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Abstract 

Kinematic robot calibration is the key requirement for the successful application 

of offline programming to industrial robotics. To compensate for inaccurate robot 

tool positioning, offline generated poses need to be corrected using a calibrated 

kinematic model, leading the robot to the desired poses. Conventional robot 

calibration techniques are heavily reliant upon numerical optimisation methods for 

model parameter estimation. However, the non-linearities of the kinematic equations, 

inappropriate model parameterisations with possible parameter discontinuities or 

redundancies, typically result in badly conditioned parameter identification. Research 

in kinematic robot calibration has therefore mainly focused on finding robot models 

and appropriate accommodated numerical methods to increase the accuracy of these 

models. 

This thesis presents an alternative approach to conventional kinematic robot 

calibration and develops a new inverse static kinematic calibration method based on 

the recent genetic programming paradigm. In this method the process of robot 

calibration is fully automated by applying symbolic model regression to model 

synthesis (structure and parameters) without involving iterative numerical methods 

for parameter identification, thus avoiding their drawbacks such as local 

convergence, numerical instability and parameter discontinuities. The approach 

developed in this work is focused on the evolutionary design and implementation of 

computer programs that model all error effects in particular non-geometric effects 

such as gear transmission errors, which considerably affect the overall positional 

accuracy of a robot. Genetic programming is employed to account for these effects 

and to induce joint correction models used to compensate for positional errors. The 

potential of this portable method is demonstrated in calibration experiments carried 

out on an industrial robot. 



Acknowledgements 

I am not going to thank anybody - because I 
did it all myself. 
 
Milligan, Spike (1918) 
British comic actor and author.  
On receiving the British Comedy Award for  
Lifetime Achievement in 1994 
 
 
 
 

I would like to express my gratitude to my director of studies Dr. Gary. J. 

Colquhoun at Liverpool John Moores University for his guidance, help and support 

throughout the course of study within the last years. His wisdom, experience and 

knowledge, especially of administrative mechanisms, burdens and resources within 

the university proved extremely beneficial for my work. 

My thank also goes to my supervisor Dr. Ian D. Jenkinson who, obviously being 

one of the busiest members of staff at Liverpool John Moores University, has always 

found some time for formal and informal discussions about my research. Amazingly, 

it was often the (lingual) misunderstandings we had during those discussions, which 

sparked new ideas and started me off exploring (and exploiting), quite analogously to 

the genetic programming paradigm used in this thesis, new areas of research. 

Also, I would like to thank the technicians of lab B.4 at JMU who provided tea, 

interesting conversations and most importantly help when I was fighting with the 

robot during my numerous measurement and calibration sessions in the laboratory. 

I gratefully acknowledge the support given by users of the Internet discussion 

groups comp.ai.genetic and comp.robotics.research. 

Finally, I would like to thank for the support given by the School of Engineering 

of Liverpool John Moores University. 

 



Contents 4 
 

Contents 

Abstract 2 

Acknowledgements 3 

Contents 4 

List of Figures 7 

List of Tables 10 

Introduction 12 
1.1 Preamble .......................................................................................................... 12 

1.2 Contribution to knowledge .............................................................................. 13 

1.3 Contents of this thesis ...................................................................................... 14 

Robot calibration 16 
2.1 Context and terminology ................................................................................. 16 

2.1.1 Robot programming.................................................................................. 17 

2.1.2 Offline Programming Systems.................................................................. 19 

2.1.3 The role of robot calibration ..................................................................... 21 

2.2 Kinematic modelling........................................................................................ 23 

2.2.1 Geometric modelling ................................................................................ 25 

2.2.2 Examples of non-geometric models ......................................................... 26 

2.2.3 Alternative modelling techniques ............................................................. 28 

2.2.4 Kinematic modelling in OLP context ....................................................... 28 

2.3 Measurements .................................................................................................. 30 

2.4 Parameter identification................................................................................... 31 

2.4.1 Problems of numerical identification in kinematic robot calibration ....... 33 

2.5 Implementation ................................................................................................ 34 

2.6 Scope of this work ........................................................................................... 34 

 



Contents 5 
 
The principles of evolutionary computation 36 

3.1 Introduction...................................................................................................... 36 

3.1.1 Historical development ............................................................................. 38 

3.2 The evolutionary algorithm ............................................................................. 39 

3.2.1 Fitness evaluation ..................................................................................... 41 

3.2.2 Selecting individuals................................................................................. 42 

3.2.3 Generating offspring ................................................................................. 46 

3.3 Genetic programming ...................................................................................... 48 

3.3.1 Representation of individuals ................................................................... 48 

3.3.2 Tree generation ......................................................................................... 50 

3.3.3 Initialisation of the first population .......................................................... 52 

3.3.4 Crossover and mutation ............................................................................ 52 

3.3.5 Symbolic regression.................................................................................. 54 

3.4 Summary.......................................................................................................... 56 

Static symbolic robot calibration based on genetic 
programming 57 

4.1 Evolutionary calibration concept ..................................................................... 57 

4.2 Pose correction principle ................................................................................. 59 

4.3 Calibration principle: Distal Supervised Learning .......................................... 60 

4.4 The evolutionary calibration system................................................................ 63 

4.4.1 The symbolic co-evolutionary calibration algorithm................................ 64 

4.4.2 Joint selection ........................................................................................... 69 

4.5 Direct learning of joint correction models ....................................................... 72 

4.6 Summary.......................................................................................................... 73 

Implementation of the evolutionary calibration system 75 
5.1 GP implementation issues................................................................................ 75 

5.2 Design and implementation of the main calibration system components ....... 78 

5.2.1 Tree implementation ................................................................................. 79 

5.2.2 Calibration system structures.................................................................... 81 

5.3 Summary.......................................................................................................... 90 

 
 



Contents 6 
 
Results from calibration experiments on a PUMA 761 
manipulator 91 

6.1 Calibration set-up............................................................................................. 91 

6.1.1 Calibration data......................................................................................... 92 

6.1.2 Validation data.......................................................................................... 94 

6.2 Experimental symbolic calibration using Distal Supervised Learning............ 95 

6.2.1 The calibration process ............................................................................. 96 

6.2.2 Calibration results ..................................................................................... 99 

6.3 Experimental direct learning of joint correction models ............................... 101 

6.4 Discussion...................................................................................................... 106 

Conclusion and Outlook 110 
7.1 Suggestions for further work ......................................................................... 111 

Appendix A 115 
A.1 The Robotrak measurement system............................................................. 115 

A.1.1 Local frames ........................................................................................ 118 

A.2 Denavit- Hartenberg parameters .................................................................. 120 

Appendix B 122 
B.1 Publications.................................................................................................. 122 

Appendix C 134 

    C++ Source code 134 

References 177 
 



List of Figures 7 
 

List of Figures 

2-1:  Robot programming methods..............................................................17 

2-2:  The OLP system IGRIP ....................................................................20 

2-3:  Positional calibration principles ..........................................................21 

2-4:  The scope of Robot Calibration in Offline Programming...................22 

2-5:  Task space compensation in OLP based on a calibrated inverse 

kinematic model ..................................................................................29 

2-6:  Task space compensation in OLP using a mapping that includes 

a nominal inverse kinematic model.....................................................29 

3-1:  Generational evolutionary algorithm ..................................................39 

3-2:  Binary tournament selection ...............................................................45 

