S of an atomic model.

o D specifies the set of sub component names.

o Md | d ∈ D
Md is the model of the sub component d of

the coupled model CMDS. The set { Md

}

defines all sub components of CMDS.

o EIC, EOC and IC are the external input,

external output and internal couplings.

o The function select prioritizes concurrent

internal events of the coupled model itself

and its sub components.

• δx&s: QDS × X → HDS where QDS = {(h,e) | h ∈

HDS, 0<e<tnext}

The external and state transition function δx&s

handles external input events and state events i.e.

output events of sub components. However it is

unreasonable to make changes in the set of sub

components or the coupling relations by this

function directly. This could lead to ambiguous

event handling because external events could

simultaneously influence the dynamic of sub

components and the structure state. Consequently

the δx&s function is only allowed to modify

structure related state variables in the set HDS.

• δint: SDS → SDS

The internal transition function δint changes the

structure state si to si+1 and as a result induces a

structure change of CMDS. The execution of output

function λ and internal transition function δint is

induced by a time driven internal event.

• λ: SDS → Y

The output function λ generates output events

depending on the state SDS.

• ta: SDS → ℜ�

�
 ∪ ∞

As with the dynamic of atomic models, internal

events are scheduled by the time advance function

ta. After each state transition the next internal

event is established by the time advance function.

},...{ 0 nDSu ssSs =∈

nDSv ssSs ,...{ 01 =∈
+

Fig. 4 Dynamic Behavior of a DSDEVS Coupled Model

The dynamic behavior of an atomic model is identical

to the behavior in Classic DEVS. Figure 4 shows the

dynamic behavior of a dynamic structure coupled

model. The figure depicts two external input events and

one internal event. Reasons for an input event handling

can be an external input event at the input port of the

coupled model itself or an external output event at the

output port of a sub component Md of the coupled

model. The handling of both events by the coupled

model is identically. As a result of an event the structure

related state variable set HDS can be changed and with

the concluding call of the time advance function an

immediate internal event can be induced. An internal

event is handled by a coupled model similar to the

internal event handling of an atomic model, i.e. the

event handling can induce a change of the state sets S

and SDS, respectively.

4. EXTENDED DYNAMIC STRUCTURE DEVS
Chapters 3 and 4 introduce the Classic DEVS

formalism and several DEVS extensions. This work

aims to bring together all introduced approaches and to

combine their advantages and application fields. In

(Zeigler et.al. 2000) a first step into this direction is

undertaken, the introduced PDEVS formalism is a

combination of the original PDEVS and DEVS with

Ports. The Extended Dynamic Structure DEVS

(EDSDEVS), proposed here, combines the extensions:

Classic DEVS with PDEVS, DSDEVS and DEVS with

Ports. The selection of the extensions is carried out to

ensure the preservation of the generic modeling and

simulation principles of Classic DEVS. The fusion

results in a DEVS formalism with the following main

characteristics:

• Modular, hierarchical and dynamic structure

modeling and simulation formalism,

• Formal description by sets and functions,

• Exact definition of simulation algorithms,

• Dynamic behavior description in atomic models,

• Dynamic structure description in coupled models,

• Exact behavior definition of concurrent events,

• Substantial similarity between real system and

model.

The next sections focus on the formal concept of

EDSDEVS modeling with formal descriptions, dynamic

behavior descriptions and introduction of the simulation

concept with abstract simulator algorithms.

4.1. Formal Concept
The EDSDEVS formal descriptions of coupled and

atomic models as a combination of sets and functions

are structured similar to the Classic DEVS formal

description. The EDSDEV atomic model amEDS is

defined as an 8- tuple:

amEDS = (X, Y, S, δext, δint, δcon, λ, ta)

• X = {(p,v) | p ∈ InputPorts, v ∈ Xp}

Y = {(p,v) | p ∈ OutputPorts, v ∈ Yp}

The definitions of both sets are identical to the

definitions in DEVS with Ports.

• S specifies the internal states set and is identical to

set S of a Classic DEVS atomic model.

• δext: Q × 	

 → S with X

b
 = {xi | xi = (p,v), p ∈

InputPorts, v ∈ Xp } and Q = {(s,e) | s ∈ S,

0 < e < tnext

}

The external state transition function δext handles a

bag covering external inputs. Each input consists

of a pair of a discrete input v ∈ Xp and an input

port p ∈ InputPorts. The set XP is the set of

discrete inputs at port p and InputPorts is the set of

input ports of model amEDS. The function δext can

induce an internal event with a rescheduling of the

time of the next internal event. This extended

definition of δext is a fusion of the δext definitions

of PDEVS and DEVS with Port.

• δint: S → S

The internal state transition function δint can

establish a new internal state. The execution of

output function λ and internal state transition

function δint is induced by a time driven internal

event. The time of an internal event is established

by the time advance function ta. The definition is

identical to the definition in Classic DEVS.

• δcon: S × 	

→ S

The confluent transition function δcon handles the

execution order of δint and δext functions during

concurrent external and internal events. In spite of

the same function signature δcon(s, X
b
) the

parameter X
b
 is different to that in the PDEVS

definition as described in section 3.2. Anyhow the

three δcon definitions from there also apply here.

This extended definition of δcon is based on the

PDEVS δcon function definition. Unlike in PDEVS

the function has to handle a bag covering inputs,

each consisting of a discrete input, input port pair.

• λ: S → �

 whit Y

b
 = {yi | yi = (p, v), p ∈

OutputPorts, v ∈ Yp}

The output function λ can generate a bag covering

outputs Y
b
. In spite of the same function signature

Y
b
 = λ (s) the function result Y

b
 is different to that

in the PDEVS definition as described in section

3.2. The function result is a bag covering outputs

Y
b
={ yi | yi = (p, v) } each consisting of a pair of

discrete output v ∈ Yp and output port

p ∈ OutputPorts. The set YP is the set of discrete

outputs at port p and OutputPorts is the set of

output ports of model am. If and which outputs

are generated depends on the internal state S. This

extended definition of λ is based on the PDEVS λ

function definition. Unlike in PDEVS the function

generates a bag covering outputs each consisting

of discrete output and output port pairs as

introduced in DEVS with Ports.

• ta: S → ℜ�

�
 ∪ ∞

The time advance function ta schedules the time of

the next internal event after each state transition.

The definition is identical to Classic DEVS.

Figure 5 shows the dynamic behavior of an atomic

EDSDEVS model amEDS.

},...{ 0

0

m

inport

xx

X =

},...{ 0

0

p

outport

yy

Y =

},...{ 0 q

outport

yy

Y
j
=

},...{ 0 n

inport

xx

X
i

=

)},(),,(

),,{(

10

0

inportxinportx

inportxX

cb

a

b

u =

)},(

),,{(

1

0

outporty

outportyY

e

d

b

u =

Fig. 5 Dynamic Behavior of an Atomic EDSDEVS

Model

At time tu the confluent transition function δcon handles

two concurrent events. The first event contains a bag

covering external inputs received by the atomic model

amEDS. The figure depicts an example bag covering

three external inputs received at two different input

ports. A concurrent internal event at tu was scheduled by

the previous execution of the time advance function ta.

Depending on the specific implementation of function

δcon sequence a) or b) is executed. The execution of λ

creates a bag covering outputs. The shown bag ��

covers two outputs.

An Extended Dynamic Structure DEVS coupled model

is defined by the following 7-tuple:

CMEDS = (dn, SEDS, δx&s, δint, δcon, λ, ta)

• dn specifies the name of the coupled model.

• In the EDSDEVS formalism the coupled model

structure consists not only of sets of sub

components and coupling relations as in DSDEVS

but also of additional interface definitions i.e.

input and output port definitions. The set of

sequential structure states {s0, s1, ...,sn} = SEDS has

to define all structure variants of the coupled

model CMEDS. Two model structure variants can

vary in different interface definitions, in contrast

to DSDEVS where each model has a non-variable

interface with a single input and a single output

port. Hence, a structure state has to incorporate

interface definitions with sets of input and output

ports additionally to the structure state definition

as introduced in section 3.3. An EDSDEVS

structure state is defined by a 10-tuple:

si = (X, Y, HEDS, D, { Md

}, InputPorts,

OutputPorts, EIC, EOC, IC)

o X and Y specify the sets of discrete input and

outputs. The sets exactly match the extended

definitions of X and Y as introduced in DEVS

with Ports.

o The sets HEDS, D and Md exactly match the sets

HVS, D and Md of the DSDEVS formalism

introduced in section 3.3.

o InputPorts and OutputPorts specify the sets of

input and output port names of the coupled

model CMEDS. These two elements of the

structure state si are introduced by the

EDSDEVS formalism.

o EIC, EOC and IC are the external input, external

output and internal couplings of CMEDS. The

definition of the coupling relations exactly

match the definition as introduced with the

DEVS with Ports extension.

• δx&s: Q × X
b
 → HEDS where X

b
 is a bag covering

input, input port pairs and Q = {(h,e) | h ∈ HEDS,

0<e<tnext}

The external and state transition function δext

handles a bag covering inputs, each consisting of a

pair of a), b) or c):

a) A discrete input v ∈ Xp and an input port p ∈

InputPorts. The set XP is the set of discrete

inputs at port p and InputPorts is the set of

input ports of model CMEDS.

b) A discrete output v ∈ Md.Yp and an output port

p ∈ Md.OutputPorts where Md is the model of

the sub component d of the coupled model

CMEDS. The set Md.YP is the set of discrete

outputs at port p and Md.OutputPorts is the set

of output ports of model Md.

c) A discrete input v ∈ Md.Xp and an input port

p ∈ Md.InputPorts where Md is the model of

the sub component d of the coupled model

CMEDS. The set Md.XP is the set of discrete

inputs at port p and Md.InputPorts is the set of

input ports of model Md.

This extended definition of δext is a fusion and

extension of the δext definitions of DSDEVS,

PDEVS and DEVS with Ports. In DSDEVS only

state events induced by output events of sub

components are handled. However, an output port

can have coupling relations to multiple input ports.

In this case there is a difference in the handling of a

single output event of a single source sub model or

multiple input events of different destination sub

models. Hence, the external and state transition

function of EDSDEVS can handle both output and

input events. However, the functionality is in

accordance with the description of the DSDEVS

external and state transition function δx&s.

• δint: SEDS → SEDS

ta: SN → ℜ�

�
 ∪ ∞

The internal state transition function δint, and the

time advance function ta exactly match the

functions of the DSDEVS formalism.

• δcon: SEDS × 	

→ SEDS

The confluent transition function δcon handles the

execution sequence of δint and δext functions during

concurrent external and internal events. The

EDSDEVS formalism introduces the confluent

transition function also at coupled model level due

to the fusion of PDEVS and DSDEVS. An

EDSDEVS coupled model handles external, state

and internal events. Hence and in contrast to

PDEVS, in EDSDEVS concurrent external and

internal events can occur also at coupled model

level. Consequently, a confluent transition

function to handle concurrent events is necessary

at this level. The functionality is in accordance

with the description of the confluent transition

function δcon at atomic model level in this section.

• λ: SEDS → Y
b

The output function λ generates a bag covering

outputs Y
b
 = {yi} depending on state SEDS. An

output yi consists of a pair of discrete output v ∈ Yp

and output port p ∈ OutputPorts. The set YP is the

set of discrete outputs at port p and OutputPorts is

the set of output ports of model CMEDS. The output

function λ in the EDSDEVS formalism merges

three sources:

o The output function λ at coupled model level is

introduced by DSDEVS.

o The definition of the function creating a bag

covering outputs is based on PDEVS.

o The output event structure with pairs of

output/output port is introduced by DEVS with

Ports.

Figure 6 shows the dynamic behavior of a coupled

EDSDEVS model CMEDS. At time tu the confluent

transition function δcon handles concurrent external and

internal events. The first event is a bag covering inputs

received at input ports by the coupled model CMEDS. A

concurrent internal event at tu was scheduled by the last

execution of the time advance function. Depending on

the specific implementation of function δcon sequence a)

or sequence b) is executed. The execution of the internal

state transition function δint can change the structure

state su to su+1 or su+1 to su+2 and therefore the model

structure of
����
 to
����

∗ . The execution of the

output function λ creates a bag covering outputs ��

 .

The depicted example bag ��

 covers two outputs.

},...{ 00 minport xxX = },...{ 00 poutport yyY =

},...{ 0 qoutport yyY
j

=},...{ 0 ninport xxX
i

=

},...{ 00 rinport xxX =

},...{ 0 sinport xxX
k

=

},...{ 00 voutport yyY =

},...{ 0 woutport yyY
l

=

),,(1 eXss b

uuconu δ=
+

)},(),,(),,{(100 inportxinportxinportxX cba

b

u =

b

uX
b

uX

b

uX

)},(

),,{(

1

0

outporty

outportyY

e

d

b

u =

b

uX

Fig. 6 Dynamic Behavior of a Coupled EDSDEVS

Model

4.2. EDSDEVS Simulation

The simulation engine for EDSDEVS models is a

combination and extension of the simulation algorithms

of Classic DEVS, PDEVS and DSDEVS. The message

handling of coordinators are largely similar to

simulators. Each coordinator holds its own time of next

internal event in tnext_c and searches the minimum time

of next internal event in tnext of sub components and in

its own tnext_c.

Figure 7 depicts an EDSDEVS model example

with associated simulation model elements i.e. root

coordinator, coordinator and simulator instances,

message handling and model function calls. The overall

structure is very similar to the Classic DEVS simulation

model execution except for additions at the coordinators

and associated coupled models. Because of complexity

and clarity selected situations are shown in sections:

i. (Figure 7a) initialisation phase with i-message

handling:

During the initialisation phase model component’s

init functions are called because of an i-message

handling similar to Classic DEVS. Additionally,

after structure changes during the simulation phase

the init function is called too.

ii. (Figure 7b) *-message handling created due to an

internal event of model am2:

The root coordinator advances the simulation clock

and a *-message is firstly created. The message is

sent to the successor coordinator instance of coupled

model CM1 (not depicted). This coordinator

instance compares the actual simulation time t with

its own next internal event time stored in tnext_c and

determines that it is not responsible for handling this

event. Hence, the event is forwarded to the

successor coordinator instance of CM2. The

coordinator instance is again not responsible for

handling the message itself but knows that a sub

component scheduled the event. The coordinator

instance will then forward the message to the

appropriate simulator instance associated with am2.

The simulator instance of am2 calls the model

functions λ and δint. A result of calling λ could be a

y-message sent back to the subordinate coodinator

instance of CM2. This coordinator instance reacts

with the call of the model function δx&s of CM2 and

a message forward to the simulator instance of am3

due to an appropriate IC coupling.

iii. (Figure 7c) *-message handling created due to an

internal event of model CM2:

The depicted situation is similar to 7b except that

the coordinator instance of CM2 determines that

simulation time t and its tnext_c are equal. Hence, it

has to handle the *-message itself with calling λ and

δint model functions of CM2 with the possibility of

generating a y-message sent to a sub component

and/or superordinated coordinator instance and of

changing its sequential structure state SEDS.

Fig. 7 EDSDEVS Model Example with Simulation

Model Elements and Message Flow during Initialization

and Simulation Phases

iv. (Figure 7d) concurrent event handling with the

confluent transition function δcon:

The figure depicts the handling of concurrent

external and internal messages by the coordinator

instance of CM2. The confluent function of CM2 is

called to handle the concurrent messages.

Depending on the specific implementation of δcon

the external transition function δx&s and internal

transition/output functions δint, respectively, are

firstly called. The external message is concurrently

handled by the function δcon and forwarded to the

simulator instance of sub component am2 as an x-

message due to an appropriate EIC. Calling the

output function λ could cause an y-message sent to a

sub component and/or superordinated coordinator

instance.

Listings 1 and 2 show the pseudo codes of the

EDSDEVS simulator components.

variables:

 tlast // time of last event

 tnext // time of next int state event

 am // associated atomic model

// t=0 init at simulation start

// t>0 init after structure change

when receive i-msg(t)at time t

 am.init(t)

 tlast := t

 tnext := am.ta()

when receive *-msg(t) at time t

 if t <> tnext

 error: bad synchronisation

 y_bag := am.λ()

 send y_bag in a y-msg to parent coord.

when receive x-msg(t, x_bag) at time t

with value x_bag containing x.value und

x.port pairs

 if not (tlast ≤ t ≤ tnext)

 error: bad synchronisation

 if t=tnext and x_bag is not empty

 //concurrent ext. & int. event

 am.δcon(t, x_bag)

 else if t=tnext and x_bag is empty

 // internal event

 am.δint(t)

 else

 // external event

 am.δext(t-tlast, x_bag)

 end if

 tlast := t

 tnext := tlast + am.ta()

Listing 1 Pseudo Code of an EDSDEVS Simulator

variables:

 tlast // time of last event

 tnext // minimal time of next int.