3-3:  Genetic programming tree example for a mathematical 

expression............................................................................................49 

3-4:  The GROW algorithm.........................................................................51 

3-5:  The FULL algorithm ...........................................................................51 

3-6:  Subtree crossover example..................................................................53 

3-7:  Example of subtree mutation in GP ....................................................54 

4-1:  Calibration model: Joint correction functions are evolved in 

context of nominal inverse and nominal forward kinematic 

models establishing a mapping between nominal and corrected 

3D poses ..............................................................................................58 

4-2:  Illustration of the correction principle.................................................59 

4-3:  Abstract data preparation algorithm....................................................60 

4-4:  Distal supervised learning ...................................................................61 

4-5:  Overview of the evolutionary calibration system ...............................64 

4-6:  Co-evolutionary calibration algorithm................................................65 



List of Figures 8 
 
4-7:  Dependence of joint corrections: The positional error between 

target and tool endpoint was reduced by increasing joint angle 

ò1 . In effect the correction that needs to be applied to joint ò3  

compared to the previous state is now reduced...................................66 

4-8:  Necessity of joint selection: The desired pose cannot be reached 

by altering joint angle ò1 .....................................................................67 

5-1:  Ways of dealing with equal subtrees in genetic programming ...........76 

5-2:  Internal dual representation of a population: to support efficient 

evaluation GP tree nodes are elements in a linear list arranged 

corresponding to the order of their creation (last created node on 

top) ......................................................................................................77 

5-3:  Combined dependency digraph of main C++ classes of the 

evolutionary calibration system ..........................................................79 

6-1:  Robot tool used for experiments .........................................................92 

6-2:  VAL II program used to obtain measurements and joint 

configurations......................................................................................93 

6-3:  Positional error of the robot tool end point in X, Y and Z on the 

calibration data set prior to calibration................................................93 

6-4:  Absolute positional error of robot tool end point on the 

calibration data set prior to calibration................................................94 

6-5:  Positional error of the robot tool end point in X, Y and Z on the 

validation data set prior to calibration.................................................94 

6-6:  Absolute positional error of robot tool end point on the 

validation data set prior to calibration.................................................95 

6-7:  Performance index of the kinematic model during the evolution 

of the joint correction models .............................................................96 

6-8:  Components of the performance index (summed squared error in 

X, Y and Z between target pose and evolved pose over all 30 

data samples) during the evolution of the joint correction models .....97 

6-9:  Joint selection performed by the calibration system during the 

evolution..............................................................................................97 

6-10:  Error correction potential of joint 1-3 based on equation 4.11 

during the evolution of correction models ..........................................98 



List of Figures 9 
 
6-11:  Error correction potential of joint 4-6 based on equation 4.11 

during the evolution of correction models ..........................................98 

6-12:  Comparison of the absolute positional error of the robot tool end 

point on the calibration data set prior and after calibration.................99 

6-13:  Comparison of the absolute positional error of the robot tool end 

point on the validation data set prior and after calibration..................99 

6-14:  Evolved correction models for joint 1-3 plotted across the 

respective joint range along with calibrated joint angles (implicit 

targets) of the calibration set (boxes) and validation set 

(diamonds).........................................................................................101 

6-15:  Summed absolute joint error being the fitness during the 

evolution of each individual correction model..................................102 

6-16:  Comparison of the absolute positional error of the robot tool end 

point on the calibration data set prior and after calibration (direct 

learning) ............................................................................................104 

6-17:  Comparison of the absolute positional error of the robot tool end 

point on the validation data set prior and after calibration (direct 

learning..............................................................................................104 

6-18:  Evolved correction models (Table 6-4) for all six joint plotted 

across the respective joint range along with calibrated joint 

angles (explicit targets) of the calibration set (boxes) and 

validation set (diamonds) ..................................................................105 

A-1:  Robotrak geometry..........................................................................115 

A-2:  Developed data collection application ..............................................117 

A-3:  Laboratory arrangements ..................................................................117 

A-4:  Local frame transformations .............................................................118 

A-5:  Local frame definition.......................................................................119 

A-6:  Denavit-Hartenberg parameters ........................................................120 



List of Tables 10 
 

List of Tables 

2-1: Physical properties to be considered by an accurate kinematic 

model...................................................................................................24 

4-1: Symbolic expressions of the correction models generated during 

a typical run of the symbolic calibration algorithm beginning 

with a performance index of 106.203676 (uncalibrated model 

without joint corrections) ....................................................................68 

5-1: Structure of class Node........................................................................80 

5-2: Structure of class gp_resource ............................................................81 

5-3: Structure of class h_matrix..................................................................82 

5-4: An example of a string matrix: DH matrix for the first link of the 

PUMA 761 ..........................................................................................83 

5-5: Structure of class kinematic_type ........................................................83 

5-6:  Structure of class gp_robot_chromosome ...........................................84 

5-7:  Structure of class gp_system ...............................................................85 

5-8 :  GP parameters used by the calibration system....................................86 

5-9:  Structure of class kinematic_type_with_derivative .............................87 

5-10:  Structure of class calibration_system..................................................88 

5-11:  C++ implementation of the calibration procedure ..............................89 

6-1:  GP parameters used in the calibration experiment using distal 

supervised learning..............................................................................95 

6-2:  Evolved symbolic expressions of joint correction models for 

joint 1-3 established using distal supervised learning.......................100 

6-3:  Calibration results using the correction models (Table 6-2) 

evolved by distal supervised learning ...............................................100 

6-4:  Evolved symbolic expressions of joint correction models for 

joint 1-3 established using direct learning ........................................103 



List of Tables 11 
 
6-5:  Calibration results using the correction models evolved by direct 

learning..............................................................................................103 

A-1: DH parameters of the PUMA 761 manipulator ................................121 



Chapter 1. Introduction 12 
 

 
1.1 Preamble  

Chapter 1 

Introduction 

1.1 Preamble 

In the development of a new technology one often underestimates the complexity 

of the task and the direction, duration and scope of the research effort involved. An 

example in computer science context is the attempt to create artificial intelligence, 

which has been pursued ever since the first electronic computers became available in 

the mid 1940's. After the initial euphoria in recognising the potential of computing, 

the development of computational concepts corresponding to human intelligence 

based on cognition, intuition, experiences, mentality, emotions and feelings proved 

difficult. The high complexity of processes attributed to human intelligence, the 

limited understanding of them, the lack or insufficiency of abstract mathematical 

formalisms to describe them, and limited computational resources permit only highly 

simplified modelling. 

Similarly, whereas the development of computer hard- and software has boomed 

in the last two decades, the predictions made in the 1970’s to have reliably accurate 

programmable industrial robots by the 1990’s however turned out to be too 

optimistic. Again, a reason for failed expectations is the complexity of the problem, 

namely the complex mechanical structure of the robot whose physical properties are 

only insufficiently captured in the controller model to enable the robot to perform 

offline programmed operations accurately. This compromise of using a simplified 

model, in fact only kinematic properties are generally covered, is made due to 
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1.2 Contribution to knowledge  

economic and computational efficiency considerations. On one hand the robot model 

must be kept simple1 in order to enable efficient computation by the controller in the 

presence of real time constraints. On the other hand due to economic constraints in 

manufacturing robots the model parameters in the controller are initialised per 

default with nominal parameter values (A one-size-fits-all strategy). However, these 

nominal parameter values have been determined in the design phase of the robot, and 

only incompletely reflect the real state of the individual mechanical system. In fact, 

due to manufacturing tolerances the mechanical structure of each robot has its 

individual set of parameters (also referred to as its signature), which varies between 

robots of the same model type. Over time wear and tear also cause parameter drift. In 

addition the still limited, noisy information delivered by sensors on the performance 

of the robot within its working environment contributes to the complexity of robot 

control. With the robot controller having imprecise information about the workcell 

and robot hardware it is operating, the result is inaccurate positioning of the robot 

tool, which strongly limits the applicability of offline programming. To overcome 

this problem is the objective of robot calibration, which is essentially concerned with 

the identification of more accurate robot models enhancing the controller software 

and thus increasing the positional accuracy of a manipulator. 

1.2 Contribution to knowledge 

This thesis contributes a novel portable static kinematic calibration technique for 

industrial robots, which is based on the recently developed genetic programming 

(GP) paradigm. The contribution and the advantages of this approach compared to 

conventional traditional calibration methods are summarised as follows: 

 

� The design and synthesis process of the joint correction models is fully 

automated. The genetic programming algorithm establishes structure and 

parameter values of joint correction models based on measured data. 

� Calibration is carried out by symbolic rather that numeric regression. The final 

solution is a symbolic mathematical representation of the correction models. 

                                                 
1  time-invariant parameters only; ignoring dynamical effects and noise 
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Thus, unlike with other numerical approaches utilising artificial neural networks 

for example, not only is the required error compensation obtained but also a 

symbolic description of the complex joint related effects, which enables further 

mathematical analysis. 

� Genetic programming, as it is used in this work, does not require numerical 

parameter identification e.g. gradient search, which would be bound to fail since 

the evolved equations are highly non-linear and discontinuous in their 

parameters. 

� Due to the nature of genetic programming as being a stochastic search technique 

the proposed method has the potential to establish a globally optimal calibration 

model. 

� The new calibration method has been experimentally examined in laboratory 

trials on a Unimation PUMA robot. The results of these successful experiments 

show the potential of this new method. 

1.3 Contents of this thesis 

After a general introduction to robot calibration and its terminology in Chapter 2 

conventional kinematic robot modelling and calibration methods are reviewed and 

their limitations, which motivated this research, are outlined. Concluding the chapter, 

the scope of this work is defined and the ideas underlying the developed calibration 

method are presented. Chapter 3 describes evolutionary computation principles 

implemented by the developed calibration method. In particular genetic 

programming is introduced as an effective technique for automatically generating 

computer programs that solve a variety of tasks. Chapter 4 brings genetic 

programming into robot calibration context as being the fundament of a new static 

kinematic calibration method, in which it is applied to evolve joint correction models 

as components of the overall kinematic model of an industrial robot to improve its 

static positional accuracy. This new evolutionary calibration technique is developed 

in this chapter and the mathematical underpinnings and algorithms are described in 

detail. Also the principle design of the calibration system implementing the 

developed calibration algorithms is outlined. The implementation of this calibration 

system design in software is described in Chapter 5. The potential of this new 
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calibration method is demonstrated in Chapter 6, which includes experimental results 

from the calibration trials on a laboratory PUMA 761 robot. Chapter 6 also contains 

a critical discussion of the research. The thesis concludes in Chapter 7 with an 

outlook and suggestions for further work. 
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2.1 Context and terminology  

Chapter 2 

Robot calibration 

This chapter reviews robot calibration and its requirement in context of offline 

programming. Firstly, a general introduction to the calibration terminology is 

provided followed by a description of the general phases involved in the calibration 

process. Kinematic modelling as the basis of robot calibration is then reviewed and 

the limitations of current calibration approaches are outlined. Concluding the chapter 

the scope of this research is defined. 

2.1 Context and terminology 

An industrial robot (IR) is defined by the Robotics Industries Association (RIA) to 

be "a re-programmable, multifunctional manipulator designed to move material, 

parts, tools, or specialised devices through various programmed motions for the 

performance of a variety of tasks". The mechanical structure of an industrial robot, 

also referred to as the manipulator, is made up of a sequence of rigid links that are 

interconnected by prismatic or revolute joints enabling relative motion (driven by 

actuators) of neighbouring links. This composite sequence forms an open kinematic 

chain for most manipulator types (including the Unimation PUMA 761 used for 

experiments reported in this work). If the ends of this chain interconnect, the 

manipulator is said to form a closed kinematic loop. 

Important quality and performance characteristics of an industrial robot are its 

repeatability and accuracy. Repeatability in this context is defined as the precision 
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with which the manipulator is capable to return to a reference point in the 

workspace2. Accuracy is the measure of deviation in terms of position and 

orientation of the robot tool (also termed end- effector) between programmed path 

and actual achieved path. While nowadays robots have a very high repeatability their 

positional accuracy is relatively poor. In fact, the accuracy is up to 10 times of the 

typical repeatability of industrial robots, which is about ±(0.1 – 1.0) mm [12][82]. 

Both accuracy and repeatability are affected by the control resolution, which is the 

smallest programmable motion of the manipulator. 

2.1.1 Robot programming 

The methods, an industrial robot can be “instructed” or programmed to perform 

tasks, can be classified into (i) teaching methods and (ii) high level programming.  

 

 

 

 

 

 

 

 

Figure 2-1: Robot programming methods 

(i) Teaching methods are procedures that require the manipulator to be moved 

manually to all desired locations in the workspace by an operator. The simplest 

method is the manual method, which is more considered a set-up procedure (the 

adjustment of mechanical stops, cams and switches) and addresses low technology 

robots (pick and place units). The walkthrough or manual leadthrough method is a 

continuous-path programming technique in which the robot arm is manually moved 

along the desired path and the resulting trajectory recorded simultaneously. This 

approach however requires a significant amount of data memory and often utilises 

                                                 
2 The term workspace or working envelope refers to the area that is accessible by the manipulator. 
 

Teaching Methods 
 
• Manual 
• Walkthrough 
• Leadthrough 

High level Programming 

Robot Task 
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disk storage. The leadthrough method, also sometimes called powered leadthrough, 

is the most common teaching technique in which the operator takes the robot arm to 

the target locations typically using a handheld teach-pendant. The locations are 

stored in the controller memory as they are taught. After completing the teaching 

procedure, the manipulator can playback the paths along those recorded locations 

very precisely benefiting from its high repeatability. 

(ii) A more advanced and portable method is to program the tasks to be performed 

in a high level programming language such as VAL II [72]. The support of general 

concepts of structured programming3, built-in geometric entities such as frames and 

locations points combined with specific robot motion commands makes these 

programming languages efficient tools for developing complex robot tasks e.g. by 

aggregating primitive robot instructions to high-level commands. However, the 

support of those concepts requires a higher degree of sophistication from the robot 

controller then teaching methods. Firstly, the controller needs to deal with the 

overhead of interpreting and executing programs. Secondly, robot end-effector 

positions in the program may be specified in geometric terms relatively to the base 

frame of the robot for example. This requires the controller to implement an inverse 

kinematic model of the manipulator to convert these 3D poses into joint 

configurations, which in turn implies accurate knowledge about the parameters of the 

mechanical structure of the robot. 