 // state event of coupled model

 // or sub component

 tnext_c // time of next int state event

 //of the coupled model itself

 CM // associated coupled model with

 // CM.st current structure state

 IMM // imminent children

 mail // output mail bag

// t=0 init at simulation start

// t>0 init after structure change

when receive i-msg(t)at time t

 CM.init(t)

 foreach sub component Md ∈ CM.st.M

 send i-msg(t) to Md

 tlast := t

 // determine time of next scheduled

 // internal state event of coupled

 // model itself

 tnext_c := CM.ta()

 // determine minimum time of next

 // scheduled internal state events of

 // coupled model and all subcomponents

 tnext := min(tnext_c, { Md.tnext | Md

∈ CM.st.M })

when receive *-msg(t) at time t

 if t <> tnext & t<>tnext_c

 error: bad synchronisation

 // internal state event of CM

 if t=tnext_c

 y_bag := CM.λ()

 send bag of value/output port pairs

in a y-msg to parent coordinator

 // internal state event of a subcomp.

 else if t=tnext

 // find all subcomps with tnext==t

 IMM:={Md |Md ∈ CM.st.M ∧ Md.tnext= t}

 foreach Md in IMM

 send *-msg(t) to Md

when receive x-msg(t, x_bag) at time t

with x_bag containing x.value/x.port

pairs

 if not (tlast ≤ t ≤ tnext_c)

 error: bad synchronisation

 if t=tnext_c and x_bag is not empty

// concurrent ext. and int. event

 CM.δcon(t, x_bag)

 else if t=tnext_c and x_bag is empty

 CM.δint(t) // int. event

 else

 CM.δx&s(t-tlast, x_bag) //ext. event

 end if

 // get all subcomponents Md* with an

 // appropriate EIC

 receivers:=subcomponents{Md|Md∈CM.st.M}

with {coupling|coupling∈CM.st.EIC}

 // forwards x-msg to all appropriate

 // subcomponents

 foreach subcomponent Md* in receivers

 // ext. event of subcomponent

 CM.δx&s(t-tlast, x_bag)

 send x-msg(t, x_bag, Md*.p) to Md*

at port p

 foreach subcomponent Md* in IMM and not

in receivers

 // send empty bag without inputport

 send x-msg(t, NULL, NULL) to Md*

 tlast := t

 tnext_c := tlast + CM.ta()

 tnext := min(tnext_c,{Md.tnext|Md∈CM.st.M})

when receive y-msg(t, y_bag, d) at time t

with y_bag with value/port pairs from d

 // collect all y-msgs from all subcomp

 if d is not the last not reporting d

in IMM

 add (y_bag, d) to mail

 mark d in IMM as reporting

 // all subcomps now handled their *msg

 else if d is the last not reporting d

in IMM

 CM.δx&s(t-tlast, mail)

 // check ext. coupling to form sub-

 // bag of parent output

 y_bagparent = NULL

 foreach d in mail where (y_bag and

d) has an appropriate EIC

 add y_bag to y_bagparent

 send y-msg(t, y_bagparent,, CM) to

parent model

 // check IC to get children Md*

 // with an appropriate IC who

 // receives a sub bag

 receivers := subcomponents{Md|d in

mail, Md∈CM.st.M} with

{coupling|coupling∈CM.st.IC}

 foreach subcomp Md* in receivers

 creates sub bag x_bag from mail

with elements where Md* is

receiver

 send x-msg(t, x_bag) to Md*

 mark d in IMM as sending

 foreach sub component Md* in IMM

where Md* is not sending

 send x-msg(t, NULL) to Md*

 tlast := t

 tnext_c := tlast + CM.ta()

 tnext := min(tnext_c, { Md.tnext | Md

∈ CM.st.M })

Listing 2 Pseudo Code of an EDSDEVS Coordinator

5. CONCLUSIONS

The EDSDEVS formalism introduced in this

contribution is a fusion of Classic DEVS with several

extensions. This approach is an as generic as possible

modeling and simulation formalism based on DEVS. It

widens significantly the application area of DEVS

modeling and simulation. Further extensions are

desirable and essential. To establish a widely accepted

modeling and simulation approach extensions for

parallel computing and graphical modeling are

necessary. There are also approaches for hybrid DEVS

extensions i.e. the support of continuous state changes.

These proposals are recommended as further research.

REFERENCES

Barros, F.J., 1996. Modeling and Simulation of

Dynamic Structure Discrete Event Systems: A

General Systems Theory Approach. Thesis (PhD),

University of Coimbra

Chi, S.D., 1997. Model-based Reasoning Methodology

Using the Symbolic DEVS Simulation Trans. of

SCS, 14(3): p.141-152

Chow, A.C., Zeigler, B.P., 1994. Parallel Devs: A

Parallel, Hierarchical, Modular Modeling

Formalism. Proceedings of the 1994 Winter

Simulation Conference, LakeBuenaVista/FL, USA

Deatcu, C., Pawletta, T., Hagendorf, O., Lampe, B.,

2009. Considering Workpieces as Integral Parts of

a DEVS Model. Proceeding of 2009 EMSS - part

of I3M Multiconference 2009 Teneriffa, Spain

Hagendorf, O., Pawletta, T., Pawletta, S., Colquhoun,

G., 2006. An approach for modelling and

simulation of variable structure manufacturing

systems. Proceeding of the 2006 ICMR Liverpool,

UK

Pawletta, T., Lampe, B.P., Pawletta, S., Drewelow, W.,

1996. Dynamic structure simulation based on

discrete events. ASIM-Mitteilungen Nr.53, 9.

Workshop Simulation and AI, p.7-11, Ulm,

Germany, 02.1996.

Pawletta, T., Deatcu, C., Pawletta, S., Hagendorf, O.,

Colquhoun, G., 2006. DEVS-Based Modeling and

Simulation in Scientific and Technical Computing

Environments Proceedings of the 2006 Spring

Simulation Conference, Huntsville/AL, USA

Praehofer, H., 1992. CAST Methods in Modelling.

Pichler, F., Schwärtzel, H. Springer Pub.

Uhrmacher, A.M., Arnold, R., 1994. Distributing and

maintaining knowledge: Agents in variable

structure environment. 5
th

 Annual Conference on

AI, Simulation and Planning of High Autonomy

Systems, p. 178-194

Wainer, G., Giambiasi, N., 2001. Application of the

Cell-DEVS paradigm for cell spaces modelling

and simulation. SIMULATION Transactions of

The Society for Modeling and Simulation

International, vol. 76, 01.2001

Wainer, G. A., 2009. DEVS Tools. Available from:

www.sce.carleton.ca/faculty/wainer/standard/tools

.htm [Accessed 06.2009]

Zeigler, B.P., 1976 Theory of Modeling and Simulation.

1
st
 edition, John Wiley

Zeigler, B.P., Praehofer, H., Kim, T.G., 2000 Theory of

Modelling and Simulation. 3
rd

 edition, Academic

Press

A Framework for Simulation Based Structure and Parameter

Optimization of Discrete Event Systems

Olaf Hagendorf, Thorsten Pawletta

Simulation with integrated parameter optimization of a given model structure is a well

established technique today. However, with increasing system complexity and flexibility the

number of possible structure variants increases. Therefore the potential benefit of automatic

model structure optimization becomes significant. During optimization, the introduced

framework supports automatic parameter variation in concert with a re-configuration of model

structure. This is achieved by means of a combination of optimization, simulation, and model

management methods. Using this approach simulation is employed to determine the performance

of a current model structure and its parameters. An optimization method searches for an optimal

solution with repeated, simultaneous model structure and model parameter changes. The model

structure changes are assisted by a model management method.

1 Introduction

Research and application of simulation based optimization has seen a significant development in

recent years. A Google search on ‘Simulation Optimization’ in 2006 found ca. 4.000 entries [1]

in comparison to a search in 2008 that found almost 80.000 entries with among the results

articles, conference presentations, books, and software.

 Till relatively recently, the simulation community was resistant to the use of optimization

tools. Optimization models seem to over-simplify the real problem and it was not always clear

why a certain solution was the best [5]. The situation changed at the end of the 90s. An ACM

Digital Library [23] search on ‘Simulation Optimization’ found 16.000 articles between 1960

and 2008. A significant number (15500) of articles has been published during the last 20 years

and only 500 articles in the 28 years before. Two reasons for this change may be the advances in

modeling and simulation methods and increase of computing power over the past two decades

that has enabled simulation based optimization. Currently there are several algorithms to change

simulation model parameters to establish solutions with good performance and methods to

compare different solutions in terms of quality. Many commercially available discrete event or

Monte Carlo simulation software packages contain optimization methods to search for optimal

input and system parameter values. Several such packages are described in [2].

 This chapter addresses a fundamental problem of simulation based optimization: The

technique is well established but is restricted to the optimization of system parameters. In using

this established technique, the model structure is considered to be fixed as the structure of model

elements is defined during model development before an optimization experiment. As model

performance is optimized it may be necessary to redesign the model structure. This would

conventionally be done manually by an analyst using previous simulation results, observations,

or decisions based on previous experience. With increasingly complex, highly flexible, and

dynamic structure models, the number of possible structure variants increases and the potential

benefit of automatic model structure optimization would be significant.

 The focus of this chapter is the description of a methodology for a simulation based

parameter and structure optimization for modular, hierarchical discrete event systems. In contrast

to current approaches that use modeling and simulation, here the model structure is variable and

thus it is open to optimization. The variation of model structure and model parameters is

controlled by a super ordinate optimization module. The introduced simulation based

optimization framework consists of three main elements: (i) model management, (ii) modeling

and simulation, and (iii) optimization.

i. As a basis for the model management method the System Entity Structure/Model Base

(SES/MB) approach, introduced by Rozenblit, Zeigler et al. [20][27][28] is employed. The

SES/MB approach is a generative, knowledge base framework consisting of a tree like

system entity structure and a model base containing basic components. It supports the

definition of a set of modular, hierarchical models and the generation of specific model

structures using predefined basic components from a model base. Because of this

characteristic a modular, hierarchical modeling and simulation method has to be employed.

ii. The modeling and simulation approach based on the Discrete Event System Specification

(DEVS) formalism introduced by Zeigler [26][27] is an established method in the field of

modular, hierarchical modeling and simulation. Dynamic Structure DEVS (DSDEVS) as an

extension of DEVS offers methods to allow structural changes during a simulation

run [6][15][25][27]. In countless applications, for example in [8][9], the advantages of a

dynamic structure modeling and simulation method are considerable. A DSDEVS method

based on work in [9][15][16] is integrated in the novel simulation based optimization

approach. However, detailed aspects of DSDEVS systems are not considered in this chapter.

iii. The optimization method controls the variation of model parameters and structure. Genetic

algorithms have delivered robust solutions for various simulation based optimization

problems, for example in [17][18][24]. The genetic algorithm documented in [24] will be

employed as optimization method in the framework.

Section 2 provides a short preview of conventional simulation based optimization aspects and

introduces the fundamentals of a combined structure and parameter optimization approach.

Section 3 briefly describes the applied SES/MB approach as a model set organization and model

generating meta-modeling method with necessary changes of the original approach. The

synthesis of the three fundamental methods, optimization, model management, and modeling and

simulation to perform a simulation based structure and parameter optimization is presented in

Section 4. Finally, the usage of the new optimization approach is demonstrated by an industrial

application in Section 5.

2 Simulation based Optimization

For all its achievements, a disadvantage of modeling and simulation is the missing optimization

capability. For many years simulation experiments, as shown in figure 2.1, have been state of the

art. An analyst creates a model, for example based on a real system, transforms the model to an

Figure 2.1 An example of a conventional simulation experiment

executable model and executes a simulation with it. After a review of simulation results, if

necessary, the model configuration, that is, model parameters and/or model structures, has to be

manually changed by an analyst. Using a manual procedure only a relatively small number of

system configurations can be examined until a suitable solution is chosen.

 Through the combination of modeling and simulation with optimization methods a

simulation based optimization approach is achieved that can reduce the effort of this manual

procedure. Mathematical optimization generally means establishing a function minimum or

maximum. Simulation based optimization means finding the best model configuration by

minimizing a function of output variables estimated with a simulation method [21].

2.1 Parameter Optimization

An established approach of a simulation based optimization is simulation based parameter

optimization. The overall goal of this optimization approach is the identification of improved

settings of user selected model parameters under control of performance measures. There is an

extensive and varied body of literature on this topic that includes several tutorials, reviews, and

summaries of the current state of the art (e.g., [3][4][7][14][21][22]). Law and Kelton describe in

[11] commercially available simulation tools with integrated optimization techniques using this

approach of simulation based parameter optimization. Figure 2.2 shows a principle example of a

simulation based parameter optimization experiment. The procedure to create an executable

model follows the procedure described in Fig. 2.1. A crucial difference is the detachment of

model and model parameters. Based on this detachment the optimization method is able to alter

model parameters to minimize the result of an objective function. The objective function

measures the model performance with current model parameters. In most instances improving

the model performance means minimizing the objective function result. Model parameter

adjustments are carried out in a loop until a stop criterion is fulfilled. Examples of stop criteria

are (i) going below a minimum alteration rate of objective function result or (ii) exceeding the

maximum number of optimization cycles. The result of a successful optimization experiment is a

parameter optimized model.

O
p
ti
m
iz
a
ti
o
n

L
o
o
p

m
a
n
u
e
l
C
h
a
n
g
e
s
 o
f
M
o
d
e
l
S
tr
u
c
tu
re

Figure 2.2 An example of a simulation based parameter optimization experiment

According to [21], a simulation based parameter optimization problem O with a set of m model

parameters X = {x1, ... xm} can be described as follows:

• A parameter set X = {x1, ... xm} has the domain set D = {d1 … dm}.

• The multi-dimensional (one for each parameter) search space S is defined by

S = {s = {(x1,v1) . . . (xm,vm)} | vi ∈ di}.

• A set Y is the output set defined by Y = {y1 . . . yn} = Y(X) and estimated by simulation.

Simulation experiments are often based on stochastic parameters and properties. Hence the

output set Y is stochastic too.

• The objective function F establishes a single stochastic value from output set

Y : F = F(Y) → ℜ+. The result of the objective function is a measure of the current model

performance.

• Because of the stochastic nature of Y and consequently of F. an estimation function R, the

simulation response function defined by R(X)=E(F(Y(X))), is optimized, that is, in the scope

of this approach it is minimized.

• Depending on the optimization problem and analysis required, the exchange of the last two

steps, evaluation of objective function F and simulation response function R, can save

computational effort. Hence, the simulation response function is defined by R(X) = E(Y(X))

and subsequently the objective function by F(X) = F(R(X)).

Each parameter set Xi ∈ S can be seen as a possible solution of O. The optimization method has

to search the space S to find the parameter set Xopt ∈ S with E(F(Y(Xopt))) ≤ E(F(Y(X))) ∀ X ∈ S.

The resulting parameter set Xopt is considered the global optimum of O.

This approach is restricted to automated parameter optimization. It is important to note

that automatic structure changes during optimization are not possible with this approach. Instead,

structure changes are carried out manually by an analyst and each manual structure change

requires a repetition of the automated parameter optimization.

2.2 Combined Parameter and Structure Optimization

The extension of the optimization approach with the ability to additionally change model

structure to improve system performance is a development of the idea introduced in Section 2.1.

This extension is mainly directed towards a simulation based structure and parameter

optimization as presented in Fig. 2.3.

Figure 2.3 Components and steps of a simulation based parameter and structure optimization

experiment

The approach of a simulation based parameter and structure optimization differs in the following

point from the simulation based parameter optimization described in Section 2.1:

• An analyst does not generate a single model of the real system. In this case he has to organize

a set of models. One way of achieving this is to define a model that describes a set of model

variants instead of one single model of the system under analysis. Models that define the

creation and interpretation of a set of models are named meta-models. If a model is the

abstraction of an aspect of the real world, a meta-model is yet another, super-ordinate

abstraction of the model itself. That is, when a model describes the behavior and structure of a

real system then a meta-model describes the behavior and structure of different models that all

describe the behavior and structure of the same real system in a slightly different way.

• The model management organizes the set of model structures and provides a model selection

method.

• The model selection is controlled by an optimization method. The selection method delivers

the selected model structure information to a model generator that generates an executable

model.

• The objective function receives simulation results and additional information gathered during

model selection to estimate the performance of the current model configuration.

• The optimization method investigates the search space with simultaneous model parameter

and model structure changes without manual involvement. The intention of the optimization

method is the finding of a point in the search space with the optimal objective function result.

• The optimization process is separated into an initialization and an optimization phase:

1. In the initialization phase, the model management module delivers information about the

search space defined by the set of all model configurations to the optimization module.

2. In the optimization phase, the model management module receives information from the

optimization module about the currently investigated point in the search space. This

information is used to select a new model structure and to initialize the model parameters.

A prerequisite for an optimization is the definition of a search space. In the approach presented

here, the search space is multi-dimensional as a result of the combination of model structure and

model parameter variants. During the optimization loop several points of the search space are

examined. Each point defines a model structure with an appropriate parameter set. The extension

of the formal description of a simulation based parameter optimization problem O, defined in

Section 2.1, to a combined simulation based structure and parameter optimization leads to O
*

shown in a schematic diagram in Fig. 2.4:

Optimization

Module

Computer Model

(Model+Simulator)

Objective

Function

Optimization

Method

Model Selection

Model Generator

Model Selection Results

Pi(XSi)

Modeling &

Simulation Module

Model Management Module

Simulation Results

R(Yi (XSi,XPi))

Meta-Model Analysis

Executable
Model

XS DS XP DP
Model Structure &

Parameters Information

XSi XPi XSi

XPi Model
Structure

Information

F
*
(R(Yi), Pi)

Optimization PhaseInitialization Phase

Meta-Model and Model

Parameter Definition

Figure 2.4 Schematic diagram of a simulation based parameter and structure optimization

experiment

• The model parameter set XP and its domain set DP, in Section 2.1 defined as X and D, are

extended by structure parameter set XS and its domain set DS. The extended set of definitions

are: X
*
 = XP ∪ XS = {xP1 . . . xPm, xS1 . . . xSn} and D

*
 = DP ∪ DS = {dP1 . . . dPm, dS1 . . . dSn}

with m model parameters in set XP and n structure parameters in set XS. The sets XP and DP

are defined by the current model. The model management has to provide the sets XS and DS

by analyzing the meta-model.

• The multi-dimensional (one for each parameter) search space S = SP ∪ SS is spanned by sets

of model parameter and structure variants.

• The objective function F* is defined by F*
(Y(X

*
),P(XS)) with simulation results

Y(X
*
)=Y(XS ∪ XP) and results based on structure related variables P(XS) that are established

during the model selection. Because of the stochastic nature of the simulation results Y(X
*
)

an estimation function R, the simulation response function, is calculated. The results based

on structure related variables P(XS) are not stochastic. Hence, the simulation response

function is defined by R(Y(X
*
)) and subsequently the objective function by

F
*
(R(Y(X

*
)), P(XS)).

Through the inclusion of a model management method, the optimization method can

simultaneously control parameter changes as well as model structure changes to find an optimal

system configuration. The model management method takes a crucial role in this approach. The

description of a model management method based on meta-modeling follows in the next section.

3 Meta-Modeling – Specification and Organization of Model Sets

Zeigler introduced in [27] a simulation based system design approach. It is a plan – generation –

 evaluation process. The plan phase organizes design alternatives with different model structures

and model parameters within defined system boundaries to satisfy given design objectives.

During the generation phase a specific model design is chosen and the corresponding model is

generated. This model is simulated during the evaluation phase using an experimental frame

derived from the design objectives.

 The System Entity Structure/Model Base approach (SES/MB) [20][27] is such a

simulation based system design approach. It is specifically configured to define, organize, and

generate modular, hierarchical models and was developed to assist an analyst in model

organization and generation. To represent a set of modular, hierarchical models, the SES/MB

approach is able to describe three relationships: decomposition, taxonomy, and coupling.