The fundamental difference between teaching methods and high level 

programming is that with teaching methods the controller is provided with the 

physical goal and the information how to reach this goal. This information is stored 

(or recorded) in terms of current status of the control system (i.e. the joint 

configuration) of this particular robot. During the execution of the program these 

previous states can be restored very precisely leading to a high repeatability. In high 

level programming the controller is provided with a “soft goal” (rather than a 

physical goal) specified by the programmer as a position in e.g. Cartesian co-

ordinates. Since no further information is provided as to how to reach this position, 

an inverse kinematic model of the manipulator is needed to convert this position into 

                                                 
3 Sequencing, selection and iteration. 
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a corresponding joint configuration. Inaccuracies in this model result in poor 

absolute positional accuracy of the manipulator. 

2.1.2 Offline Programming Systems 

Flexible and effective robot programming has become an important issue in 

industry. In the past industrial robots were mainly programmed manually by being 

taught individual tasks on-line as described in section 2.1.1. However, the increasing 

complexity of tasks such as riveting or spot welding in car or aerospace industries 

makes such a teaching procedure extremely time and therefore cost intensive. The 

conceptually better approach is to minimise human intervention in operating robots 

by using Offline-Programming Systems (OLP), which enable the design, generation 

and validation of robot programs without utilising the physical robot. OLP systems 

use models of the robot and workcell to create a virtual shop-floor environment in 

which robot tasks can be simulated. The advantages and benefits of OLP systems are 

summarised as follows: 

 

• Easy design of complex tasks (using imported CAD data) 

• Reduction of programming time and production plant downtimes (robot hardware 

is not involved in the programming process, thus production and programming 

new tasks can run simultaneously) 

• Increased production flexibility 

• Failsafe debugging, optimisation and validation of tasks (collision and 

reachability checks in simulation, no risk of hardware damage) 

• Simplification of process optimisation 

• Fast validation of tasks (simulation can be run considerably faster than the robot 

hardware) 

• No risk to human health (programming in a comfortable environment, presence 

of programmer in physical workcell is not required) 

 

Quite a few commercial OLP systems are now available with an increasing 

number of PC based solutions such as Workspace [82], DELMIA/IGRIP [19] 
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(used by e.g. Boeing) and more recent products such as FAMOS[30], RobotStudio 

[1] by ABB and Ropsim [15] by CAMELOT. 

 

The following components are typical for all OLP systems: 

 

• Integrated CAD system: constructive solid geometry, library of standard 3D 

primitives, CAD data import facilities (e.g. DXF, IGES)  

• Modelling and simulation module: interactive kinematic modeller, modelling of 

robot dynamics, discrete event simulation 

• Visualisation module: graphical representation of results, solid 3D rendering, 

animations of robot and/or production plant in real-time 

• Library of standard robots models: models describe individual kinematic and 

dynamic characteristics and contain path planning algorithms 

• Robot calibration module: set of methods for numerical optimisation 

• Interpreter and code generator for advanced robot programming languages 

 

 

Figure 2-2: The OLP system IGRIP 

Limitations in the application of OLP systems to robot programming are still 

imposed by the poor positional accuracy of industrial robots and by the lack of exact 

modelling of those inaccuracies. The deviations between idealised simulation in a 
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virtual environment and the real system cause the OLP system to generate robot 

poses with large positional errors. Also path-planning algorithms used within OLP 

systems are often different to or simplified versions of those used by the robot 

manufacturer, which results in unreliable information about cycle time and possible 

collisions. 

2.1.3 The role of robot calibration 

In order to avoid positional errors of the robot tool positional calibration needs to 

be applied, which can in general be categorised into hardware and software oriented 

methods (Figure 2-3). More accurate positioning of the robot tool can be obtained by 

appropriately modifying the mechanical structure of the robot for example by 

replacing worn-out components by new more accurately manufactured components. 

Figure 2-3: Positional calibration principles 

The software-oriented methods address positional accuracy on robot controller or 

robot application level. Principally, it is possible to adjust robot accuracy by 

modifying appropriate parameters of the controller software. However, since robot 

manufacturers usually do not document the algorithms and data structures used by 

the controller (the ‘black box’ policy), this method is, apart from being not portable, 

fairly limited. However, a generally supported software method falling into this 

category is known as re-mastering. Re-mastering is a method where a joint is moved 

to a defined position (usually the zero position designated e.g. by a mark on the 

neighboured link). The controller software is then updated with this new reference 

position by issuing the appropriate command to the controller. 

Positional calibration 

Software methods Mechanical adjustment 

Re-mastering Robot Calibration 
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Robot calibration as the second software-oriented method to adjust robot accuracy 

applies position compensation on robot application level based on a calibrated model 

(Figure 2-4). Robot poses (only the 3 positional components) defined in programs, 

which may have been generated by OLP systems are modified by subtracting the 

expected positional error estimated by an accurate calibrated model (see section 4.2 

and Figure 4-2). In this way false target poses are produced with the objective to 

compensate for the positional error. The deviation of the manipulator at these altered 

poses eventually leads the robot to the desired positions. This process is also known 

as task space compensation since the positions and the applied corrections are 

defined in task space (as opposed to joint space). 

Figure 2-4: The scope of robot calibration in offline programming 

Robot calibration is a term associated with a set of software methods aiming at the 

identification of accurate robot models used with the objective to increase the 

positional accuracy of the robot [67]. There is a distinction between static and 

dynamic calibration methods [12]. Static calibration aims at the identification of 

accurate models covering all physical properties and effects that influence the static 

(time invariant) positional accuracy of the manipulator. Dynamic calibration builds 

upon the results of static calibration and addresses the identification of models 

describing motion characteristics of the manipulator (forces, actuator torques) and 

dynamic effects that occur on a manipulator such as friction and link stiffness etc. In 

order to enable dynamic calibration, measurements of motion and forces of the 

manipulator are required. However, the difficulties in accurate tracking of these 

properties throughout the robot workspace and the complex problem of simultaneous 
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identification of e.g. mass4 and friction parameters still limit the applicability of 

dynamic calibration. 

 

This work is concerned with static kinematic robot calibration, which is typically 

carried out using the 4 following steps: 

 

1. Derivation of a suitable kinematic model usually based on prior engineering 

knowledge (providing a model structure and nominal parameter values). 

2. Measuring end-effector location of the manipulator in several positions. 

3. Identification of the model parameters (numerical fitting usually based on 

least squares methods) based on the measurements. 

4. Implementation of the identified model. 

2.2 Kinematic modelling 

Static robot calibration typically uses parametric models of the manipulator 

kinematics to find the true relationship between joint configurations and poses of the 

robot end-effector. Most work in this area has reported on forward calibration 

methods [23][37][43][47] where calibration is applied to the forward kinematic 

model: 

 y = f(ò, þ) 
 
which computes the end-effector pose y (position and orientation) from the joint 

configuration ò  using the equations in f depending on parameter vector þ  to be 

calibrated. The inverse kinematic calibration procedure attempts to identify the 

parameter vector þ  using the inverted kinematic model ò = fà1(y, þ). Inverse 

calibration is in general more difficult because it typically requires the model f to be 

analytically invertible, which may not be the case with very complex models and in 

particular with models of highly redundant5 manipulators. 

Important issues for the development of accurate parametric kinematic robot 

models for robot calibration are proportionality and completeness [27]. A kinematic 

                                                 
4 Mass parameters of a link can however be statically identified using joint torque sensors [54]. 
5 Redundant manipulators can reach a certain pose using different joint configurations. 
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model is defined as proportional6 if small changes of the physical properties can be 

represented by small changes of related model parameters. A kinematic model is said 

to be complete if all kinematic properties of the manipulator are represented by 

corresponding independent model parameters. In this case all possible kinematic 

configurations of the manipulator can be sufficiently described. With incomplete 

kinematic models the number of model parameters is usually smaller than the 

number of kinematic properties of the manipulator. The contained parameters then 

account for modelled properties as well as unmodelled effects. Hence there is no 

proper relationship between physical and model parameters. An identification 

algorithm might be able to find optimal parameter values. However, these values are 

optimised for this particular incomplete model and may not reflect the physical 

properties of the robot. In order for a kinematic model to be complete it is required to 

sufficiently describe geometric properties as well as non-geometric effects of the 

manipulator (see Table 2-1). 

 

Geometric Parameters Non-geometric effects 

 
• link length 
• link twist- joint axis 

orientation 
• joint encoder offsets  

Joint related: 

• Gear transmission errors 
(e.g. tooth errors) 

• Joint compliance 
• Joint eccentricities, bearing 

wobble 
• Gear Backlash 
• Joint cross coupling 
 
Link related: 

• static deflection 
• thermal expansion 
 
Encoder related: 

• Non-linear transfer function 
• Coupling 
• Hysteresis 

Table 2-1: Physical properties to be considered by an accurate kinematic model 

                                                 
6 Proportionality is sometimes termed “model continuity” due to its similarity to the mathematical 
concept of continuity [12][37]. 
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Geometric parameters are usually assumed to be time-invariant, which is 

convenient for setting up a compensation strategy to improve positional accuracy. 

Errors in geometric parameters have been reported to have the largest contribution to 

positional error. For example in experiments with Automatix AID-900 Robots almost 

90% of the RMS (Root Mean Square) error was caused by joint angle offsets [47]. 

On a TH8-ACMA six-axis robot the calibration of geometric parameters resulted in 

accuracy improvements from 3 mm to 0.69 mm. Model refinements accounting for 

non-geometric effects achieved further accuracy improvements to 0.58 mm [14]. 

Non-geometric effects [76] such as gear backlash and tumbling are difficult to model 

since they vary with manipulator pose and payload. However, their contribution to 

the positional error of the manipulator cannot be neglected if high positional 

accuracy of the manipulator is required. 

2.2.1 Geometric modelling 

The most popular method of modelling robot kinematics is serially composing 

link models that are based on the Denavit-Hartenberg (DH) parameterisation [34]. 

These link models use only four geometric parameters per link to describe the 

relative displacement between co-ordinate frames of neighboured links. Hence 

kinematic models based on DH parameters are very compact and have therefore been 

commonly implemented in controller software7. However, for calibration purposes 

pure DH models do not fulfil the requirements of completeness and proportionality 

[84]. Four parameters are not sufficient to describe any arbitrary displacement of two 

consecutive link frames. Since the DH parameterisation relies on the existence on a 

common normal of neighboured joint axes, it is not well defined in configurations 

where neighboured joint axes are at or near to parallel8. Hence the identification is 

ill-conditioned and will either fail or result in meaningless parameter values. 

Addressing this issue Hayati [41] proposed a modification to the DH model by 

                                                 
7 Denavit-Hartenberg parameters (see also Appendix section A.2) are commonly used by robot 
manufactures to document the geometric properties of their robots (see for example the equipment 
manual of the PUMA 761 [75]). 
8 Near to parallel neighboured joint axes certain model parameters are very sensitive to small physical 
changes (non-proportionality), whereas the model continuity constraint is violated with the transition 
from the near-to-parallel to parallel case. 
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introducing an alternative parameterisation, which is however not well defined for 

nearly perpendicular joint axes. Hollerbach [43] has therefore suggested applying a 

complementary mix of DH and Hayati parameterisation by using Hayati parameters 

whenever the corresponding DH parameters are not well defined and vice versa. 

Other researchers have proposed geometric extensions to the conventional DH 

model. Stone [73] developed the S-model by adding 2 parameters to the DH model, 

which results in a complete, but not proportional parameterisation [84]. As with 

Hayati parameters the S-model parameters can be converted back into DH 

parameters. 

An incomplete model can be made complete by appropriately adding a certain 

number of parameters. This however impairs the computational performance of the 

model and may affect the identifiability of the model parameters. A complete and 

proportional (because singularity free) parameterisation is the CPC (Complete and 

Parametrically Continuous) model [84], which is based on the DH model extended 

by 2 parameters. Other complete models are the zero-reference model [59] and the 

Sheth- Uicker model [29][37] in which redundant parameters have to be removed 

prior to calibration (or held constant during calibration), which however is not 

always considered to be a straightforward task [76]. 

2.2.2 Examples of non-geometric models 

Non-geometric effects are usually modelled by adding terms or more complex 

components to the overall geometric model of the manipulator. Since non-geometric 

effects are primarily due to joint related characteristics [76] the most common model 

adopted (see [37][43]) is a simple linear joint correction model: 

Θ = kò+ í 

where the effective joint angle Θ  is computed from the joint angle sensor reading ò 

depending on the joint angle zero offset í and joint transmission gain k. This model 

is applied to each joint adding 2 more parameters per joint to be calibrated to the 

overall model. In other research [81] different joint models are applied to selected 

joints (1-3): 
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Θ1 = ò1 +P1 cos(ò1)

Θ2 = ò2 +P2 cos(ò2) +P3 sin(ò2) +P4 cos(ò2 + òã3)
Θ3 = òã3 +P5 sin(ò

ã
3) +P6 cos(ò

ã
3) +P7 cos(ò

ã
3 + ò2) +P8 sin(load)

 

 
with Θi being the effective ith joint angle, òi  the ith joint angle sensor reading, Pi the 

ith parameter to be determined and òã3 = ò3 à ù/2. 

A different non-parametric approach has been proposed by Everett [29] where 

each geometric model parameter is enhanced with a Fourier Series (FS) in order to 

model (or approximate) the influence of particularly periodically occurring non-

geometric effects upon these model parameters. Adopted by Vincze [77] a Fourier 

series was used to describe effects such as tumbling upon all geometric parameters: 

 a(q) = ano +∆a+
P
j=

nsc

(ajs sin(j á q) + ajc cos(j á q))  

with ano  being the nominal parameter value, ∆a the geometric error, q the joint 

variable and ajs, ajc the Fourier coefficients to be determined. It was found in these 

experiments that second and third order FS were capable of reducing tumbling errors 

down to axis repeatability level, which is the theoretical calibration limit [12]. 

Other non-geometric models include backlash (for example òb = pbsign(M)  [76] 

with òb being the joint backlash, pb a backlash parameter and M  the momentum at 

the joint) or errors of transmission ratio (e.g. polynomials or Fourier series). A 

comprehensive list of non-geometric errors and their models can be found in Vincze 

et.al. 