Decomposition means the formalism is able to decompose a system object called ‘entity’ into

sub-entities. Taxonomy means the ability to represent several possible variants of an entity called

‘specialization’. To interconnect sub-entities the definition of coupling relationships are

necessary. With these features the SES/MB approach meets the needs of the model management

method in the proposed simulation based optimization concept.

 Fundamental properties of the SES/MB approach are [20][27]:

• A modular, hierarchical model is constructed based on: (i) the declarative system knowledge

coded in a SES and (ii) predefined basic system models stored in a MB.

• The partitioning of a modular, hierarchical model is highly dependent on the design

objectives. Model parameters are a typical example. They are not really a part of the model

composition structure but nevertheless they can become a part of the system entity structure

if they are crucial for describing design alternatives.

• The model generation from a SES/MB is a multistage process. The first step is a graph

analysing and pruning process to extract a specific system configuration. Based on this

information a modular, hierarchical model is generated.

The SES is represented by a tree structure containing alternative edges starting at decision nodes.

With the aid of different edge types and decision nodes a set of different model variants can be

defined. To choose a specific design and to create a specific model variant, the SES has to be

pruned. The pruning process decides at decision nodes which alternative(s) to choose as a

consequence of specified structure conditions and selection rules. The result of this process is a

Pruned Entity Structure (PES) that defines one model variant. A composition tree is derived from

a PES. The composition tree contains all necessary information to generate a modular,

hierarchical model using predefined basic components from MB. Figure 3.1 shows the principal

organization and the transformation process: SES → PES → Composition Tree + MB →

Modular, Hierarchical Model.

Figure 3.1 SES/MB formalism based model generation

Figure 3.2 An example of a SES

The used SES definition is based on definitions published in [20][27]. Figure 3.2 depicts an

example to demonstrate the tree elements. The SES definition differentiates four main types of

nodes: (i & ii) entity, (iii) specialization, (iv) aspect, and (v) multi-aspect. An entity node

represents a system object. There are two subtypes of entity node in fact (i) atomic entity and (ii)

composite entity. An atomic entity cannot be broken down into sub-entities. The model base

contains a basic component for each atomic entity. A composite entity is defined in terms of

other entities. Thus, the root node is always of type composite entity, while all leaf nodes are

always of type atomic entity. The root node and each composite entity node of the tree have at

least one successor node of type specialization, aspect, or multiple-aspect. That means there is an

alternate mode between entity nodes and other node types. The node type definitions can be

briefly summarized:

• atomic entity node = (name, {av1,… avn}}

composite entity node = (name, successors, {av1,… avn}, structure condition)

An entity node is defined by a name and is of type atomic or composite. Both node types

may have attached variables av. A composite entity node can have a single successor node of

type specialization or multi-aspect or multiple successor nodes of type aspect. A composite

entity node can have attached structure condition.

• specialization node = (name, successors)

A specialization node is defined by a name and a set of successor nodes. In the tree it is

indicated by a double-line edge. A specialization node defines the taxonomy of a

predecessor entity node and specifies how the entity can be categorized into specialized

entities. A specialization node always has successor nodes of type atomic entity to represent

the possible specializations. The specialization node A in Fig. 3.2 has two specializations

defined by the nodes A1 and A2.

• aspect node = (name, successors, coupling specifications)

An aspect node is defined by a name, a set of successor nodes, and coupling information. It

is indicated by a single-line edge in an SES tree. An aspect node defines a single possible

decomposition of its parent node and can have multiple successors of type atomic and/or

composite entity. The coupling specification is a set of couplings and describes how the sub-

entities, represented by the successor nodes, have to be connected. Each coupling is defined

by a 2-tuple. Each tuple consists of sub-entity source and destination information, for

example, (SourceEntity.outputport, DestinationEntity.inputport). The composite entity B in

Fig. 3.2 has two decomposition variants defined by the aspect nodes Bdec1 and Bdec2.

• multiple aspect node = (name, successor, coupling specification, number range property)

The definition of a multiple aspect node is similar to an aspect node with an additional

number range property. It has only one successor node of type atomic entity. It is indicated

by a triple-line edge in an SES tree. A multiple aspect node also defines a decomposition of

a composite entity, but all sub-entities have to be of the same entity type. Only the number

of sub-entities is variable according to the attached number range property. The multiple

aspect node Cmaspec in Fig. 3.2 illustrates the decomposition of composite entity C that may

be composed by one, two, or three sub-entities L.

• structure conditions are added to composite entity nodes. They are used as alternative

structure knowledge representation instead of selection rules and structure constraints as

defined in [20]. A modified pruning process necessitates an alternative representation.

During the pruning, sub trees are cut. The remaining structure conditions are evaluated to

verify the PES. Only if all structure conditions are true the PES is valid. Figure 3.2 shows an

example of a structure condition added to composite entity node ROOT. If the generated

model structure contains the atomic entity nodes A2, D, E, F, L, it would be valid because the

condition p1+p2+1*p3=3+3+1*3<12 is true.

4 Framework for Modeling, Simulation and Optimization

In this section a complete framework for combined parameter and structure optimization

experiments is introduced. After a brief description of the general framework structure, its

methods are discussed in detail and finally the entire algorithm is summarized.

4.1 General Framework Structure

Based on the fundamental approach of a parameter and structure optimization experiment in

Fig. 2.4, the detailed structure of the introduced framework is depicted in Fig. 4.1.

Figure 4.1 Structure of the optimization framework

The framework consists of the three fundamental components:

• Model Management Module based on the SES/MB approach introduced in Section 3

• Modeling and Simulation Module based on DSDEVS [9][16]

• Optimization Module with a Genetic Algorithm (GA) as optimization method

The appropriate interfaces to combine the above components are described next.

4.2 Interface: Optimization Module – Model Management Module

The optimization process consists of an initialization and an optimization phase. During the

initialization phase, the Model Management Module has to analyze the SES tree to transform

formal meta-model structure information into numerical data useable by the Optimization

Module. Together with the model parameters the information is sent as initialization data to the

Optimization Module. The information, coded in the four sets XS, DS, XP, and DP is used to build

the set X
*
 = XP ∪ XS and the corresponding domain set D

*
 = DP ∪ DS. During the optimization

phase that is repeated in each optimization loop cycle, the optimization method calculates a

numerical data set Xi
*
 = XPi ∪ XSi. The set Xi

*
 is sent to the Model Management Module, which

determines based on this information a new model configuration, that is, a new model structure

and initial model parameters.

 The main task of the first transformation is to convert SES structure information to a

structure parameter set XS and the corresponding domain set DS. This is done by a tree analysis

using a breadth-first or depth-first algorithm, starting at the root node, traversing the tree and

considering every node. If a node is a decision node (i.e., a specialization node, multiple aspect

node or composite entity node with alternative successor nodes), a structure parameter xSi is

added to the structure parameter set XS and a corresponding domain dSi to the domain set DS. The

domains of specialization node and composite entity node are {1, …, number of variants}. The

domain of a multiple aspect node is defined by its attached number range property.

 Figure 4.2 illustrates the algorithm for creating structure parameter set XS and the

corresponding domain set DS using a breadth-first algorithm. It starts at the root node A, a non-

decision node. Next nodes are non-decision nodes Adec and B. The composite entity node C is the

first decision node. It has two alternative successors. A first parameter xS1 is added to set XS with

the domain dS1 = {1, 2}. The next examined nodes are Bdec, Cdec1, Cdec2, D, E, F, G, H and I - they

are non-decision nodes. The next examined node, the multiple aspect node Dmaspec is a decision

node. The value of its number range property is {2, 3, 4}. A second parameter xS2 is added to XS

with the domain dS2 = {2, 3, 4}. The next node, the specialization node Espec is again a decision

node. It has three alternative successor nodes. A third parameter xS3 is added to XS with the

domain dS3= {1, 2, 3}. The last nodes analyzed, K, E1, E2 and E3 are non-decision nodes. The

example SES has three decision nodes. The resulting structure parameter set is XS = {xS1, xS2, xS3}

with the corresponding domain set DS = {dS1, dS2, dS3} with the above determined domains.

These sets, XS, DS, the model parameter set XP and its domain set DP are used by the optimization

method as the search space definition. Additional SES tree information, that is, structure

conditions and attached variables, are irrelevant during the initialization phase.

Figure 4.2 Transformation SES → set XS and set DS

The second transformation is the reverse of the first. The Model Management Module receives a

point in the search space from the Optimization Module, that is, the numerical data set

Xi
*
 = XPi ∪ XSi, where set XSi codes the model structure and set XPi codes its parameters. It has to

synthesize the corresponding model structure and has to infer the model parameters. The

transformation has to traverse the tree in the same direction as during the first in the initialization

phase. At each decision node the next element of current structure parameter set XSi is used to

decide: (i) which successor of a composite entity node with alternative successor nodes is

chosen, (ii) which successor of a specialization node is chosen, or (iii) how many successors of a

multiple aspect node are incorporated into the PES. After pruning, the model structure is verified

with the evaluation of the remaining structure conditions. If a structure is invalid the specific set

Xi
* will be refused and this information is sent to the Optimization Module. In case of an invalid

model configuration, the Optimization Module marks this point in the search space as prohibited

and determines a new one.

Figure 4.3 Transformation XSi + SES → PES

Figure 4.3 illustrates the principle of this transformation. The breadth-first analysis starts at the

root node A and continues as already described before. The first decision node is composition

entity node C. The first element of XSi is xS1=1, that is, the first aspect node Cdec1 is chosen for the

PES. The next decision node is the multiple aspect node Dmaspec and the corresponding set

element is xS2=4, that is, the PES contains four nodes K. The last decision node is specialization

node Espec and the corresponding set element is xS3=2, that is, the PES contains the second

specialization of node Espec. After pruning, the attached variables are calculated and the PES is

verified by evaluating the structure condition. In the example, the aspect node Cdec1 and four

atomic entity nodes K were chosen. Therefore, the structure condition at node A is evaluated as

follows: p1 + ∑p2i = 4 + 8 < 13 and it follows that the PES is valid.

4.3 Interface: Model Management Module – Modeling and Simulation Module

Each optimization cycle requires a change and adaptation of the simulation model. If the

structure parameters in XSi are changed, a new simulation model structure has to be generated.

Otherwise, if just the model parameters in XPi are changed, it is adequate to re-initialize the

model parameters. As illustrated in Fig. 4.1 all necessary information is sent from the Model

Management Module to the Model Generator of the Modeling and Simulation Module. The

Model Management Module creates XML files describing the model structure. DSDEVS basic

components predefined in the MB, XML files, and current model parameters coded in set XPi are

used by the Model Generator to generate the entire DSDEVS model.

 The use of a standardized XML model description for information exchange decouples

the two modules. It is based on W3C XML schema Finite Deterministic DEVS Models

introduced in [12] and [13]. The XML interface uses the atomic and coupled model descriptions

with model and port names. The coupled model description described in [13] is currently work in

progress and does not contain all necessary description elements for this approach. Therefore, the

composition description of coupled models used in the framework additionally defines submodel

names and coupling specification. The decoupling of Model Management Module and Modeling

and Simulation Module using XML files eases the modeling and verification of the basic

components.

4.4 Interface: Modeling and Simulation Module – Optimization Module

The objective function, defined in the Optimization Module (see Fig. 4.1) estimates the

performance of the current model configuration. The function gets its input parameters from the

Modeling and Simulation Module. These are the simulation results Yi(XSi, XPi) and simulation

response function results R(Yi(XSi, XPi)) respectively. Further input parameters are delivered by

the Model Management Module. These are the model structure results Pi(XSi), which are based

on evaluation of attached variables after pruning the SES. An example is illustrated in Fig. 4.2.

The aspect nodes Cdec1 and Cdec2 and the atomic entity node K define the attached variables p1

and p2i. After pruning illustrated in Fig. 4.3, the values of p1 and p2 are calculated as follows:

Pi(XSi) = {p1;∑p2i} = {4;8}. These values may be used as further objective function parameters.

 The result F
*
(R(Yi), Pi) of the objective function is evaluated by the optimization method.

As a consequence of the often stochastic nature of simulation problems, a random based

optimization method is preferable. Two established random based algorithms inspired by the

principle of the evolution of life are the Genetic Algorithm (GA) introduced by Holland [10] and

the Evolutionary Strategy (ES) introduced by Rechenberg [19]. The origins of ES are continuous

parameter problems whereas current GAs support hybrid problems. A disadvantage of the

original GA is the missing memory. It is possible that in different generations the same

individual is repeatedly examined. Because of the time consuming fitness estimation of an

individual in simulation based optimization, the addition of a memory method is vitally

important. It has to store already examined individuals with their resulting F
*
(R(Yi), Pi).

4.5 Algorithmic Summary of the Framework

As described in the precedings, the proposed simulation based parameter and structure

optimization framework is composed of different methods that form a uniform optimization

approach. The following algorithm summarizes the fundamental operations using a GA as

optimization method.

Initialization Phase:

0. Analyze the SES and establish X
*
 = XP ∪ XS and D

*
= DP ∪ DS

1. Initialize a population of individuals (generation 0) with different Xi
*
 = XPi ∪ XSi

Optimization Phase (repeat until stop criterion is fulfilled):

2. Estimate the fitness of all individuals of the current generation

Repeat for each individual

2.1. Check memory if individual is known. In case of ‘true’: continue with next

individual

2.2. Prune SES with XSi

2.3. If structure condition is valid establish Pi(XSi) or otherwise mark individual as

invalid and continue with next individual

2.4. Generate DSDEVS model

2.5. Simulate DSDEVS model and get result Yi(XSi, XPi)

2.6. Evaluate the simulation response function R(Yi(XSi, XPi)) by repeating Step 2.5

2.7. Evaluate the objective function F*
(R(Yi), Pi)

2.8. Store Xi
*
 and F

*
(R(Yi), Pi) in memory

3. Select pairs with m individuals and create descendants using crossover

4. Mutate the descendants

5. Exchange individuals of the current generation with descendants based on a substitution

schema to create a new generation

The next section demonstrates the application of the introduced framework with a project from

industry.

5 Application example

The example is based on developments and problems in the photofinishing industry and

investigates a small part of a production process to demonstrate the approach. Photofinishing

laboratories specialize in high volume production of thousands to millions of pictures per day.

As a consequence of significant changes in the photography market, notably the introduction of

digital cameras with a considerable reduction of analogue and an increase of digital orders during

recent years, a mix of analogue and digital production facilities are used. The changes have lead

to concentration from many, local working, smaller laboratories to a few, large, nationwide

working laboratories and fierce competition between them. The situation is driving an urgent

need to be as cost effective as possible.

 Figure 5.1 shows general structure and product flow through the different departments of

a typical photofinishing laboratory. The material arrives in several forms at the login department.

After sorting the product mixes, some 10 to some 1000 single orders are combined into batches,

each batch containing only one product type, for example, specific paper width and surface. The

batch creation is done with different machine types: (i) a splicer combines undeveloped film rolls

onto a film reel, (ii) a universal reorder station (URS) combines analogue reorders to a strap of

film strips, (iii) a digital URS scans the analogue reorders and produce a digital batch, (iv) a

digital splicer handles data carriers (CDs, flash cards etc.), and (v) software applications combine

digital images received over the internet. Undeveloped analogue batches have to be developed

and analogue material can be scanned. Next steps are CD production, printing, paper

development, and cutting. Finally items are packed and identified for delivery to customers.

There are several possible material routes through production with the same end product but

different processing time, machine and operator requirements, and costs. It is possible to employ

fewer operators than available workstations and produce on time if an appropriate production

structure and effective organization method are used to manage production.

Figure 5.1 General product flows of a photofinishing lab

The example is based on developments and problems in the photofinishing industry and

investigates a small part of a production process to demonstrate the approach described in this

chapter. For this example the login and splicer departments are studied in detail with a structure

as in Fig. 5.2. The source material, unsorted, single orders, is sorted by product type manually or

automatically into boxes. The sorted orders are combined onto batch reels at splicers. An

automatic sorter is handled by one or two operators, whereas manual sorting is done by the

number of available operators without the need of a machine. The handling time depends on the

number of machines, machine type, and the number of operators. A splicer is handled by one

operator with fixed average handling time. Operators can be moved between machines. The

production time of a fixed number of orders, and, consequently, the cost, vary depending on the

type and number of machines used, number of operators, and the strategy to organize operators.

The task is to minimize the production time of a given number of orders whilst minimizing cost.

Figure 5.2 Product flow of the considered example

To validate the introduced framework the global optimum estimated through simulation of all

system variants is compared with the result of an optimization experiment. In both experiments

the performance rating of one variant is done by the same objective function.

 The simulation output of a single run delivers the production time and cost

Y = {yproduction time, ycosts} of the currently investigated model variant. They are passed to the

objective function. This function is defined by the term:

F = F(Y) = α1* yproduction time + α2* ycosts → minimum

The factors α1 and α2 define the relevance of the variables. With α1=1/max_production_time and

α2=1/max_costs both variables are within the range 0..1 and have the same relevance. The

maximal value of the production time can be calculated by one simulation run and the maximal

value of the costs is defined by the maximal number of operators, a model parameter with

defined range.

Figure 5.3 SES of the example

Figure 5.3 depicts the SES, describing possible model structures of the considered example. The

model variants are characterized by: (i) the usage of automatic and/or manual sorting, (ii) the

usage of one to eight splicers, and (iii) the usage of one of three different department

organization strategies to move operators between departments. Depending on chosen

alternatives during the pruning process several structure related attached variables will be

initialized with different values. The SES defines 72 model structure variants in all. Besides,

there is one variable model parameter, the number of operators with a range of one to eight. The

combination results in 576 model variants. Not all model variants define useful combinations.

For example, a model with four operators and eight splicers delivers the same result as a model

with four operators and four splicers. To exclude the useless variants the root node MODEL

defines a structure condition that reduces the valid number of model variants to 275.

 To solve this example, the search space has to be defined in terms of a structure

parameter set, a model parameter set, and their corresponding domain sets. Using the principle

introduced in Section 4.2, the structure parameter set and the corresponding domain set are

defined by:

XS = {xDEP_LOGIN, xcontrollerspec, xsplicermaspec}

DS = {dDEP_LOGIN, dcontrollerspec, dsplicermaspec} with

 dDEP_LOGIN = {1; 2; 3}; dcontrollerspec = {1; 2; 3}; dsplicermaspec = {1; 2; 3; 4; 5; 6; 7; 8}

The model parameter set and the corresponding domain set are defined by:

XP={x#_of_operators}

DP={d#_of_operators} with d#_of_operators = {1; 2; 3; 4; 5; 6; 7; 8}

Hence, the resulting search space is defined by:

X = XP ∪ XS = { xDEP_LOGIN, xcontrollerspec, xsplicermaspec, x#_of_operators}

Each model variant defines one point in the search space. With the principle introduced in

Section 4 a PES can be derived and a corresponding model can be generated. One point in the

search space is X132 = {2; 2; 2; 2}. This means that the aspect node DEP_LOGINdec2 and the

specialization ctrl2 are chosen, the number range property value of the multiple aspect node

splicermaspec is two, and the model parameter #_of_operators is also two. Figure 5.4 depicts the

PES of model variant 132. The generated modular, hierarchical simulation model is illustrated in

Fig. 5.5. This model variant delivers the minimal objective function value. The fitness values of

all 275 model variants are depicted in Fig. 5.6.

Figure 5.4 PES of 132
th

 variant

DEP_SPLICERDEP_LOGIN

controller2

EF

generator

transducer

MODEL

ROOT

unsorted

orders

boxes with

sorted orders

batches

operators

queue

status

queue status

orders

box

box

operators

box

batchbatch

r

e

a

d

y

r

e

a

d

y

r

e

a

d

y
sorter_

auto

queue_

box1

queue_

order

orders

splicer1 splicer2

queue_

batch

queue_

box2

Figure 5.5 Modular, hierarchical model of 132
th

 variant

Figure 5.6 Fitness values of all variants with the optimum at X132

The MATLAB® GA toolbox [24] is employed as the optimization method in this example. The

default MATLAB GA parameter settings were used, except for a decreased population size of 15

and an adjusted stop criterion: if the weighted average change in the fitness function value over

20 generations is less than 0.01, the algorithm stops. The optimization experiment was repeated

100 times with different random number streams. The optimal structure and its parameter set

were found after 194 simulation runs on average in contrast to 275 simulation runs of a complete

enumeration experiment. The optimal solution X132 with the fitness 0.3024 was found 47 times.

Other sub-optimal solutions with a fitness value smaller than 0.35 were found 21 times. Non-

optimal solutions were found 32 times.

 The results show that the introduced optimization framework delivers an optimal solution

with significantly less simulation runs in comparison to a complete simulation study of all model

variants.

6 Summary

This chapter briefly summarized fundamental aspects of simulation based optimization. It

introduced a novel approach for structure optimization of modular, hierarchical discrete event

systems. The approach combines a model management method, modeling and simulation

methods, and an optimization method to enable a concerted structure and parameter

optimization. Appropriate interfaces between the different methods have been developed. Core

of the interfaces are two transformations. The first one transforms formal structure information

into numerical data, which are amenable to an optimization method. The second one transforms a

specific numerical data set, calculated by the optimization method, into a specific model

structure with its corresponding model parameters.

 A prototype of the introduced framework was implemented with the Scientific and

technical Computing Environment MATLAB. It consists of a MATLAB based SES toolbox for

model management, a MATLAB based DSDEVS simulation toolbox, and the Genetic Algorithm

and Direct Search ToolboxTM from The MathWorksTM. The software prototype has been

successfully used to prove the approach with first applications. The results of the described

example demonstrate the advantages of the introduced approach. Using the implemented

framework, the optimal structure and its corresponding model parameters are found with

significantly less simulation runs in comparison to a complete simulation study of all model

variants.

References

[1] April J., Marco Better M., Glover F., Kelly J., Laguna M. (2006) ENHANCING BUSINESS

PROCESS MANAGEMENT WITH SIMULATION OPTIMIZATION. Proceedings of the 2006

Winter Simulation Conference

[2] April J., Kelly J., Glover F., Laguna M. (2003) Practical Introduction to Simulation

Optimization. Proceedings of the 2003 Winter Simulation Conference

[3] April J., Glover F., Kelly J., and Laguna M. (2001) Simulation/Optimization using “Real-

World” Applications Proceedings of the 2001 Winter Simulation Conference, pages 134-138.

[4] Azadivar F., (1999) Simulation Optimization Methodologies Proceedings of the 1999 Winter

Simulation Conference, pages 93-100

[5] Barnett M. (2003) Modeling & Simulation in Business Process Management. BP Trends

Newsletter, White Papers & Technical Briefs, 1-10. Available via <www.bptrends.com>

[accessed November 20, 2008]

[6] Barros F.J. (1996) Modeling and Simulation of Dynamic Structure Discrete Event Systems: A

General Systems Theory Approach. PhD thesis, University of Coimbra

[7] Fu M.C., Glover F.W. (2005) SIMULATION OPTIMIZATION: A Review, new Developments,

and Applications Proceedings of the 2005 Winter Simulation Conference

[8] Hagendorf O., Colquhoun G., Pawletta T., Pawletta S. (2005) A DEVS - Approach to

ARGESIM Comparison C16 ‘Restaurant Business Dynamics’ using MatlabDEVS. Simulation

News Europe, no.44/45, (December)

[9] Hagendorf O., Pawletta T., Pawletta S., Colquhoun G. (2006) An approach for modelling and

simulation of variable structure manufacturing systems ICMR 2006 Liverpool/UK

[10] Holland J.H. (1975) Adaptation in Natural and Artificial Systems: An Introductory Analysis

with Applications to Biology, Control and Artificial Intelligence The University of Michigan Press

[11] Law A.M., Kelton W.D., (2000) Simulation Modeling and Analysis. McGraw-Hill 2000

[12] Mittal S. (2007) DEVS Unified Process for Integrated Development and Testing of Service

Oriented Architectures PhD Thesis, University of Arizona

[13] Mittal S. (2007) W3C XML Schema Finite Deterministic DEVS Models,

http://www.saurabh-mittal.com/fddevs/

[14] Olafsson S., Kim J. (2002) Simulation Optimization Proceedings of the 2002 Winter

Simulation Conference

[15] Pawletta T., Lampe B., Pawletta S., Drewelow, W. (2002) A DEVS-Based Approach for

Modeling and Simulation of Hybrid Variable Structure Systems. Modeling, Anlysis, and Design

of Hybrid Systems. Engel S., Frehse G., Schnieder E. (Ed.), Lecture Notes in Control and

Information Sciences 279, Springer

[16] Pawletta T., Deatcu C., Pawletta S., Hagendorf O., Colquhoun G. (2006) DEVS-Based

Modeling and Simulation in Scientific and Technical Computing Environments

DEVS/HPC/MMS 2006 Huntsville/Al USA

[17] Pierreval H., Caux C., Paris J. L. , Viguier F. (2003) Evolutionary approaches to the design

and organization of manufacturing systems Computers and Industrial Engineering Volume 44, 3

[18] Ray J. P., Tomas S. C. 1998 Simulation optimisation using a genetic algorithm Simulation

Practice and Theory 6 (1998) 601–611

[19] Rechenberg I. (1972) Evolutionsstrategie (German) Friedrich Frommann Verlag

[20] Rozenblit J.W., Zeigler B.P. (1985) Concepts for Knowledg--Based System Design

Environments Proceedings of the 1985 Winter Simulation Conference

[21] Swisher, J.R. Hyden, P.D. (2000) A Survey of Simulation Optimization Techniques and

Procedures. Proceedings of the 2000 Winter Simulation Conference

[22] Swisher J.R. (2003) Discrete-Event Simulation Optimization using Ranking, Selection, and

Multiple Comparison Procedures: A Survey ACM Transaction 04.2003

[23] The ACM Digital Library http://portal.acm.org (2009)

[24] The MathWorks
TM

 2008 Genetic Algorithm and Direct Search Toolbox
TM

http://www.mathworks.com/products/gads/

[25] Uhrmacher A.M., Arnold R. (1994) Distributing and maintaining knowledge: Agents in

variable structure environment. 5th Annual Conference on AI, Simulation and Planning of High

Autonomy Systems, pages 178-194

[26] Zeigler B.P. (1984) Multifacetted Modelling and Discrete Event Simulation Academic Press

[27] Zeigler B.P., Praehofer H., Kim T.G. (2000) Theory of Modelling and Simulation.

Academic Press

[28] Zhang G., Zeigler B.P. (1989) The system Entity Structure: Knowledge Representation for

Simulation Modeling and Design In: Artificial Intelligence, Simulation, and Modeling. Widman

L.E., Loparo K.A., Nielsen N.R. (Ed.), John Wiley & Sons Inc.

An Approach for Simulation Based Structure Optimisation of Discrete Event

Systems

Olaf Hagendorf

1,2
, Thorsten Pawletta

2

1
Liverpool John Moores University, School of Engineering, UK

2
RG Computational Engineering and Automation, Wismar University, Germany;

O.Hagendorf@2005.ljmu.ac.uk

Keywords: Structure Optimisation, Discrete Event

Simulation, DEVS, SES, DSDEVS Matlab Toolbox

Abstract

Modelling and simulation with integrated parameter

optimisation is a well established technique. This paper

introduces an extended, simulation based optimisation

method. Behind automatic parameter value variation the

method is able to re-configure model structure during

optimisation. This is achieved through a combination of

optimisation, simulation and model management methods.

Using this approach simulation is used to establish the

performance of a current model structure and parameter

value set and the optimiser searches for an optimal solution

with repeated model structure and model parameter value

changes assisted by the model management methods.

1. INTRODUCTION

Modelling and simulation with integrated optimisation is a

well established technique in engineering applications. Such

techniques are used for system design, real time planning

and to control production systems. With increasingly

complex, flexible production systems the requirements for

modelling and simulation tools are growing. Existing

applications using optimising simulation are restricted to

parameter optimisations. The modeller has to change model

structure manually and repeat optimisations until a solution

is found. With increasing production system flexibility the

number of possible structure variants increases and the

potential benefit of automatic model structure optimisation

would be significant.

 The focus of this paper is the description of a

methodology for a combined parameter and structure

optimisation for modular, hierarchical discrete event

systems. In contrast to current, optimising modelling and

simulation environments the model structure is variable and

thus it is open to optimisation. The variations of model

structure and model parameter values are controlled by a

superordinate optimisation module. To support the

optimisation method appropriate modelling, model

management/generation and simulation methods are

necessary.

 As a basis for model management and generation the

System Entity Structure (SES) formalism, introduced by

Rozenblit, Zeigler et al [6] [10] [11], is employed. The SES

formalism is a generative, knowledge base framework

consisting of a tree like entity structure and a model base.

With its features it is able to define a set of modular,

hierarchical models and to generate specific model

structures. The modelling and simulation method is based

on the Discrete Event System Specification (DEVS)

formalism introduced by Zeigler [9] and some of its

extensions [1], [4], [8] and [10]. Traditional modelling and

simulation systems, and the original DEVS, only provide

support for static structure models [9] [10]. That means,

they offer modelling methods to build specific model

structures with behavioural dynamics and aggregation

methods to combine them into complex structures. But the

structure information itself cannot be changed during model

execution. The structural information in a modular

hierarchical DEVS model remains an integral part of the

system during simulation. This offers the potential of

structure changes during simulation time. Dynamic

Structure DEVS (DSDEVS) introduces methods to make

these potential structural changes possible [1] [4] [5]. In

engineering and manufacturing applications the advantage

of a dynamic structure modelling and simulation method are

considerable. Dynamic structure features are beneficial for

several applications but the approach presented is not

restricted to the usage of DSDEVS.

 Section 2 provides a short preview of optimisation and

optimising simulation, the approach using a combined

structure and parameter optimisation method is presented

and the requirements for the optimisation environment are

defined. Section 3 briefly introduces the established SES

formalism as a model set organisation and model generating

meta-modelling method. The synthesis of the three

elements, optimisation, model generation and simulation, to

perform a combined structure and parameter optimisation is

presented in section 4. Finally an industrial application is

described in section 5.

2. OPTIMISING SIMULATION

Simulation experiments can be of different complexity. The

least complex ones are ordinary simulation runs, shown in

figure 2.1a. After examining simulation results the modeller

manually changes the model parameter values and/or

structure and starts the simulation again. These steps are

repeated until a suitable solution is found. A more complex

approach is simulation based parameter optimisation,

described in figure 2.1b. Mathematical optimisation

generally means establishing a function minima or maxima.

Parameter optimising simulation means finding the optimal

model input parameter value set through optimising a

function of output variables estimated with a simulation

method [7]. The function is named the objective function.

The optimising method alters model parameter value(s) to

improve the result of the objective function until a stop

criteria is fulfilled. The result is a parameter optimised

model. Structure changes are carried out manually by the

modeller with a possible repetition of the automated

parameter optimisation.

Figure 2.1 principles of (a) simulation and (b) parameter

optimising simulation

The following describes a parameter optimising simulation

problem O with a set of m input parameters X = {x1, ... xm}

[7]:

• parameter set X has the domain set D = {d1 … dm}

• the search room S = {s = {(x1,v1) . . . (xm,vm)} | vi ∈ di}

• set Y is the stochastic, simulation output variable set

defined by Y = {y1 . . . yn} = Y(X) and estimated by

simulation

• an objective function F establishes a single stochastic

value from output set Y : F = F(Y) → ℜ+

• because of the stochastic nature of Y an estimation

function R, the simulation response function, typically

defined by R(X)=E(F(Y(X))), is optimised

Each parameter value set Xi ∈ S can be seen as a possible

solution of O. The optimiser has to search the search room S

to find the parameter value set Xopt ∈ S with E(F(Y(Xopt))) ≤

E(F(Y(X))) ∀ X ∈ S. The resulting parameter value set Xopt

is named the global optimum of O.

 This approach to optimising simulation is widely used

in research and commercial applications. It is restricted to

an automated parameter optimisation. Automatic structure

changes during optimisation are not possible. It is a logical

conclusion to extend the optimisation methods with the

ability to change the model structure thus improving the

result of the objective function. The result of this extension

is a structure and parameter optimising simulation. The

figure 2.2 as an extension of figure 2.1b describes the

approach in principle.

Figure 2.2 principle of a combined structure and

parameter optimising simulation

 In contrast to the established approach the optimising

method now controls both model parameter values and the

model structure. The objective function can now not only

use the simulation results but also further information about

the model structure. This information is based on optional

attached variables, summarised during model synthesis. The

optimiser loop changes both the structure and the parameter

values until a stop criterion is reached. The result of this

process is a combined parameter and structure optimised

model.

 Also, in contrast to the established approach, the

modeller has to organise a set of models. One possibility is

to define a model which describes a set of model variants

instead of one single model of the real system. Such models

that define the creation and interpretation of a set of models

are named meta-models. When a model is the abstraction of

an aspect of the real world a meta-model is yet another

abstraction of the model itself. Through this inclusion of an

automatic model generating element the optimiser can use

parameter values as well as model structure changes to find

an optimised solution. This idea combines established

methods: (i) a modelling and simulation environment and

(ii) a meta-model framework as model

generation/management with (iii) an optimiser.

 This approach was implemented as a prototype. The

implementation uses a Genetic Algorithm (GA) as an

optimising method. A GA has a numerical stabile and robust

behaviour. As a modelling and simulation environment an

extended DEVS formalism is chosen. It is well suited for

engineering tasks, especially the modelling and simulation

of variable structure systems, and discrete event control

problems [5]. As a meta-modelling framework the System

Entity Structure is used. The SES formalism is a general,

knowledge base framework. With its key feature to depict

the three relationships (i) decomposition, (ii) taxonomy and

(iii) coupling it is capable of defining a set of DEVS models

[6] [10] [11].

3. SPECIFICATION OF MODEL SETS WITH SES

To represent a set of modular, hierarchical models, a method

is needed to describe three relationships: decomposition,

taxonomy and coupling. Decomposition means the

formalism has to be able to decompose an object into sub-

objects. Taxonomy means the ability to represent several,

possible variants of an entity. To compose an entity from

sub-entities these have to be coupled. This is the meaning of

a coupling relationship. The SES formalism is able to

describe these three relationships [6] [10] [11].

 A SES is described by two major parts: (i) an entity

structure and (ii) a model base. The entity structure (ES) is a

tree like structure which contains invariable and/or variable

branches. To create one structure variant the entity structure

is pruned. The pruning process decides at decision nodes

which or how many variable branches will be used

considering the structure constraints. The result of this

process is a pruned entity structure (PES) which is the basis

of a composition tree. This tree contains all the information

to create together with the model base contents the

hierarchical model. Figure 3.1 shows the principal

transformation process SES → PES → Model.

figure 3.1 pruning and model generation process

Figure 3.2 depicts the taxonomy of an ES. It is a labelled

tree and consists of different entities, atomic and composite,

and different edge types. The leaves of the tree are atomic

entities, inner nodes are composite entities. The edge type

defines further categories of the superordinate composite

entity. Three different composite entity types exist:

• specialisation entity, shown in figure 3.2a with a double

line edge. The entity Aspec has two specialisations A1 and

A2. This structure is named taxonomy.

• decomposition entity, depicted in figure 3.2b with a single

line edge. The decomposition entity B has two variants

Bdec1 and Bdec2, named aspect entity. The aspects are

special kinds of decompositions like specialisations are

kinds of classifications.

• multiple aspect entity, shown in figure 3.2c with a triple

line edge. The variable number of its sub-entities is

defined by an attached property.

figure 3.2 entity types in a SES

An entity can have additional properties:

• Couplings information added to an aspect entity - they are

used during the composition of the model structure

• AttachedVariables added to an entity, e.g. p1, p2, p3 in

figure 3.2 – they are used for a structure evaluation and as

properties for the model

• StructureConstraints added to sub-entities of variable

entities like specialisations and aspects – they are used

during the pruning process to validate the model structure

• DomainProperty - multiple aspects have attached the

possible number of entities.

The model base contains a set of DEVS models which

corresponds to entities in leaf nodes of ES.

 The following formal description of an ES is derived

for further definitions in chapter 4 and provides the basis for

a prototype implementation:

AtomicEntities = {Entity1,… Entityn } |

Entity ∈ LeaveNodes

CompositeEntities = { Entity1,… Entityn } |

CompositeEntity ∉ LeaveNodes

RootEntity ∈ CompositeEntities

The root entity represents the root of ES.