Vincze [79] also introduced a deterministic method of automatically generating 

robot models (based on his SYNE-axis description: SYstematic Non-redundant and 

Extendible). This method composes the calibration model from a given geometric 

description of the manipulator and given non-geometric models to be used. To 

achieve non-redundancy of the composed model and to improve its accuracy, 

deterministic rules are applied to eliminate redundant parameters. If the accuracy 

after parameter identification is not sufficient the modelling procedure may be 

repeated using a different set of non-geometric models. 
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2.2.3 Alternative modelling techniques 

Due to the complexity of the positional error of industrial robots it is common 

practice to approximate the error rather than modelling it explicitly by developing 

parametric models. Functional approximation theory is a well established 

mathematical discipline, which provides a variety of approximation models and 

methods based on uni- and multivariate polynomials, splines, Bezier curves, 

wavelets, Fourier series, artificial neural networks9 etc. An approximation model is 

chosen according to the characteristics of the data to be approximated in a certain 

interval, and finally fitted (or trained) to this data. However, approximation models 

are inherently non-parametric, i.e. there is no semantic relationship between model 

parameters10 and physical properties of the data to be approximated. Hence these 

models are only valid within the interval they have been trained in and are weak or 

not capable of extrapolating or generalising beyond these interval boundaries. 

However, for most practical applications they are generally assumed to be adequate. 

Applications of approximation models utilising Fourier series, polynomial functions 

and artificial neural networks have been outlined in sections 2.2.2 and 2.2.4. 

2.2.4 Kinematic modelling in OLP context 

When designing tasks for a particular robot using OLP systems, information from 

a calibrated kinematic model of the manipulator is used to correct designed (or 

nominal) poses with the expected positional error so as to compensate for the 

effective positional error. This correcting pose-to-pose mapping (see also Figure 2-4) 

can be provided by a sequence of calibrated inverse and nominal forward kinematic 

model as illustrated in Figure 2-5. 

 

 

 

                                                 
9 However, Jordan and Rummelhart pointed out [46] that a Backpropagation algorithm cannot learn 
the inverse kinematics of redundant manipulators because it does not represent a functional 
relationship (one to many mapping). While forward modelling of those manipulators is 
straightforward by learning the relation (input: joint configuration vector; output: Cartesian vector) the 
inverse relation cannot be learned just by swapping output/input vector. 
10 Sometimes referred to as coefficients or weights. 
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Figure 2-5: Task space compensation in OLP based on a calibrated inverse 
kinematic model 

Designed poses in task space are first transformed by the calibrated inverse model 

into calibrated joint configurations, which are then transformed back into task space. 

Alternatively, the calibrated joint angle poses could be fed directly into the robot 

controller saving two transformations11. The inverse calibrated model can be 

obtained either by calibrating the nominal inverse model or by inverting the 

calibrated forward model. Both methods require the forward kinematic model to be 

invertible, which is usually possible for the plain geometric DH model of most 

manipulators. If so the second method should be preferred since the model inversion 

introduces equations with even a higher degree of non-linearity (discontinuities) than 

the forward equations, which would impair the subsequent parameter identification. 

On the other hand a forward kinematic model that contains complex non-geometric 

components can usually not be inverted analytically. 

Figure 2-6: Task space compensation in OLP using a mapping that includes a 
nominal inverse kinematic model 

To circumvent the problem of finding an accurate inverse model for the task space 

compensation model shown in Figure 2-5 a common approach is to use the nominal 

inverse to convert nominal poses into nominal joint configurations. The relationship 

                                                 
11 Nominal forward transformation (Figure 2-5) of calibrated joint configurations by the calibration 
software, and nominal inverse transformation within the controller (see Figure 2-4) 
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between nominal joint configurations and corrected end-effector poses (i.e. the 

forward model) is then made subject to calibration as illustrated by Figure 2-6. 

An inverse calibration solution fitting in this category was presented by Shamma 

[70]. This method improves the accuracy of the inverse mapping by modelling the 

error of the nominal inverse model rather than calibrating the inverse model. The 

error between nominal and calibrated joint configuration for different joints is 

approximated by polynomial functions, which however have no physical 

significance. These predefined functions together with the nominal forward model 

constitute the calibration model shown in Figure 2-6: 

 
 fCal(ò) := f(h(ò, ø), þN)  
 
with h  being the vector of polynomial functions depending on parameters ø  to be 

calibrated, þN  being the vector of nominal kinematic parameters and ò being the 

vector of nominal joint angles. A similar technique for inverse calibration is 

described by Zhong [85], in whose work a feed-forward artificial neural network 

(ANN) is used to compute the corrections for a given joint configuration. The 

calibration model in Figure 2-6 can for  this method be formulated as 

 
 fCal(ò) := f(ò+ FANN(ò), þN)  

 
with FANN being the artificial neural network to be calibrated (or trained). 

A solution based on forward calibration [45] uses ANN’s based on Radial Basis 

Functions (RBF) to map nominal joint configurations to corrections of the end-

effector pose. The calibration model in Figure 2-6 is then described by: 

 
 fCal(ò) := f(ò, þN) + FRBF(ò)  
 
which uses the nominal kinematic forward model and adds the corrections delivered 

by the RBF networks to establish a corrected pose for a given nominal joint 

configuration. In this model the RBF networks are subject to calibration. 

2.3 Measurements 

The second step in robot calibration typically involves the collection of data. To 

perform open-loop calibration (for closed-loop calibration, see e.g. [43]) on a 
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kinematic manipulator model a sufficiently large set of data pairs (consisting of end-

effector pose and corresponding joint configuration) needs to be sampled using an 

external measurement device. Different measurement systems are available varying 

in measurement method (contact and non-contact), the number of captured DOF’s12, 

accuracy and costs [43]. Typical measurement devices for robot calibration are wire 

potentiometers, telescopic ball system measured by a radial distance linear transducer 

(LVDT) [37], interferometer, ultrasonic systems [11], proximity sensors, imaging 

laser tracking systems [78], single and stereo camera systems, magnetic trackers, 

(stereo) theodolites and cable driven systems [82] etc. 

In order to ensure a good performance of the parameter identification procedure a 

sufficiently large set of data samples needs to be recorded where the poses have to be 

selected throughout the workspace in a way that guarantees the best observability13 

of all parameters to be calibrated [43]. To identify the influence of a parameter on all 

DOF’s it would in general be beneficial to involve full pose measurements. In 

practice, however, appropriate measurement devices are fairly expensive, relatively 

slow, and difficult to set up. Alternatively, calibration can be performed using only 

position measurements, since all kinematic parameters of a manipulator may be 

identified based on position measurements if the measured points are not located 

along the tool axis [25]. 

In the experiments reported in this thesis the Robotrak measurement device [82] 

(position measurements only, see also Appendix section A.1) was used because it is 

robust, easy to set up and to use, particularly when a large set of measurement data 

samples needs to be recorded. 