AtomicEntity=(name, {av1,… avn}, {sc1,… sco}) | name ∈

Modelbase ∧ {av1,… avn} ⊆ Attached Variables ∧

{sc1,… sco} ⊆ StructureConstraints

An atomic entity is defined by a name, can have attached

variables and refers to a model of the Model Base.

DecompositionEntity =(name, {AspectEntity1,…

AspectEntityn} ∨ SpecEntity ∨ MultiEntity) |

DecompositionEntity ∈ CompositeEntities

A decomposition entity is defined by a name and

incorporates an ordered set containing one or more aspect

entities or one specialisation or one multi-aspect entity. It

has to have at least one sub-entity. During the pruning

process one of the aspect entities is chosen within the

relevant structure constraints.

SpecEntity = (name, {Specialisation1, . . . Specialisationm},

{av1,… avn}) |

{Specialisation1, . . . Specialisationm} ⊆ AtomicEntities ∧

{av1,… avn} ⊆ Attached Variables ∧

DecompositionEntity ∈ CompositeEntities

The specialisation entity is defined by a name, incorporates

an ordered set with 1-n sub-entities and can have attached

variables. During the pruning process one of these sub-

entities is chosen within the relevant structure constraints of

its Specialisation sub-nodes.

AspectEntity = (name, {AtomicEntity1,… AtomicEntitym},

{DecompositionEntity1,…

DecompositionEntityn},{av1,… avo}, {sc1,… scp},

{Coupling1,… Couplingq}) |

{av1,… avo} ⊆ Attached Variables ∧

{sc1,… scp} ⊆ StructureConstraints ∧

DecompositionEntity ∈ CompositeEntities

The aspect entity is defined by a name, incorporates ordered

sets with Atomic and/or DecompositionEntities, can have

attached variables and structure constraints. Coupling

properties are used to compose the sub-entities and they are

defined by a set of 2-tuples. Each tuple consists of sub-

entity source and destination information, e.g.

(SourceEntity.outputport, DestinationEntity.inputport).

MultiAspectEntity = (name, {Entitymin,… Entitymax},

{av1,… avm}, {sc1,… scn}) |

DomainProperty={min,max} ∧

{av1,… avm} ⊆ Attached Variables ∧

{sc1,… scn} ⊆ StructureConstraints
The multiple aspect entity is defined by a name, has one

sub-entity and can have attached variables. During the

pruning process the number of the sub-entities is chosen

within the relevant structure constraints and possible

quantities defined in domain property.

4. INTERFACE SPECIFICATIONS

The fundamental parts of this approach are the interface and

method definitions I, II and III, depicted in figure 4.1. They

bind the established methods together to synthesize the

combined structure and parameter optimising simulation.

 Before an optimisation can be carried out, information

about the search room is necessary. In this approach the

search room is defined by the set of model structure variants

established by analysing the ES and the set of model

parameters, defined by each model structure. During the

optimisation process several points in the search space are

examined. Each point defines one single model structure to

be generated through the model generator with one

parameter value set.

 The formal description extension of a parameter

optimising simulation problem O (section 2 and [7]) to a

structure and parameter optimisation leads to O
*
:

• model parameter value and domain sets XP=X and DP=D

are extended by sets of model structure parameters xSi∈XS

and their domains dSi∈DS. The extended set definitions

are: X
*
 = XP ∪ XS = {xP1 . . . xPm, xS1 . . . xSn} and D

*
 = DP

∪ DS = {dP1 . . . dPm, dS1 . . . dSn} with m model parameters

in set XP and n model structure parameters in set XS. The

sets XP and DP are defined by the current model. To

provide sets XS and DS the ES tree has to be analysed.

• The objective function F
*
 is defined by F(Y(XP),P(XS))

with simulation results YP=Y(XP) and optional attached

variables PS=P(XS) established from pruning the ES.

• The search room S = SP ∪ SS is spanned by sets of model

parameter and model structure variants.

figure 4.1 interfaces between the three methods

The interface (I) between Optimisation Module and Model

Management/Generation Module (figure 4.1 I) is a two-way

interface defining both, (i) the generation of information

about model structure parameter and domain sets from an

ES and (ii) the method to prune a SES based on information

about a specific point of the search room. One task of the

interface is the generation of the two sets XS and DS based

on information from an ES tree. This is done by analysing

the tree starting at RootEntity, traversing it in a defined

direction and sub-entity order and considering every entity

property. When it is a decision node, i.e. of type SpecEntity,

DecompositionEntity or MultiAspectEntity, a parameter xSi

is added to the structure parameter set XS and a domain dSi to

the domain set DS. The domains of SpecEntity and

DecompositionEntity nodes are {1 . . . number of variants}.

The domains of MultiEntity nodes are defined by their

attached NumberRangeProperty.

 There are two general principles that can be applied to

traverse the tree: (i) depth-first and (ii) width-first analysis.

An advantage of the width-first analysis is the arrangement

of the variables. When it can be assumed that variant

decisions at a higher level of the ES have larger effects on

model performance than decision near the leaves, then the

width-first analysis sorts the variables accordingly: variables

on the left hand side of the ordered set correspond to higher

levels of the ES, variables on the right hand side correspond

to decision nodes nearer the leaves. Figure 4.2 describes the

idea of creating model structure parameter set XS and the

corresponding domain set DS based on ES tree information.

ES

A
dec

B C

D
maspec

E
spec

E1 E2 E3

C
dec1

C
dec2

{2,3,4}D
{p
2
=2}

{p
1
=4}

C
dec

=> x
S1
,d
S1
={1,2}

D
maspec

=> x
S2
,d
S2
={2,3,4}

E
spec

=> x
S3
,d
S3
={1,2,3}

X
S
= {x

S1
,x
S2
,x
S3
}

D
S
= {d

S1
,d
S2
,d
S3
}

F G H I

A

figure 4.2 transformation ES to sets of XS and DS

Using a width-first analysis of the ES depicted in figure 4.2

the algorithm starts at non-decision node Adec. Next nodes

are non-decision node B and decision node C. The

decomposition node C has two AspectEntity nodes Cdec1 and

Cdec2. A first parameter xS1 is added to set XS with the

domain dS1 = {1, 2}. Next examined node Dmaspec is a

decision node. This MultiAspectEntity node has the number

range property {2, 4}. A second parameter xS2 is added to XS

with the domain dS2 = {2, 3, 4}. The next node examined is

SpecEntity node Espec with three specialisations E1, E2 and

E3. A third parameter xS3 is added to XS with the domain

dS3= {1, 2, 3}. The last nodes Cdec1, Cdec2, E1, E2, E3, F, G, H

and I are non-decision nodes. Hence the example ES has

three decision nodes and the resulting model structure

parameter set is XS={xS1,xS2,xS3} with domain set

DS={dS1,dS2,dS3}. On the basis of these sets together with the

model parameter and domain sets the optimiser can search

the search space.

 During the optimising process several points in the

search room are examined. Each point is defined by a

specific set Xi=XPi ∪ XSi. The set XSi codes a specific model

structure and set XPi represents its model parameter values.

In each structure optimisation step a specific set XSi is

passed from the optimisation module to the model

management/generation module to generate an appropriate

model structure with model parameters XPi. The

transformation of set XSi to ES information is the reverse of

the previously described process. The same direction to

traverse the tree and same sub-node handling order are

essential. At each decision node the next element of current

structure parameter value set XSi is used to decide which

specialisation or aspect branch is chosen or how many

multi-aspect branches are used for the composition tree. The

model generation from the resulting PES is performed as the

established SES model generation process described in

chapter 3. Figure 4.3 illustrates the idea.

figure 4.3 transformation of the point XSi to PES

Using the same width-first analysis, as was used during the

creation of the sets XS and DS, the ES is pruned with the

current structure parameter value set XSi. The first decision

node in the ES of figure 4.3 is DecompositionEntity C. The

first set element is xS1=1 i.e. the variant 1 of C is used in the

PES. The next decision node is MultiAspectEntity Dmaspec

and the corresponding set element is xS2=4 i.e. the PES

contains four times node D. The last decision node is

SpecEntity Espec and the corresponding set element is xS3=2

i.e. the PES contains the second specialisation of node E.

 The generated model and the parameter values are sent

to the modelling and simulation model over the interface II.

This interface between Model Management/Generation

Module and Modelling and Simulation Module (figure 4.1)

decouples the modules using standardised XML files. It is

based on W3C XML schema Finite Deterministic DEVS

Models [2] [3]. The interface uses the atomic and coupled

model interface descriptions with model and port names and

additionally, for coupled models, the composition

description with sub-model names and couplings. The

coupled model description described in [3] is currently work

in progress and does not contain all necessary description

elements for this approach. The coupling definitions are

extended by separated external input, external output and

internal couplings. With the pruned ES a set of XML files is

generated. Figures 4.4 and 4.5 show atomic and coupled

model examples. With information in the XML files an

executable model structure for the simulator is generated

from the model base.

<?xml version="1.0" encoding="utf-8"?>

<atomic modelName="server" xmlns="AtomicDevs">

 <inports/>

 <outports>

 <outport>job_out</outport>

 </outports>

</atomic>

figure 4.4 XML atomic model example

<?xml version="1.0" encoding="utf-8"?>

<Digraph name="MODEL" xmlns="CoupledDevs">

 <Models>

 <Model><devs>server</devs></Model>

 <Model><devs>transducer</devs></Model>

 </Models>

 <inports/>

 <outports/>

 <EIC/>

 <IC>

 <Coupling>

 <SrcModel>server</SrcModel>

 <outport>job_out</outport>

 <DestModel>transducer</DestModel>

 <inport>job_in</inport>

 </Coupling>

 </IC>

 <EOC/>

</Digraph>

figure 4.5 XML coupled model example

 The decoupling of model management/generation and

modelling and simulation modules using XML files eases

implementation and validation and enables the use of

different simulator implementations.

 The objective function (III) (figure 4.1) estimates the

performance of the current model structure and model

parameter values set. The function has two input sources: (i)

simulation results and (ii) information calculated during

model generation based on additional variables. They are

optionally attached to ES tree nodes and calculated during

the pruning process. In the example in figure 4.3 entities C1,

C2 and D has two attached variables p1 and p2, both are used

as additional objective function parameters. During pruning

the values of p1 and p2 are calculated: PSi=P(XSi)={4;8}.

5. APPLICATION EXAMPLE

This example is based on developments and problems in the

photofinishing industry and investigates a small part of a

production process to demonstrate the approach.

Photofinishing laboratories specialise in high volume

production of thousands to millions of pictures per day. As a

consequence of significant changes in the photography

market, notably the introduction of digital cameras with a

considerable reduction of analogue and an increase of

digital orders during recent years, a mix of analogue and

digital production facilities are used. The situation is

driving an urgent need to be as cost effective as possible.

Figure 5.1 shows product flow through the different

departments of a typical laboratory. The material arrives in

several ways at the login department. After sorting the

product mixes, some 10 to some 1000 single orders are

combined into batches, each containing only one product

type (e.g. specific paper width and surface). It is done with

different machine types: (i) a splicer combines undeveloped

film rolls, (ii) an universal reorder station (URS) combines

analogue reorders to a roll of film strips, (iii) a digital URS

scans the analogue reorders and produce a digital batch, (iv)

a digital splicer handles data carriers (CDs, flash cards etc.)

and (v) software applications combine digital images

received over the internet. Undeveloped analogue batches

have to be developed and analogue material can be scanned.

Next steps are CD production, printing, paper development

and cutting. Finally items are packed and identified for

delivery to customers.

 There are several possible routes for the material

through production with same end product but different

times, requirements and costs. It is possible to employ fewer

operators than working places are available and produce on

time with them when an appropriate production structure

and effective organisation methods are used.

figure 5.1 product flows in a photofinishing lab

This example is restricted to the login and splicer

departments with a structure as depicted in figure 5.2:

figure 5.2 product flow of the example

 The source material, unsorted, single orders, is sorted by

product type manually or automatically into boxes. These

sorted orders are combined to batch rolls at splicers. An

automatic sorter is handled by one or two operators,

whereas manual sorting is done by the number of available

operators without the need of a machine. The handling time

depends on the number of machines, machine type and the

number of operators. A splicer is handled by one operator

with fixed average handling time. Operators can be moved

between machines.

 The production time of a fixed number of orders (and

consequently the cost) varies depending on the type and

number of machines used, number of operators and the

strategy to organise operators. The task is to minimise the

production time of a given number of orders whilst

minimising the costs.

 To validate the methodology the global optima

estimated through simulation of all system variants is

compared with the result of the optimisation approach. In

both experiments the performance rating of one variant is

done by the same objective function.

 The simulation output of a single run delivers the

production time and costs Y = {yproduction time, ycosts} of the

currently investigated model variant. They are passed to the

objective function. This function can be coded as follows:

F = F(Y) = α1* yproduction time + α2* ycosts → ℜ+

The factors α1 and α2 are factors to define the relevance of

the input variables. With α1=1/max_production_time and

α2=1/max_costs both variables are within the range 0..1 and

have the same relevance. The maximal value of the

production time can be calculated by simulation and the

maximal value of the costs is defined by the maximal

number of operators, a model parameter with defined range.

 Figure 5.3 depicts the ES, describing all possible model

structures of this example. Variants with automatic and/or

manual sorting, one to eight splicers and three different

control strategies to move operators (moving after finished

login, no movement and moving depending on size of queue

box2) are allowed.

figure 5.3 ES of the example

The ES defines 72 model structure variants. The model has

one parameter number of operators with a range of one to

eight. The combination results in 576 model variants. The

fitness of all simulated variants and minimal fitness value

are depicted in figure 5.4. The optimal model structure X266

figure 5.4 fitness of all variants with optimum at X266

is shown in figure 5.5. The optimal value of the model

parameter number of operators is two.

figure 5.5 model structure of 266

th
 variant

To solve this example, the search room with model structure

parameter and model parameter sets and their domains has

to be defined. Using the principle introduced in section 4 the

model structure parameters and domain sets are defined by:

XS={xDEP_LOGIN, xcontrollerspec, xsplicermaspec}

DS={dDEP_LOGIN, dcontrollerspec, dsplicermaspec} with

 dDEP_LOGIN = {1; 2; 3}

 dcontrollerspec = {1; 2; 3}

 dsplicermaspec = {1; 2; 3; 4; 5; 6; 7; 8}

The model parameter and domain sets are defined by:

XP={xoperators}

DP={doperators} with doperators = {1; 2; 3; 4; 5; 6; 7; 8}

Hence the resulting search room is defined by:

X = XP ∪ XS

X = { xDEP_LOGIN, xcontrollerspec, xsplicermaspec, xoperators}

Each point of the search room defines one model structure

and parameter variant. With the principle introduced in

section 4 a PES can be composed and the model can be

created. One point is X266={2; 2; 2; 2}. This means that the

second decomposition of DEP_LOGIN and the second

specialisation of controllerspec are chosen, the sub-entity

number of the multiple aspect splicermaspec is two and the

model parameter number of operators is also two. The

associated PES is depicted in figure 5.6. and the

corresponding model structure in figure 5.5.

figure 5.6 PES of 266

th
 variant

 For optimisation the genetic algorithm of the Matlab

GA toolbox was used with default settings (except the

population size of 15). The optimisation experiment was

repeated 100 times with different random number

generation initialisations of the GA toolbox. The

optimisation process finds the global optimum but needs

less simulation runs than the complete enumeration. The

global optimum X266 with the fitness 0.3024 was found 42

times. Other local optima with a fitness value smaller then

0.31 were found 50 times. Non-optimal solutions were

found eight times. The optimal structure and parameter set

was found for the first time after 51 simulations on average

and after 172 simulations the result didn’t change. An

example of the development of fitness values during one

optimisation run is shown in figure 5.6.

figure 5.6 mean generation fitness values of one GA run

The results show that the approach can find an optimal

model variant using less simulation runs than a complete

simulation of all model variants.

6. CONCLUSION

This paper has introduced a structure optimisation method

for discrete event simulation systems. The approach

combines three established methods and extends

optimisation to the fundamental model structure to enable

combined structure and parameter optimisation.

 It has been shown that using a meta-model as a

superordinate method to define simulation models,

parameter optimisation can be extended to a combined

structure and parameter optimisation. Three main elements

have been determined: (i) a model generating

meta-modelling technique based on SES formalism, (ii) a

DSDEVS based modeller and simulator, (iii) an

optimisation method. The interfaces between them have

been defined: (i) A two-way interface between optimiser

and meta-modeller provides information about the search

room for the optimiser and supports model structure and

parameter value set generation for a specific point of the

search room. (ii) An interface between meta-modeller and

simulator decouples both and permits the use of different,

modular hierarchical modelling and simulation methods.

 A prototype of the approach was implemented with the

Scientific and technical Computing Environment Matlab.

The implementation with the MatlabDSDEVS toolbox [4]

[5], MatlabSES, implemented within the scope of this

research, and Matlab Genetic Algorithm and Direct Search

Toolbox has been successfully used to prove the approach

with first examples. Implementation of more complex

examples and examination of other optimisation methods

will be carried out in the scope of further research.

References

[1] Barros F.J. (1996) Modeling and Simulation of Dynamic

Structure Discrete Event Systems: A General Systems

Theory Approach. PhD thesis, University of Coimbra

[2] Mittal S. (2007) DEVS Unified Process for Integrated

Development and Testing of Service Oriented Architectures

PhD Thesis, University of Arizona

[3] Mittal S. (31.10.2007) W3C XML schema Finite

Deterministic DEVS Models, http://www.u.arizona.edu/

~saurabh/fddevs/FD-DEVS.html

[4] Pawletta T., Lampe B., Pawletta S., Drewelow, W.

(2002) A DEVS-Based Approach for Modeling and

Simulation of Hybrid Variable Structure Systems. Modeling,

Anlysis, and Design of Hybrid Systems. Engel S., Frehse

G., Schnieder E. (Ed.), Lecture Notes in Control and

Information Sciences 279, Springer, pages 107-129

[5] Pawletta T., Deatcu C., Pawletta S., Hagendorf O.,

Colquhoun G. (2006) DEVS-Based Modeling and

Simulation in Scientific and Technical Computing

Environments DEVS/HPC/MMS 2006 Huntsville/Al USA

[6] Rozenblit J.W., Zeigler B.P. (1985) Concepts for

Knowledg--Based System Design Environments Proceedings

of the 1985 Winter Simulation Conference

[7] Swisher, J.R. Hyden, P.D. A Survey of Simulation

Optimization Techniques and Procedures. Proceedings of

the 2000 Winter Simulation Conference

[8] Uhrmacher A.M., Arnold R. (1994) Distributing and

maintaining knowledge: Agents in variable structure

environment. 5th Annual Conference on AI, Simulation and

Planning of High Autonomy Systems, pages 178-194

 [9] Zeigler B.P. (1984) Multifacetted Modelling and

Discrete Event Simulation. Academic Press

[10] Zeigler B.P., Praehofer H., Kim T.G. (2000) Theory of

Modelling and Simulation. Academic Press

[11] Zhang G., Zeigler B.P. (1989) The system Entity

Structure: Knowledge Representation for Simulation

Modeling and Design In: Artificial Intelligence, Simulation,

and Modeling. Widman L.E., Loparo K.A., Nielsen N.R.

(Ed.), John Wiley & Sons Inc, pages 47-73

An approach for modelling and simulation of variable structure
manufacturing systems

Olaf Hagendorf
1,2, a

, Thorsten Pawletta
2, b

, Sven Pawletta
2, c

,

Gary Colquhoun

1, d

1
Liverpool John Moores University, School of Engineering, UK

2
Wismar University, RG Computational Engineering and Automation, Germany

a
enrohage@livjm.ac.uk,

b
pawel@mb.hs-wismar.de,

c
s.pawletta@et.hs-wismar.de,

d
G.J.Colquhoun@ljmu.ac.uk

Abstract. Discrete Event Simulation (DES) is an established method for manufacturing system

analysis. The development of complex DES models requires a modular modelling and simulation

approach. Modularity supports clear model structures, provides high model reusability and enables

independent development and testing of components. A comprehensive theory of modular

hierarchical modelling and accompanying simulator algorithms was introduced by Zeigler with the

Discrete Event Specified System (DEVS) formalism. A disadvantage of the classical DEVS theory

is the lack of capability to formulate complex structure variability. This paper provides a brief

summary of the classical DEVS theory and introduces extensions to give comprehensive support to

modelling and simulation of complex structural changes in modular hierarchical systems. The paper

concludes by discussing the advantages of the variable structure modelling approach using an

application in the photo-finishing industry.

Keywords: variable structure systems, discrete event simulation, DEVS, DSDEVS.

1 INTRODUCTION

Many real systems change their structure during lifetime. These can be technical systems [1] such as

manufacturing, computing or communication systems, digital controllers [2] or natural systems such

as in biology and ecology [3]. In a manufacturing environment structure changes can occur at

different levels. At the management level shop floors can be opened or closed, at the shop floor

level different production sections can be used to produce the same product and at the production

level different operation sequences can be performed to produce a specific product or machines and

operators can be replaced or moved to another production cell.

Traditional modelling and simulation systems provide only support for static structure models

[4] [5]. That means, they offer modelling methods to specify modules or components with a

behavioural dynamic and aggregation methods to compose them to complex structures. But the

composition structure itself cannot be changed during model execution. Of course with these

systems it is also possible to emulate structural system dynamics. But the specification has to be

transformed to the behavioural modelling level. Sometimes it is hard to describe complex structural

dynamic such as the various production possibilities in manufacturing systems on the behavioural

modelling level. Furthermore, this procedure often leads to complex model components and reduces

the component generality that results in reduced component reusability.

The goal of this paper is to introduce a structure dynamic modelling approach based on Zeigler's

Discrete Event Specified System (DEVS) formalism. Chapter 2 briefly summarizes general aspects

of the classical DEVS theory and its accompanying simulation approach. In chapter 3 the extension

of the classic DEVS concept to a Dynamic Structure DEVS (DSDEVS) approach is introduced and

the advanced modelling possibilities are discussed. After that the dynamic structure modelling

approach is demonstrated using a complex photo-finishing laboratory application in chapter 4.

2 DISCRETE EVENT SIMULATION

General View. Discrete event systems are characterized by a continuous time base and discrete

state changes [4]. In Discrete Event Simulation (DES) practice there are four dominant modelling

techniques, called modelling worldviews [5]. These are process-interaction method, event

scheduling method, activity scanning and the three phase method. A specific, material oriented view

of the process-interaction method is often called transaction oriented. Each of the modelling

worldviews has specific advantages and disadvantages and makes certain forms of model

description more naturally expressible than others. In manufacturing simulation the process-

interaction method is widely used. In modern simulation tools it is often combined with component-

oriented approaches. The DEVS theory is able to handle all four above mentioned worldviews [4].

One of the most general and powerful features of the DEVS formalism is the modular, hierarchical

model construction.

DEVS. Every DEVS system is described by two different

types of entities, atomic and coupled models. Each model

type has a clearly defined input and output interface and

the internal structure is completely encapsulated. An

atomic model describes the behaviour of a non-

decomposable entity via event driven state transition

functions. A coupled model describes the structure of a

more complex model through the aggregation of several

entities and their couplings. These entities can be atomic

models as well as coupled models. All this together

allows the modular and hierarchical construction of

complex systems.

Figure 1 shows a simple DEVS model, a production

cell with integrated queues, a server with quality checker

and a rework server. The complete cell is depicted by the coupled model CM1. The model has an

external interface with one input and one output port to receive and send work pieces. It contains

two atomic models and one coupled model, the queue am1, the server am2 and the rework facility

CM2. The coupled model CM2 consists of two further atomic models the queue am3 and the

rework server am4. When CM1 receives a message (a work piece) at its input port it is forwarded

over the external input coupling to queue am1. When CM2 generates an output message at its output

port, a reworked work piece is forwarded to the second input port of am1 over an internal coupling.

The DEVS theory in [4] defines a simulator concept for

the computation of modular-hierarchical DEVS models.

Figure 2 shows the computational model structure of the

model example from figure 1 according to the DEVS

simulator concept. Each atomic model is connected to a

simulator entity. This entity handles messages like

‘initialisation’, ‘compute next state’ or ‘get time of next

event’. Each coupled model is connected to a coordinator

entity. It has the same interface as a simulator. But the

coordinator entity handles messages, not itself, but

forwards them to its subordinated coordinators or

simulators. On top of the hierarchy the root coordinator

initiates, controls and ends a simulation cycle. With this

concept the modular hierarchical structure of the model remains a part of the computational model

during simulation runtime in contrast to a transformation of the modular model to a monolithic

computer implemented model.

Fig. 1 Example DEVS model

Fig. 2 Hierarchical simulator structure of the

example DEVS model in fig.1

Formal Concept of DEVS Theory. The description of an atomic model is a 7- tuple [4]:

AM = (X, Y, S, δext, δint, λ, ta) (1)

X, Y and S specify the sets of discrete inputs, outputs and states. The δext function handles external

input events. It can induce an internal state change by generating an internal state event. An internal

state event can induce an output event and is handled by the state transition function δint. Output

events are generated using the output function λ. After external and internal events the internal

events are rescheduled with the time advance function ta.

The description of a coupled model is a 9-tuple [4]:

CM = (dn, XN, YN, D, {Md

| d ∈ D}, EIC, EOC, IC, select) (2)

dn represents the name of the coupled model, XN and YN are the sets of inputs and outputs, D

specifies the name set of subsystems, Md represents a subsystem, EIC, EOC and IC are the external

input, external output and internal couplings and finally the select function prioritize concurrent

internal events of the subsystems.

The classic DEVS approach only supports the specification of a behavioural system dynamic in

atomic systems and the specification of a component aggregation in coupled systems. It is not

possible to describe a structural system dynamic, such as the deletion or creation of components or

couplings, at the coupled system level, although all necessary structural information is available

during runtime. The only possibility to realise a structure dynamic is to specify it with logical

constructs at the atomic model level. This abolishes the advantages of reusability and model clarity

and increases modelling complexity.

3 DYNAMIC STRUCTURE DEVS

Several approaches extend the classic DEVS to Dynamic Structure DEVS (DSDEVS). Barros [2]

[6] and Pawletta [1] [7] use an extension of the coupled system definition while the atomic model

definition remains unchanged. Uhrmacher [3] and others introduce an agent based approach. They

define extensions for both atomic and coupled systems. But in general all extensions allow nearly

the same possibilities to specify structural dynamics at coupled system level such as creation,

destroying, cloning and replacement of subsystems, movement to other coupled systems, and

changes in the couplings and interface definition of subsystems.

This research is based on the approach of Pawletta, where a coupled model is defined by the

following 6-tuple:

CMdyn = ({dn}, SN, δx&s, δint, λ, ta) (3)

with

SN = XN x YN x HN x D x {Md

| d ∈ D} x EIC x EOC x IC x select (4)

The current structure of a coupled model is interpreted as a structure state s ∈ SN. The additional

introduced set HN defines specific structure related state variables. Structure changes can be induced

by external, internal or external events of subordinated components. In analogy to the dynamic of

atomic systems internal structure events are scheduled by a time advance function ta and their

proposed structure changes are specified with a structure state transition function δint. Output events

caused by internal events are generated using the output function λ. Structure state changes induced

by external events or output events of subcomponents are handled by the transition function δx&s.

However it is unreasonable to make changes in the subsystem set or coupling relations by this

Fig. 3 Overview of the product flow and the

departments of a photo-finishing laboratory

function directly. This could lead to ambiguous event handling because external events could

influence simultaneously the dynamic of subcomponents and the structure state. That’s why the δx&s

function is only allowed to modify structure related state variables in the set HN to trigger an

internal structure state event at the same time. Simultaneous internal events of sub-models and of

the coupled model itself are controlled by the select function.

The structure variable modelling approach and its accompanying simulation algorithms were

developed as a Matlab toolbox using Matlab's object oriented programming features. The theoretical

simulator and coordinator definitions are directly mapped to software classes. User specified

models have to be derived from these predefined classes. Matlab as a common scientific and

technical programming environment offers a large amount of computation methods and toolboxes,

e.g. for optimisation and parallel computing. With the implementation of the DSDEVS approach as

a Matlab toolbox it is possible to use these toolboxes within the DSDEVS simulator [7] [8].

4 APPLICATION EXAMPLE

Photo-finishing laboratories specialise in high

volume production of some thousands to millions

of pictures per day. As a consequence of the

significant changes in the photography market

during recent years they use a mixture of

analogue and digital production facilities.

Because of the growing complexity of these

systems it is no longer possible to organise

production manually in an optimal way as was

usual some years ago. To analyse the system,

optimise throughput and costs it is necessary to

simulate the production process.

Figure 3 shows the product flow through the

different departments of a laboratory. It depicts

only an overview of the high volume product

flow. The material arrives over several channels

at the login department. After logging in and

sorting the product mixtures, the single orders are

combined to batches, depending on the order type

(e.g. analogue or digital), the film type (e.g. 135

or APS) and the end product (e.g. paper width). It is done with different machine types: (i) a splicer

combines undeveloped film rolls, (ii) a universal reorder station (URS) combines analogue reorders

to a roll of film strips, (iii) a digital URS scans the analogue reorders and produce a digital batch,

(iv) a digital splicer handles data carriers (CDs, flash cards etc.) and (v) software applications

combine digital images received over the internet. Undeveloped analogue batches have to be

developed and analogue material can be scanned. Next steps are printing, paper development and

cutting. Finally all items are packed into a customer envelope.

Figure 4 shows the overview of a variable structure model for a photo-finishing process. It

specifies (i) alternative ways to handle incoming material, (ii) some ways can be used in a different

sequence but with the same result, (iii) the number of operators is less then necessary to handle all

machines at the same time and so they have to move between departments and (iv) machines can be

removed from or put back into production.

Login

In sorter

(manuell/automatic)

Splicer URS DigiSplicer
Software Application for

Internet orders

orders (analogue/digital):

 from dealer. post,

 Internet

Develop

Scanner

DigiURS

DigiPrinter

Analogue

Printer
Semidigital

Printer

Cutter DigiCutter

Out sorter

postage

analogue material

digital data

Develop

Universal

Reorder Station
URS

other material

CD Production

Because of the complexity of the complete system figure 4 shows only a fragment of the

complete DSDEVS model, mainly the splicer department. The atomic model generator generates

unsorted orders of different types as input events of the production process model

PHOTFINISHING_LAB. The coupled model INSORTER_LOGIN implements the manual and

automatic order login and sorting operations. The coupled model SPLICER depicts the splicer

department. It needs a minimum limit of sorted orders in its input queues to work smoothly. The

outputs of this model go to next sub-models which are not represented in figure 4. An operator is

depicted by an atomic model op. The operator handling, requesting them from or sending to other

departments, is implemented at a general level for the complete laboratory in the

PHOTFINISHING_LAB model and at a lower level in the department sub-models such as

INSORTER_LOGIN and SPLICER. Control messages for operator handling are sent over the op ctrl

couplings and the operator sub-models op themselves over the op in/out couplings. At production

start there is not enough material available in the splicer queues. Consequently operators have to be

moved to the INSORTER_LOGIN model to increase the sorting throughput. SPLICER2 and

SPLICER3 models are deactivated and the appropriate connections are deleted. When the length of

queue_product2 and/or queue_product3 is long enough the coupled model SPLICER requests one

or two op models from the parent model PHOTOFINISHING_LAB, adds them to the SPLICER X

sub-model, activates the SPLICER X sub-model and creates the necessary couplings. When the

length of the queue_productX model falls below a defined limit the op model will be released to the

parent model, the SPLICER X sub-model will be deactivated and the internal coupling to the

queue_productX sub-model will be disconnected.

In contrast to traditional modeling concepts the DSDEVS approach maps the real system

structure one to one in the model. Not only the behavioural system dynamics of machines and

products are directly depicted in the model but also the structural system dynamics of the production

management and the movement of shared resources are comprehensible. The entire model structure

and individual components reflect system reality in a more natural manner. Thereby independent

component development, testing and reuse are improved.

Fig. 4 Part of a photofinishing lab DSDEVS model

5 CONCLUSIONS

The DEVS formalism with the extensions to DSDEVS by Pawletta was briefly introduced and

the advantages of the variable structure, hierarchical modelling approach were shown using a

manufacturing application. The real system structure with its structural and behavioural system

dynamics maps one to one onto the model. Modules can be developed and tested independently of

other parts in the complete system which eases the model development process and supports

extensive model reuse. They can form a model library to ease the creation of further manufacturing

systems. The modelling approach and its necessary simulation algorithms are implemented as a

Matlab toolbox. Due to homogeneous integration in Matlab it can be combined with all other

Matlab computation methods. The next step in this research programme is the development of

optimisation methods in combination with the structure variable modelling and simulation approach

to investigate structure optimisations of complex modular, hierarchical systems.

REFERENCES

[1] Pawletta T., Lampe B., Pawletta S., Drewelow, W. (2002) A DEVS-Based Approach for

Modeling and Simulation of Hybrid Variable Structure Systems. In: Modeling, Anlysis, and

Design of Hybrid Systems. Engel S., Frehse G., Schnieder E. (Ed.), Lecture Notes in Control

and Information Sciences 279, Springer, pages 107-129

[2] Barros F.J. (2004) Modeling and Simulation of Digital Controllers for Hybrid Dynamic

Structure Systems. In: Proc. of CSM2004 - Conference on Conceptual Modeling and

Simulation, Part of the Mediterranean Modelling Multiconference (I3M), Genova, Italy,

October 28-31, 2004, Vol.1, pages 296-302

[3] Uhrmacher A.M., Arnold R. (1994) Distributing and maintaining knowledge: Agents in

variable structure environment. In 5th Annual Conference on AI, Simulation and Planning of

High Autonomy Systems, pages 178-194

[4] Zeigler B.P., Praehofer H., Tim T.G. (2000) Theory of Modelling and Simulation. Academic

Press

[5] Banks J., Carson II J.S., Nelson B.L., Nicol D.M. (2003) Discrete-Event System Simulation.

Prentice Hall

[6] Barros F. J. (1996) Modeling and Simulation of Dynamic Structure Discrete Event Systems: A

General Systems Theory Approach. PhD thesis, University of Coimbra

[7] Pawletta T., Deatcu C., Hagendorf O., Pawletta S., Colquhoun G. (2006) DEVS-Based

Modeling and Simulation in Scientific and Technical Computing Environments. In: Proc. of

DEVS Integrative M&S Symposium (DEVS'06) - Part of SpringSim'06, Huntsville/AL, USA,

April 2-6, 2006, pages 151-158

[8] Hagendorf O., Colquhoun G., Pawletta T., Pawletta S. (2005) A DEVS – Approach to

ARGESIM Comparison C16 ‘Restaurant Business Dynamics’ using MatlabDEVS. Simulation

News Europe, no.44/45, (December)

DEVS-Based Modeling and Simulation

in Scientific and Technical Computing Environments

Thorsten Pawletta
1
, Christina Deatcu

1
, Sven Pawletta

1
, Olaf Hagendorf

1,2
, Gary Colquhoun

2

1
RG Computational Engineering and Automation, Wismar University, Germany;

2
Liverpool John Moores University, School of Engineering, UK

pawel@mb.hs-wismar.de

Keywords: DEVS, DSDEVS, Discrete Event Simulation,

Hybrid Simulation, Dynamic Structure Systems, Matlab

ABSTRACT

This paper describes our current research in the area of

Discrete Event System Simulation (DEVS) and its

implementation for programmable Scientific and technical

Computing Environments (SCEs) with a focus on variable-

structure and hybrid systems.

Engineers, unlike scientists, are usually familiar with the

use of SCEs such as Matlab rather than high level

programming language simulation libraries. DEVS-based

modeling and simulation until now has not been available

for SCEs. This research has led to the development of a

fully compatible toolbox for the Matlab environment with

the potential to interact with other toolboxes. The paper

reviews the advantages of DEVS/SCEs integration and

concludes by describing the potential benefits in

applications with other toolboxes.

1 INTRODUCTION

Modeling and simulation is widely applied in engineering

science and, in. the majority of cases, the problems to be

solved are complex. In contrast to other modeling

methodologies such as statecharts or petri nets DEVS

formalisms have not been widely accepted by the

engineering community. This despite the fact that the DEVS

theory offers well-founded formalisms for a wide variety of

engineering problems. An overview of the formalisms that

underpin DEVS theory is given by Zeigler et.al. in [1].

For engineering tasks, particularly the modeling and

simulation of hybrid system dynamics [2], of variable-

structure systems [3,4] and discrete event control problems

[5] are of greater interest.