2.4 Parameter identification 

Having established the structure of the kinematic model and a set of measurement 

data, the third step in robot calibration is the numeric identification of the model 

parameters. Generally used in practice are indirect methods based on gradient search, 

                                                 
12 From single to 6 Degrees Of Freedom (6 DOF = full pose consisting of 3 position and 3 orientation 
components). 
13 Parameters must be sufficiently excited by the sampled poses to guarantee a successful 
identification. 
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which will be outlined in this section. The notation for the forward kinematic model 

f has been adopted from section 2.2: 

 y = f(ò, þ) 

where y = [p,ϕ]T is the end-effector pose (consisting of position vector p  and the 

vector ϕ  of orientation values14) computed from the joint configuration ò and 

þ = [þ1. . .þj]T  being the vector of all j model parameters (geometric (e.g. DH) and 

non-geometric). Identification of þ  can then be performed by minimising the 

performance index: 
P
i=1

n
ei

Tei        with ei = yià f(òi, þ)  

subject to þ  where (yi, òi) is the ith sample of n measurements. Due to the non-

linearity of f in the orientation parameters and possibly in non-geometric parameters 

the optimal values in þ  have to be found iteratively by applying a method such as 

non-linear least squares optimisation (see e.g. [2]). Mostly indirect gradient-based 

methods are applied (see [43]) for which the model equations have to be locally 

linearised using a first order Taylor expansion around the current parameter estimate 

þk: 
 f(òi, þk +∆þ) ù f(òi, þk) +C(òi, þk)∆þ  

where C(òi, þk) = ∂þ
∂f
ììì
ò=ò i;þ=þk

is the parameter Jacobian (or gradient) of f evaluated 

at the current joint configuration òi using the parameter estimate þk. Substituting this 

approximation into the performance index equation yields: 

 
P
i=1

n
ei

Tei    with ei = yià f(òi, þk) àC(òi, þk)∆þ = ∆yi àCi∆þ  

 
which has now turned into a linear least squares problem: 

 (∆y àC∆þ)T(∆y àC∆þ)  with C =
C1...
Cn

   and ∆y =
∆y1...
∆yn

    

subject to the parameter update ∆þ . The solution is the Gauss- Newton update 

∆þ = (CTC)à1CT∆y, which is computed in each iteration to refine the parameter 

values by applying þk+1 = þk +∆þk beginning with an initial estimate for þ . The 

iteration is stopped if the updates become very small. However, the Gauss- Newton 

                                                 
14 For full pose measurements f contains 6 calibration equations (3 position (x, y, z)and 3 orientation 
components e.g. Euler angles [34][44]). In case only positional measurements were taken f contains 
the 3 positional equations, which however also depend on the orientation parameters. 
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solution requires the matrix CTC  to be inverted, which might not always be 

possible. Instead typically the Levenberg-Marquardt update 

∆þ = (õI +CTC)à1CT∆y is applied with I being the identity matrix and õ  being 

a scalar control parameter. õ  is chosen and modified during the iterations in a 

compromise between invertibility of the matrix õI + (CTC)  and convergence speed. 

While a sufficiently large value for õ  enables the matrix inversion it also gives the 

algorithm the slow convergence characteristic of the steepest descent algorithm. A 

low value on the other hand will increase the efficiency of the parameter updates 

towards Gauss- Newton updates. Initially, the value of õ  is usually chosen to be 

large enough to enable the matrix inversion and then steadily reduced while 

monitoring the invertibility of the matrix. 

2.4.1 Problems of numerical identification in kinematic robot 
calibration 

The application of indirect methods such as non-linear least squares optimisation 

to kinematic parameter identification in general raises a number of issues, which 

have to be considered to obtain high model accuracy. The non-linearity of the 

kinematic model equations enforces an iterative parameter search based on local 

model linearisation. Since the equations of ordinary kinematic robot models are only 

“mildly non-linear” [68] gradient search can usually be effectively applied. Gradient 

search algorithms however require the model to be continuous in its parameters. As 

discussed in section 2.2.1 this is not always the case for the DH and Hayati model 

and therefore requires the application of special methods such as Levenberg-

Marquardt or Singular Value Decomposition (SVD) (see [2]). 

The utilisation of complex non-geometric models in kinematic models raises 

particular problems for the simultaneous parameter identification based on gradient 

search. For example the continuity of an overall kinematic model is impaired by the 

introduction of discontinuous non-geometric models. Since the gradient cannot be 

computed at parameter discontinuities, the search aborts. 

For global convergence of the gradient search it is important to provide initial 

estimates of the parameter values close to the optimum. For complex non-geometric 

models these estimates however may be difficult to obtain. Global convergence is 
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also at risk if the gradient is inaccurately approximated by, for example, finite 

differences, which is a common technique in practice particularly if the model is 

complex. To ensure proper convergence of the non-linear least-squares optimisation 

it is also important to apply scaling to task variables and parameters [43]. Since 

position and orientation errors are combined in ordinary least squares, task variable 

scaling may be necessary to weight these errors differently to account for different 

accuracy of measurements. Scaling to parameters has to be applied when they cannot 

be directly combined in least-squares search [22]. Scaling may also improve the 

conditioning of the identification. 

Another serious problem for gradient search is parameter redundancy. In such a 

case there are more parameters in the model than necessary for model completeness, 

hence the model is not minimal (redundant parameters do not increase the accuracy 

of a model [28]). Parameter redundancy results in linear dependence of columns of 

the Jacobian and therefore in ill-defined identification. Detecting and removing 

redundant parameter is important, but not trivial particularly in the case of strong 

parameter interaction [37]. 

2.5 Implementation 

The last step in robot calibration typically involves all procedures and 

mechanisms necessary to transfer the calibration results into practice. In offline 

programming this includes the implementation of a postprocessor that uses 

information from the calibrated model to perform corrections on positional data in 

program files which have been generated by OLP systems. Fortunately, basic 

numerical calibration methods and postprocessors have become built-in components 

in most of the recent OLP systems. Thus the user is not required to perform this task 

explicitly. 

2.6 Scope of this work 

Robot calibration methods have so far been considered a set of parameter 

estimation methods relying heavily on numerical analysis. Conventionally, robot 

models are developed by humans based on prior engineering knowledge and 
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according to certain accuracy requirements and specific constraints (e.g. 

proportionality), which are related to stability issues of subsequent numerical 

parameter identification. 

This research describes an approach to move away from conventional robot 

calibration methods based on numerical non-linear parameter estimation methods 

with their drawbacks such as possible ill-conditioning and local convergence. It 

introduces symbolic model regression techniques to robot calibration and contributes 

a novel inverse static kinematic calibration method that merges established kinematic 

modelling techniques with the recent genetic programming paradigm. It is the aim of 

this research to show the potential genetic programming has to solve the kinematic 

calibration problem. 

Genetic programming is a problem domain independent stochastic method of 

automatic programming, which has performed extremely successfully in numerous 

applications in various areas of computer science, physics and engineering [49]. The 

application to robot calibration reported in this thesis however is new. 

In this work genetic programming is employed to generate joint correction models 

as parts of an inverse calibration model. Contrary to conventional calibration 

methods this process of designing and validating a correction model is fully 

automated and does not require human knowledge as to how to build these models. 

Only information about primitive model components needs to be provided. 

The model generation is performed by symbolic regression. Since there is no 

iterative numerical parameter identification involved, corresponding stability and 

conditioning issues are of no concern. 
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Chapter 3 

The principles of evolutionary 
computation 

This chapter reviews evolutionary computation and in particular genetic 

programming emphasising its application to symbolic regression, which is the basis 

of the kinematic calibration method developed in this research. Firstly, the chapter 

introduces the general terminology and principles of computational genetic search 

and outlines the scope of applications. Finally, the concept of genetic programming 

is presented as a versatile variant of classical evolutionary algorithms, capable of 

solving a variety of tasks. 

3.1 Introduction 

Evolutionary Computation (EC) is a broad term describing a set of problem 

domain independent computational algorithms. These algorithms attempt to find 

solutions to problems by implementing a search process, which uses artificial 

mechanisms analogous to natural evolution. Due to this similarity a whole range of 

the terminology from biology and evolutionary theory has been adopted to describe 

the principles of evolutionary computation. 