We assume that the reason for the relatively marginal

acceptance of DEVS theory in engineering is a result of the

type of software tools available. Wainer’s [6] summary of

current DEVS tools developments shows that these tools are

based on high level programming language libraries for pure

simulation tasks.

In engineering science the use of SCEs has been

growing rapidly for the last 15 years, while the utilization of

high level programming languages is decreasing. Currently

the best-known SCEs are Matlab/Simulink , Scilab/Scicos

and Octave .

SCEs provide a large number of predefined algorithms

for numerical, graphical, statistical, symbolical and other

computations for us in a single uniform environment

interactively. In addition, the features of an SCE are easily

extendable by integrating user-defined algorithms coded

using a powerful integrated programming language.

In terms of modeling and simulation, SCEs provide

efficient methods for continuous system simulation. These

methods can easily be combined with other computation

methods, e.g. optimisations, fuzzy methods, etc.. For

discrete event system simulation, support is limited.

However for Matlab, the most popular SCE, there is a

combined discrete event / continuous simulation toolbox

prototype available (MatlabGPSS, 1996-1999 [7]). This

toolbox is based on the process-oriented modeling

paradigm. Matlab's graphical simulation environment

Simulink also provides Stateflow (Stateflow*, 1997) – a

toolbox with limited discrete event features based on

statecharts. In the latest release (R14-SP3, fall 2005),

another discrete event toolbox – SimEvents* – is provided.

Since 1994 this research has focussed on the integration

of DEVS formalisms within SCEs. As a first prototype, a

function-oriented DEVS toolbox for Matlab4 was

implemented. The key motivation was to employ the tool to

introduce practical DEVS theory knowledge to engineering

graduates. After Mathworks introduced an object-oriented

extension for Matlab5's programming language in 1995 the

work led to the implementation of an object-oriented DEVS

toolbox for pure discrete event and static-structure DEVS

networks. Subsequently we advanced the toolbox step by

 Matlab/Simulink, Stateflow, SimEvents are trademarks of the

Mathworks Inc.

 Scilab/Scicos is a trademark of INRIA, France.

 Octave is free software under GPL developed by J. W. Eaton and

many others

DEVS/HPC/MMS'06 151 ISBN 1-56555-304-7

mailto:pawel@mb.hs-wismar.de

step to structure dynamic networks and then to hybrid

system dynamics using several practical projects.

In addition to the educational application, toolbox

prototypes have been utilized for fundamental research. The

objective of the research is the implementation of an

environment for modeling and simulation based on DEVS

for variable-structure and combined discrete event/

continuous systems. Another aspect of the research is the

implementation of process control using real-time

synchronized DEVS models. In terms of the simulation of

variable-structure hybrid systems we are working on the

realization of a DEVS simulator using the advanced

ordinary differential equation solvers from Matlab's ODE

toolbox. Modeling formalisms and simulator algorithms for

this domain are already published in [4,8]. The research on

simulation model based process control is documented in

[9,10].

Section two reviews the characteristics of SCEs, and

section three describes the development of the

MatlabDSDEVS-hybrid toolbox for modeling and

simulating hybrid and variable-structure systems. Section

four illustrates the potential to benefit from use with other

Matlab toolboxes. The underlying modeling ideas and

simulation algorithms are explained and the integration with

optimisation algorithms and methods for parallel computing

are discussed.

2 CHARACTERISTICS OF SCEs

SCEs include a large number of computing algorithms and

can be easily improved by user-defined extensions

implemented with the SCE specific programming language.

These languages are largely array oriented and in some

cases achieved using object-oriented features. They support

dynamic data type binding and the syntax is very similar to

mathematical notation. In contrast to classical programming

languages (e.g. FORTRAN, C, C++), their primary aim is

not to produce memory and runtime optimized code, but to

support efficient tests and implementations of complex

problems. In conjunction with the ability to execute user-

defined routines immediately and interactively, a SCE

constitutes an excellent basis for rapid prototyping.

Some SCEs such as Matlab provide additional features

to produce more suitable code. One of these features is the

compilation of SCE routines into faster intermediate code or

into an executable stand-alone program. Another approach

is the dynamic binding of external compiled code. This

technique can also be used to couple SCEs with other

applications. Figure 1 shows the general architecture of an

SCE.

The core of an SCE is the parser, interpreter and routine

module. Fundamental and runtime critical system routines

are integrated as built-in functions (object code). Other

system and user supplied routines are implemented as SCE-

or intermediate code. The interpreter and the output together

with the input module establish the user interface.

Instructions can be processed in interactive mode by typing

at the command line or in batch mode, if the parser and

interpreter get their input from a file. Calculation results are

printed, visualized on screen or written to file by the output

module. The memory management provides a permanent

global workspace and function related temporary local

workspaces. A detailed description can be found in [11].

Keyboard

F
il

e

F
il

e

Module

Parser

Interpreter

Output

Module

Text

F
il

e

K
ey

b
o

ar
d

Dynamic Memory Management

(Workspaces)

(numerical , statistical , sym

bolical , visualization routines etc.)

Routine Module
Input

Figure 1. Architecture of an SCE

3 MatlabDSDEVS-HYBRID TOOLBOX

3.1 Underlying Formal Concept

Our modeling approach for modular hierarchical hybrid

systems with structural variability at the coupled system

level is based on the work in [2,3,4] and classical DEVS-

theory [1].

Prähofer [2] defined a hybrid atomic system by the tuple

Ahybrid = (X, Y, S, f, cse, c, x&s, int, d, ta)

where X, Y and S specify the set of inputs, outputs and states

which may be continuous or discrete. Continuous dynamics

are mapped by the rate of change function f and the output

function c. Discrete events are internal, external and state

events. State event conditions are defined using the state

event condition function cse. External events and state events

induce state transitions using the function x&s. Internal

events activate the discrete output function d and also the

state transition function int. After each discrete state

transition internal events are re-scheduled by the time

advance function ta. Local structural changes of the

continuous dynamics can be modelled by structuring the

dynamic description using logic variables inside the rate of

change function f , the state event condition function cse and

the continuous output function c.

Coupled structure static systems describe a static

aggregation of atomic and/or coupled systems, and they

permit the construction of hierarchical structures. If

couplings are restricted to equivalence relations, a coupled

ISBN 1-56555-304-7 152 DEVS/HPC/MMS'06

system consists of a set of subsystems and couplings. A

coupled system is defined [2] by the tuple

N = (XN, YN, D, {Md | d D}, EIC, EOC, IC, select)

where XN and YN designate the set of input and output

quantities. D represents the name set of the dynamic

subsystems, and Md represents a dynamic subsystem. EIC,

EOC and IC are the sets of continuous and event oriented

coupling relations, subdivided into external input, external

output and internal couplings. Finally, select is a special

function to prioritize a subsystem in case of simultaneous

internal events in different subsystems.

 To allow structure variability, some extensions of a

coupled system’s definition have been introduced. In the

context of this work, structural changes at the coupled

system level contain the creation, cloning, deletion and

replacement of atomic or coupled subsystems, their

movement between coupled systems and the dynamic

changes of couplings between system components.

Obviously, the subsystem set and the coupling relations

should be interpreted as structure state. Hence, a structure

variable coupled system can have different structure states

s0, s1, …, sn SN.

In order to store special structure dynamics information,

e.g. the number of structure changes achieved, it is

appropriate to introduce an additional set of structural state

variables HN. In addition the select function can depend on

the structure state. Consequently, the set of sequential

structure states SN of a structure variable coupled system has

the form:

SN = HN D {Md | d D} EOC EIC IC select

Structure changes in coupled systems can be induced by

external, internal or state events. State events that affect

structure can be caused by output events of subsystems or

threshold events of: (i) continuous outputs of subsystems,

(ii) continuous inputs of the coupled system or (iii) structure

related states of the set HN.* They can be considered an

analogy to event-oriented dynamics of atomic systems.

Events influenced by the internal structure of a coupled

system are planned by a time advance function ta, and their

proposed structure changes are specified with a structure

state transition function int. For the generation of structure

related output events caused by internal events, a discrete

output function d is introduced. For example, it is possible

to send subsystems to other coupled systems. In order to

avoid ambiguity in the coupled system as a result of

instantaneous internal subsystem events and structure

related internal events, the coupled system must

* Structure changes depending on threshold events of continuous

outputs of subsystems or continuous inputs of the coupled system

are not supported by the toolbox currently.

occasionally be included in the selection function select to

sequence internal events.

Structure state changes induced by external or state

events are handled by a coupled system's transition function

x&s., however it is unreasonable to make changes in the

subsystem set or their coupling relations by the x&s function

directly. This could lead to ambiguous event handling

because external events could influence subcomponents and

the structure state simultaneously. To avoid the definition of

a further select function it is appropriate to convert changes

in the subsystem sets and coupling relations with only the

internal state transition function int. A coupled system's x&s

function should only modify structure related variables in

the set HN, which trigger internal structure state events at the

same time. Simultaneous internal events are controlled by

the select function introduced above.

On the basis of the definition for coupled systems

without structure variability, and the extensions introduced

above, we find the following formal definition for coupled

variable structure systems

Ndyn = (XN, YN, {dN}, SN, x&s, int, d, ta)

where dN stands for the name of the coupled system. A

detailed description of the modeling approach and its

application on a real engineering system can be found in [4].

3.2 Modeling and Simulation Concept

Computation algorithms for modular, hierachical DEVS

models involving variable structure and hybrid system

extensions were established in [1-3]. The key idea is to map

a model specification to interacting program objects to

reflect the system's components and their coupling relations.

This approach is satisfactory for all complex structure

changes during simulation runtime. However problems arise

for the effective calculation of continuous model parts if

they are distributed in different program objects and if non-

causal integration methods are used. Non-causal algorithms

are implicit integration methods and predictor/corrector

integration methods [1]. In addition numeric library

algorithms are not yet directly usable because they, like

Matlab's ODE solver toolbox, require model preparation

using specific data structures. To solve this problems this

research has lead to the introduction of new data structures

and methods.

Class Definitions

Figure 2 shows the MatlabDSDEVS-hybrid toolbox

class definitions and function libraries. It follows that

complete class definitions contain some more variables and

methods such as event chain management, statistical

calculations or debugging. In addition some variable and

method identifiers are renamed in figure 2 in order to be

self-explanatory. Because many identifiers are known from

DEVS/HPC/MMS'06 153 ISBN 1-56555-304-7

general DEVS theory in [1] this paper will only discuss

essential extensions and modifications.

MatlabDSDEVS hybrid GUI tools

states_HN

constructor, init, cse, delta_x_s, delta_int,

add_ / delete_IC, add_ / delete_EIC,

Matlab ODE solver library

root coordinator

t, tnext, tfinal, root_model_name, cSimObj, aSimObj, cSc

start, odewrapper

devs

atomic_devs

tlast, tnext, elapsed, sigma, x_ports, y_ports

component_name, parent_name,

z, i, *, x, s

coupled_devs

component_names, ic, ec, eoc, tnextC

add_ / delete_component,

enable_ / disable_component,

clone_component, replace_component,

add_ / delete_EOC, delete_Couplings,

add_ / delete_Xport, add_ / delete_Yport,

z, i, *, x, y, s

lamda_d, ta, select

user_specified_atomic_devs_model

s_d, s_c

constructor, init, delta_x_s, delta_int,

lamda_d, ta, f, cse, lamda_c

user_specified_coupled_devs_model

m
o
d

el
 s

p
ec

if
ic

si
m

u
la

to
r

/
co

o
rd

in
a
to

r
sp

ec
if

ic

Figure 2. Major Class Definitions and Function Libraries

Class methods can be sub-divided into different groups:

(i) Methods for creation and rearrangement of model

structure in class coupled_devs, (ii) Message-based

simulation methods z, i, *, y, x, s in class

atomic_devs and coupled_devs and (iii) User-defined

modeling methods corresponding to the formal DSDEVS-

hybrid specification in section 3.1. Most methods in (i) are

self-explanatory. Only the replace_component method is

highlighted as it supports the replacement of systems that

belong to a system family - see [4].

In the toolbox the same base classes are used for

modeling and simulation. The devs class acts as a base

class. Classes for modeling have to inherit from the two

classes atomic_devs and coupled_devs. Using this

strategy, each instance of a user-defined class inherits its

computation methods and attributes, i.e. the inherited parts

correspond to the associated simulators or coordinators in

accordance with the general theory in [1]. Because each

instance of a user-defined class contains both a specific

model part and an inherited computation engine, we term it

a simulation object.

Some Modeling Aspects

In the Matlab-environment object-oriented programming

is a difficult task as a result of Matlab’s rules for defining

classes. A separate M-file for each class method has to be

created, consequently class definitions may become quite

complicated and difficult to follow. Accordingly some

simple GUI tools have been implemented to support the

modeling process. These GUI tools offer a model editor that

automatically creates the file structure with appropriate

function templates for atomic and coupled models. That

means, for example in a hybrid atomic model, the following

files are created: model_name.m (constructor), init.m, f.m,

cse.m, lamda_c.m, delta_x_s.m, delta_int.m, lamda_d.m and

ta.m. These files will be edited by the modeler to specify the

desired model behaviour. The following code shows the

model specification of a hybrid atomic system describing a

bouncing ball with one continuous and one discrete output

port.

% model equations
% height: q1(t0)=0; dq1/dt = q2;
% velocity: q2(t0)=20; dq2/dt = -9.81;
% when event q1 == 0 then q2 = -0.95*q2

constructor in file bball.m
function obj = bball(in)
%obj stores reference of this object
obj.sigma = inf; %discrete states
 %incarnate object
obj = class(obj,'bball',atomic_devs(in));
 %continuous states
obj = set_c_state(obj,[0;20]);%[height; vel.]
obj = set_mealy(obj,0);%isn't Mealy type
set(obj,'c_yports',1);%no. of cont. y ports
set(obj,'d_yports',1);%no. of disc. y ports

initialization fcn. in file init.m is empty

rate of change function in file f.m
function dq = f(obj,t,q,x)
 %t current time, x input vector
 %q local continuous state vector
dq = [q(2);-9.81] % der. of [height;velocity]

state events condition function in file cse.m
function ret = cse(obj,t,q,x)
 %continuous state value height
 % | zero-crossing direction from + to -
 % | | integration termination event
 % | | |
ret = {q(1),-1 ,1};

ISBN 1-56555-304-7 154 DEVS/HPC/MMS'06

continuous output function in file lamda_c.m
function outp = lamda_c(obj,t,q,x)
outp(1) = q(1); %current height cont. y port

external and state event state transition
function in file delta_x_s.m
function obj = delta_ext(obj,x,event_idx)
 % no external events
switch event_idx %handle state event actions
case 1
 q = get_c_state(obj);
 obj = set_c_state(obj,[0; -0.95*q(2)]);
end
obj.sigma = 0; %activate internal event

intern. state trans. fcn. in file delta_int.m
function obj = delta_int(obj)
obj.sigma = inf;

discrete output function in file lamda_d.m
function obj = lamda_d(obj)
obj = set_d_output(obj,1,'down');

time advance function in file ta.m
function t = ta(obj)
t = obj.sigma;

Discrete event–oriented model parts are specified in a

similar way to other DEVS modeling and simulation

systems. Models with continuous parts have to be

characterized as of Moore or Mealy type in the constructor.

The continuous system dynamic is described by a vectorial

differential equation in the rate of change function. State

event conditions are defined in the cse function using three

parameters. The first parameter is the zero-crossing variable,

the second determines the zero-crossing direction and the

third specifies if integration has to terminate or not. State

event actions are handled in the delta_x_s function.

Different state events are distinguished by evaluating the

input parameter event_idx. In this case we have only one

state event that sets the state variable height (q1) to 0 and

determines the new value of the state variable velocity (q2).
Additionally, in this case, an internal state event is triggered.

Interface to Matlab ODE Solver Toolbox

Matlab provides a powerful set of ODE solver methods

to control continuous integration, detection and the

localization of state events. To take advantage of this

methods, the continuous model descriptions (functions: f.m,

cse.m, lamda_c.m) and continuous state vectors of all

components need to be available in a closed form. That

means all continuous model functions have to be

encapsulated in just one wrapper function and references to

all continuous state variables have to be concentrated in just

one global continuous state vector. Data structures and

methods necessary to perform this task are provided by the

root_coordinator. The closed model form is represented

by the odewrapper method using the three vectors cSc,

aSimObj, cSimObj. The vector cSc stores references to

all continuous state variables, while references to atomic

and coupled simulation objects are stored in the vectors

aSimObj and cSimObj. Collecting this information takes

place during the model generation and initialisation phase

and after each structure change in the simulation phase.

Model Generation and Initialisation Phase

Major aspects of message passing during the model

generation and simulation phases are represented in figure 3.

ei as abbreviation for event idx

Matlab ODE
solver

root
coordinator

lamda_d

delta_int

select ta

start(root_model_name,tfinal)

[t,tnext],cSc,options,

aSimObj,cSimObj)

y(t,Y) y(t,Y)

(outermost)

simulation object

coupled
simulation object

coupled

atomic
simulation object

[t,q,te,qe,ei]=solver(’odewrapper’,

delta_x_s(X,[]) delta_x_s(X,ei)

delta_int

lamda_d

ta

lamda_c(t,q,x)
f(t,q,x)

cse(t,q,x)

z(t) i(t)

*(t) x(t,X)

s(t,obj,ei)

z(t) i(t)

*(t) x(t,X)

s(t,obj,ei)

z(t) i(t)

*(t) x(t,X)

s(t,obj,ei)

Figure 3. Message Passing During Model Execution

Model generation and initialisation is controlled by the

start method of the root_coordinator object. Initially

the root_coordinator configures the modular,

hierarchical computing model structure. It calls the

constructor of the outermost coupled simulation object,

creates its subcomponents and their couplings and starts a

recursive constructor call for all other subcomponents.

Subsequently all objects are initialized by a recursive i

message. Each object's i method calls the component

specific ta and init methods to determine the object's next

internal event time and to initialise its state and statistical

variables. In contrast to classical DEVS approaches, the

coupled simulation objects may contain structure related

state variables in states_HN. They also store two next

internal event times: (i) tnext for the next internal event of

DEVS/HPC/MMS'06 155 ISBN 1-56555-304-7

a subcomponent and (ii) tnextC for the next internal

structure event. The next event time sent to the super-

ordinated simulation object is the minimum of these two

values.

In the next step the start method initiates the

configuration of the special data structures cSimObj,

aSimObj and cSc. This is achieved by traversing the

modular computing model multiple times using a recursive

z message. As a consequence, the vector cSc stores

references to all continuous state variables of atomic

simulation objects. Also the vectors aSimObj and cSimObj

store references to the atomic and coupled simulation

objects engaged in defining or evaluating continuous

variables.

A second outcome is the creation of direct references

between the continuous input and output variables where

input variables obtain references to the output variables.

After completion the algebraic relations are sorted. To

achieve this the references in the vector aSimObj are

initially arranged with respect to atomic simulation objects

of types Moore-Automata (c: Sc Yc) and Mealy-

Automata (c: Xc Sc Yc). In a second sorting step the

references to objects of type Mealy-Automata are arranged

with respect to their dependent relations. In the same way

the three vectors cSimObj, aSimObj and cSc are

reconfigured during the simulation phase if structural

changes in the modular computing model have occurred. In

essence it is possible to generate multiple replicas of the

three vectors. This is of advantage, if there are no

interrelations between some continuous state variables and

if they need to be calculated using different integration

methods or numerical step widths.

Simulation Phase

After model generation and initialisation the start

method enters the simulation loop. If the current simulation

time t is smaller than the next event time tnext a

continuous simulation phase proceeds until the next event

time. A solver method from the Matlab ODE toolbox is

called and the odewrapper method is passed as a callback

function. In addition the reference vectors cSc, aSimObj,

cSimObj and a solver specific option structure are passed.

[t,q,te,qe,ei] = solver('odewrapper',...
 [t,tnext],cSc,options,aSimObj,cSimObj)

In each integration step the solver calls the odewrapper

method which in turn sends a lamda_c and a f message to

all registered atomic simulation objects to calculate their

continuous outputs and derivatives. After each integration

step it also sends a cse message to all registered atomic

simulation objects to check their continuous state event

conditions. The values returned by the solver after an

integration phase delivers the continuous trajectories and

event information subject to continuous state values.

When a state event has occurred the continuous

simulation phase is interrupted. A s(t,obj,ei) message

containing the state event's simulation object reference

(obj) and the state event index (ei) is then forwarded

along the edges of the modular computing model to the

referenced simulation object. That action manages the state

event by calling its specific delta_x_s method and it re-

schedules its next internal event time by calling its ta

method. It follows that all coupled simulation objects along

the s message path also re-schedule their next internal event

time. The root_coordinator can now start a new

continuous or a discrete simulation phase.

A discrete simulation phase is initiated when the current

simulation time reaches the next event time by sending an *

message to the outermost simulation object. The cycle of a

discrete simulation phase is very similar to the classical

DEVS simulation approach in [1] so, for clarity, we will

only discuss some modifications.

(i) Coupled simulation objects transfer an x message

dependent on the current structure state to the corresponding

input ports of their subobjects and subsequently execute

their own state transition function delta_x_s.

(ii) Coupled simulation objects pass an * message to the

subordinated simulation object planned for the next internal

event and/or call their specific structure state transition

function delta_int (if the current simulation time is equal

to their time value in the tnextC variable). Simultaneous

internal events inclusive structure events are prioritised by

the object specific select method.

(iii) When structural changes occur, a recursive z and i

message is sent to the outermost simulation object to

reconfigure the reference vectors of root_coordinator

and to initialize recently inserted simulation objects.

4 COMBINATION WITH OTHER

COMPUTING METHODS

The MatlabDSDEVS-hybrid toolbox is fully compatible

with the Matlab-environment and is therefore able to

interact with other computing methods. This section

identifies the benefits of integration and reviews how

advantage can be gained from other methods. It is not

intended to provide a detailed discussion of modeling and

simulation. For an example of a hybrid and variable-

structure engineering application using the

MatlabDSDEVS-hybrid toolbox see [4].

Two common problems in simulation experiments are

monte carlo studies for stochastic systems and parameter

optimisation. As a consequence experimental techniques are

provided in most commercial simulation packages.

However, such experiments are often runtime heavy.

Although such experiments offer significant potential for

parallelisation with an almost linear speed up, commercial

simulation packages cannot perform experiments using

ISBN 1-56555-304-7 156 DEVS/HPC/MMS'06

parallel computing methods. In contrast special Matlab

toolboxes provide user-friendly distributed and parallel

computing methods. The first of these was the DP-toolbox

published in 1995 [12]*.

The following example provides realistic demonstration

of how computation methods can be easily combined. The

example is taken from a series on comparisons of

simulation software featured in the journal Simulation News

Europe (SNE) [15]. The challenge addresses the modeling,

simulation and optimisation of restaurant business dynamics

and includes an opportunity for dynamic structure modeling.

Although not an engineering problem, it provides an

effective way of testing and evaluating the performance and

features of the MatlabDSDEVS-hybrid toolbox.

The simulation model represents the dynamics of an area

with a fixed number of people and a dynamically changing

number of restaurants. A restaurant closes or opens

depending on its profit in a certain time span and some

probability values. A restaurant’s profit is influenced by the

tax rate considerably. One experiment is to maximize the

government tax income by varying the tax rate for the

restaurants. The system has to be simulated for 5 years and

50 simulation runs are necessary to achieve reliable average

results.

Initially a classical solution for a single computer is

developed. It contains of three parts: (i) the simulation

model MODEL, (ii) the optimisation objective function

objFcn and (iii) the interactive experiment execution

commands. The following code shows the complete

implementation of the objective function and all interactive

execution commands.

objective function in file objFcn.m
1 value = function objFcn(taxRate)
2 global seedMat tfinal
3 taxIncome = zeros(50,1);
4 for i=1:50
5 taxIncome(i)=devs_start('MODEL',tfinal,…

 seedMat(i,:),taxRate);
6 value = (-1)*mean(taxIncome);

interactive experiment execution
>>global seedMat tfinal
>>tfinal = 5*365;
>>seedMat= [1:50;51:100;101:150;151:200]';
>>[taxRate,meanTaxIncome]=fminbnd(@objFcn,0)

The experiment execution starts with a declaration of two

global variables. The tfinal variable is initialized with the

simulation final time and the seedMat variable is defined as

a matrix with 50 rows and four columns. Each row stores

the random number generator-IDs for one simulation run.

Finally, one of Matlab's numerical optimisation algorithms

is called and the objective function pointer @obj_fcn and a

* Since 2004 MathWorks provides an own toolbox, called

Distributed Computing Toolbox [13].

start value 0 for the optimisation parameter taxRate are

passed. The optimisation method delivers the optimal tax

rate and average tax income for the optimal parameter as

result values.

Objective function takes the current optimisation

parameter value in taxRate as input and delivers the

objective function value as output. The global variables

seedMat and tfinal are declared. In the third line a result

vector taxIncome with 50 elements is initialized.

Subsequently 50 simulation runs are performed in a for-loop

(line 4 & 5). The MatlabDSDEVS-hybrids's function

devs_start generates a root_coordinator object, calls

its start method and passes the root_model_name

'MODEL', the tfinal value and one row of the matrix

seedMat together with the current tax rate value as

simulation model input parameters. Each simulation run

delivers the accumulated tax income as output value. In the

sixth line, the mathematical objective function is coded. It

determines the average tax income and multiplies it by

minus one because the numerical optimisation method

implements a minimisation algorithm.

As stated such experiments are often runtime heavy and

interactive program execution in SCEs is slower than the

execution speed of compiled program code. However, we

argue that such problems can be conveniently solved using

parallel computing methods within SCEs. The following

code shows the complete parallel implementation of the

objective function using the DP-toolbox [12]. The

interactive execution commands are the same as for the

sequential program above.

parallel objective function in file objFcn.m
1 value = function objFcn(taxRate)
2 global seedMat tfinal
3 taxIncome = dpfeval(@devs_start,'MODEL',…

 tfinal,seedMat,taxRate);
4 value = (-1)*mean(taxIncome);

The heart of the parallel objective function implementation

is the vectorial RPC-function (Remote Procedure Call)

dpfeval, introduced theoretically in [14]. It initiates

parallel simulation runs using function pointer

@devs_start. All other function arguments are passed to

the devs_start function and evaluated as described by the

non-parallel implementation. The number of programs

executed in parallel depends on the number of available

processors and the possible parallelisation degree of the

problem. Both conditions are examined by the dpfeval

function. In this case the extent of problem dependent

parallelisation is determined by the function argument

seedMat. This is the only non-scalar parameter. Therefore,

its dimension is implicitly used as maximal parallelisation

limit. The value of the result vector taxIncome is also

defined implicitly. Runtime experiments on a nine-node

computer cluster proved the prediction of approximate

DEVS/HPC/MMS'06 157 ISBN 1-56555-304-7

linear speedup. This is not surprising as the ratio of

communication to computation time is very small.

Another significant example for the combination of

computing methods in SCEs is published in [9]. In this

application a robot cell is controlled using a simulation

model nand input data is generated from camera signals

processed by Matlab’s image processing algorithms.

5 CONCLUSION

We analyzed why the DEVS theory is relatively unknown in

the broad engineering community and recognized the

absence of a DEVS-based software implementation for

engineering tools as a key reason. The development of a

DEVS-based toolbox for hybrid and variable structure

systems in the Matlab environment provides small

contribution to the solution. The toolbox is still a

development prototype consequently it is not yet an

alternative for solving standard engineering problems.

Nevertheless it is a suitable tool for teaching and research.

From a research perspective the DEVS-based toolbox's

underlying modeling approach supports all known concepts

of structure variability at the coupled system level and its

simulation algorithms allow the computation of hybrid

variable structure systems using Matlab’s high performance

integration methods. In addition the work has indicated that

there are benefits in its use with other SCE computational

methods such as optimisation and parallel computing.

 The research has proved that the realisation of a DEVS

toolbox in the Matlab environment is possible and useful.

Currently implementation is not a trivial task as some

programming features differ markedly from the general

object oriented programming approach. A new release of an

improved class concept has been announced and this

development will be investigated in terms of its suitability

for realising our DEVS approach.

Currently there seems to be no way to implement a

toolbox for variable structure systems within the Matlab

Simulink/Stateflow simulation environment. The next step

in the research is to pursue this problem and develop a

means to realise a static-structure DEVS toolbox in this

graphical simulation environment.

REFERENCES
[1] Zeigler, B. P.; T. G. Kim; H. Praehofer. 2000. Theory

of Modeling and Simulation. Elsevier Pub.

[2] Praehofer, H. 1991. "System theoretic foundations for

combined discrete-continuous system." PhD thesis,

University of Linz

[3] Barros F. 1996. "The dynamic structure discrete

event system specification formalism." Transactions

of the SCS International, Vol.13, no.1, 35-46

[4] Pawletta, T.; B. Lampe; S. Pawletta; W. Drewelow.

2002. "A DEVS based approach for Modeling and

Simulation of hybrid variable structure systems." In

Lecture Notes in Control and Information Science, S.

Engel, et.al. (Ed.), Springer Pub., no. 279, 107-130

[5] Zeigler, B. P., J. Kim. 1995. "Extending the DEVS-

Scheme Knowledge-Based Environment for Real-

Time Event-Based Control." http://www.ais-

ece.arizona.edu/papers.html

[6] Wainer, G. A.. 2005. "DEVS Tools." DEVS

Standardization Group, http://www.sce.carleton.ca/

faculty/wainer/standard/tools.htm

[7] Drewelow, W.; T. Pawletta; S. Pawletta. 1999.

"Embedding of Transaction-oriented Simulations into

SCEs." In Proc. of the IASTED Int. Conf. on Applied

Modeling and Simulation, AMS '99, (Cairns,

Australia, September 1-3), 389-394

[8] Pawletta, T.; S. Pawletta. 2004. "A DEVS-based

Simulation Approach for Structure Variable Hybrid

Systems Using High Accuracy Integration Methods."

In Proc. of Int. Conf. on Conceptual Modeling and

Simulation, (Genova, October 28-31). Vol.1, 368-373

[9] Maletzki, G.; T. Pawletta; P. Dünow; P. Manemann.

2005. "Simulation model based control of robot

cells." In Frontiers in Simulation – 18th Symp. F.

Hülsemann et.al. (Ed.), SCS Pub. House, Ghent, 305-

310, in German

[10] Kremp, M.; T. Pawletta; S. Pawletta; G. Colquhoun.

2003. "Investigations of different strategies for

simulation based control of material flow systems."

In Frontiers in Simulation – 17th Symp. R. Hohmann

(Ed.), SCS Pub. House, Ghent, 373-378, in German

[11] The MathWorks Inc. 2005. "Using MATLAB®"

Vers. 7, Cambridge

[12] Pawletta, S. et.al. 1995-2006. "Distributed & Parallel

Application Toolbox (DP) for Use with Matlab",

User's Guide Vers. 1.7, Wismar University

[13] The MathWorks Inc. 2004-2005. "Distributed

Computing Toolbox for Use with Matlab", User's

Guide Vers. 2, Cambridge

[14] Pawletta, S. 1998. "Extension of a Scientific and

Technical Computing System to a Prototyping

Environment for Parallel Applications.", Dissertation,

University of Rostock, in German

[15] Gyimesi, M.; F. Breitenecker; A. Borshchev, 2004,

"Definition of a new ARGESIM Comparison – C16",

Simulation News Europe, no.40, (May), 26-27

ISBN 1-56555-304-7 158 DEVS/HPC/MMS'06

http://www.ais-ece.arizona.edu/papers.html
http://www.sce.carleton.ca/faculty/wainer/standard/tools.htm

 1 April 2005

SIMULATION NEWS EUROPE

C
O

M
P

A
R

IS
O

N
S

Is
s
u
e

 3
1

0

50

100

150

200

0 1 2 3 4 5 6

Table 1: Results after 5 years

Figure 1: Mean tax income

C16 Restaurant Business Dynamics –
A MatlabDEVS based Approach
Olaf Hagendorf1, Gary Colquhoun1, Thorsten Pawletta2, Sven Pawletta2

1 Liverpool John Moores University
2 Hochschule Wismar, University of Technology, Business and Design
O.Hagendorf@2005.ljmu.ac.uk

Simulator: The MatlabDEVS Toolbox is a DEVS
Simulator realized as an object oriented Matlab Tool-
box. With the usage of Matlab the simulator shares all
advantages and disadvantages of this well known and
widely used SCE, a quite large basis of toolboxes, ea-
sy programming but also performance limitations be-
cause of the interpretive work. The toolbox imple-
ments to the greatest possible extent the Abstract Si-
mulator introduced by Zeigler [Theory of Modelling and Simulation.

Wiley-Interscience, Academic Press, 2000]. It was extended by port
definitions and the capabilities to simulate dynamic
structures after the formalism introduced by Pawletta
et.al. [A DEVS Based Approach for Modeling and Simulation of Hybrid

Variable Structure Systems Lect. Notes in Control & Informat. Sciences No. 279,
pages 107-129, Springer]

Model: The model is implemented as a structure va-

riable coupled DEVS model MODEL. This coupled mo-
del contains the following atomic models:

- two generators gen_people gen_week
o one for the people going out to eat
o another to force the calculation at the end of a

week
- a model switch to choose a restaurant for a per-

son from the list of possibilities
- a varying number of restaurant models (after ini-

tialisation 30, at the end of each week the number
can change)

Figure 1 shows a graphical representation of the mo-
del MODEL after some weeks of simulation. Through
the usage of a Dynamic Structure instead of an ordi-
nary DEVS model the Real World structure is always
mapped in a one to one manner. The simulator needs
ca 2300s to simulate 10 years, with a dependency on
the number of restaurants.

Figure 2 Representation of MODEL

Task a: Time Domain Analysis: The warm up

period is finished after ca 30 weeks. Figure 2 shows
the development of the mean number of restaurants

over a simulation time of 10 years and 50 runs. Table
1 shows the result after 5 years.

0

5

10

15

20

25

30

35

1 22 43 64 85 106 127 148 169 190 211 232 253 274 295 316 337 358 379 400 421 442 463 484 505

Figure 3: Development of mean number of
restaurant in 10 year simulation time

Mean 4.24 Min 3.42

Variance 0.026 Max 4.2

Deviation 0.129

Task b: Tax Income Maximisation: It is possible to
use the built-in Matlab optimisation functionality. In
this case the fminbnd method is suitable. It deter-
mined the best tax rate at 39.23%. Figure 3 shows the
mean tax income in the tax range from 1% to 99%

Task c: Restaurants’ Revenue Analysis: The simu-
lation with a variable parameter k didn’t have an obvi-
ous maximum. The results, shown in table 1 and fig 4,
have two very close maxima with a difference of only
2.2%.

C16 Classification: Dynamic Structure DEVS imple-
mented as a Matlab Toolbox

0 0

0,5 48,8

1 120,8

1,5 82,4

2 181,6

2,5 51,2

3 121,6

3,5 23,2

4 116

4,5 76,8

5 177,6

5,5 116,8

6 118

Table 2: Restaurant re-
venues with variable k

0

200

400

600

800

0 0,1 0,20,3 0,4 0,5 0,6 0,7 0,80,9

Figure 4: Restaurant re-
venues with variable k

	A Framework for Simulation Based Structure and Parameter Optimization of Discrete Event Systems
	Olaf Hagendorf, Thorsten Pawletta

	Introduction
	Simulation based Optimization
	Parameter Optimization
	Combined Parameter and Structure Optimization

	Meta-Modeling – Specification and Organization of Model Sets
	Framework for Modeling, Simulation and Optimization
	General Framework Structure
	Interface: Optimization Module – Model Management Module
	Interface: Model Management Module – Modeling and Simulation Module
	Interface: Modeling and Simulation Module – Optimization Module
	Algorithmic Summary of the Framework

	Application example
	Summary
	References
	TITLE PAGE
	PROCEEDINGS LIST
	DEVS Table of Contents
	ACROBAT HELP
	DEVS-Based Modeling and Simulation in Scientific and Technical Computing Environments
	Keywords:
	ABSTRACT
	1 INTRODUCTION
	2 CHARACTERISTICS OF SCEs
	3 MatlabDSDEVS-HYBRID TOOLBOX
	3.1 Underlying Formal Concept
	3.2 Modeling and Simulation Concept

	4 COMBINATION WITH OTHER COMPUTING METHODS
	5 CONCLUSION
	REFERENCES