The heart of the EC concept is the Evolutionary Algorithm (EA). Rather than 

being confined to improving a single solution an EA takes advantage of operating on 

a set or population of different candidate solutions (also termed individuals). An 
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individual consists of a set of primitive components (the genes), which constitutes 

the genome (or chromosome as the carrier of genes) as a kind of construction plan 

used to build the solution. The data structure of an individual solution that undergoes 

modification by the EA is referred to as the genotype. The representation of a 

solution during evaluation in the particular problem domain is known as the 

phenotype. 

During the evaluation of a population each individual (solution) is assigned a 

fitness value, representing a direct measure of its performance. By applying 

evolutionary operators such as selection, recombination, mutation and reproduction 

to the individuals based on their fitness, the EA attempts to produce populations of 

better performing (or fitter) solutions. The process of producing new individuals 

(also called children or offspring) is termed breeding, which involves selected parent 

individuals from the population. The EA is said to have completed a generation, 

when the old population has been replaced by a population of offspring (traditional 

EA), or a number of children equal to the population size has replaced individuals in 

the population (the steady state EA concept – see section 3.2). Over several 

generations the evolutionary algorithm stochastically infers improved individual 

solutions converging towards the optimal solution. A population is said to have 

converged if all its individuals have converged. The convergence characteristic 

(convergence speed) of a population largely depends on the evolutionary operators 

applied to the individuals. The solution found by an EA is termed an evolved 

solution. 

Two key parameters of a general EA are the population size and the number of 

generations. In addition a termination parameter may be specified, for example the 

acceptable fitness of the best individual. 

The diversity of individual solutions within a population provides a rich pool of 

different genotypic material, which is used by the EA to create potentially better 

solutions (the exploitation concept). In fact, this diversity guarantees a wide coverage 

of the search space. Many different solutions are able to represent many different 

regions in the search space to be evaluated by the EA. This property is known as 

exploration and makes evolutionary algorithms robust tools for searching for 

globally best performing individuals particularly in multi-modal search spaces. 



Chapter 3. The principles of evolutionary computation 38 
 

 
3.1 Introduction  

3.1.1 Historical development 

The basic principles outlined in section 3.1 are common to all implementations of 

the evolutionary algorithm concept such as: evolutionary strategies (ES), 

evolutionary programming (EP) and genetic algorithms (GA) as the traditional and 

genetic programming (GP) as a more recent example [71]. Developed for different 

purposes these paradigms vary in the way they represent individual genotypes, in 

terms of the fitness measure applied and in design and implementation of the 

evolutionary operators. Evolutionary strategies were introduced by Rechenberg [65] 

in the 1960’s as a method of continuous parameter optimisation in hydrodynamic 

context (i.e. real valued representation of genotypes). Initially, solely selection and 

mutation were used as evolutionary operators on a single solution only. Schwefel 

[69] enhanced this approach by the populational concept and the recombination 

operator. Independently of the work on evolutionary strategies Fogel [31] developed 

evolutionary programming originally in an attempt to create artificial intelligence by 

evolving finite-state machines (FSM) for symbol string transformations. In contrast 

to evolutionary strategies the selection of individuals in EP is typically stochastic 

rather than deterministic and there is usually no recombination (crossover) operator. 

The representation of the individuals in evolutionary programming is problem 

domain dependent and can involve ordered lists, graphs, and for most optimisation 

problems real values. 

The probably most popular evolutionary computation concept for parameter 

optimisation however has been genetic algorithms pioneered by Holland [42] and 

developed further by De Jong [20]. The success of this concept is primarily due to 

the representation of the genotypes, which are strings of genes15. In early work this 

representation involved fixed-length binary strings and later also strings of variable 

length [36]. In contrast to evolutionary strategies and evolutionary programming 

typically operating on the phenotypic level this string representation of the genotypes 

is problem domain independent. This domain independence is provided since a GA 

practically operates on standardised meta-information (bit strings) about the solution. 

A substantial body of theory has been established around this representation and its 

                                                 
15 In GA context genes are primitive components of a solution. In early work [42] individuals were 
encoded as fixed length binary strings, where bits represented genes. In other work strings of real 
valued numbers were used. 
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benefits. The Schema Theorem, Implicit Parallelism [42] and Building Block 

Hypothesis [35] have particularly contributed to the popularity of genetic algorithms. 

An evolutionary paradigm that has attracted much attention recently is genetic 

programming (GP). While evolutionary programming, evolutionary strategies and 

genetic algorithms usually involve optimising parameters of a solution, in genetic 

programming computer programs are evolved to solve a particular task. The idea of 

evolving computer programs was originally proposed by Cramer [17], but the theory 

and standards were established by Koza [49]. 

Beside these main paradigms many alternative evolutionary computation methods 

have been developed such as Classifier Systems, LS systems etc. An overview of 

different methods with a vast number of references can be found in [8]. 

3.2 The evolutionary algorithm 

The typical generational evolutionary algorithm is shown in Figure 3-1 using 

abstract syntax.  

Figure 3-1: Generational evolutionary algorithm 

The algorithm starts with the initialisation of a population P of individuals. This 

process may be random, or biased if initial knowledge about the solution is available. 

Then a fitness measure is carried out on all individuals in the population. This 

usually involves decoding of the genotypes (data structures of the individuals) into 

 P:=Create_initial_population() 
 Measure_Fitness(P) 
 generation_index:=0 
 while (not terminated) 
 { M:=∅ 
  repeat 

  S:=select_parents(P) 
   recombine(S)  
   mutate(S) 
   M:=M∪ elements(S,|P|-|M|) 
  until (|M|=|P|) 
  P:=M 
  Measure_Fitness(P) 
  increment(generation_index) 
 } 
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their corresponding phenotypic representation in the problem domain, where the 

fitness measure is eventually taken. 

Before creating a new generation the population M receiving offspring individuals 

is initialised as an empty set. In order to breed a new population the sequence of 

selection, recombination and mutation has to be iterated until the new population is 

entirely filled with offspring. In each iteration a set S of individuals (often called a 

mating pool; consisting usually of 2 parent individuals) from the old population P is 

selected based on the fitness of the individuals. To generate new offspring the parent 

individuals in set S may then be subject to recombination (mating), where genotypic 

material is swapped between individuals e.g. by applying the crossover operator. 

Subsequently, mutation may be applied to some individuals in S by randomly 

modifying their genotypes. Both, recombination and mutation may be performed 

with a certain probability (crossover rate, mutation rate). If neither evolutionary 

operation was applied to any individual in S this particular iteration resembles a plain 

reproduction cycle where the children are identical copies of their parents. Finally, 

the generated offspring (typically one or two children) in the updated set S will be 

added to the new population M. Since the number of generated children varies 

between the iterations depending on which evolutionary operator has been used, the 

last update in a generation may involve more individuals than necessary to saturate 

the new population. In that case the function elements returns only the subset of S 

required to complete the new population by discarding a possible surplus of 

individuals. This is controlled by the second parameter, which is passed to the 

function as the number of free slots in the new population calculated by the 

difference of the cardinalities of old and new population. A generation is completed 

if this difference is zero. The old population will be replaced with the new one 

followed by the fitness measure of all individuals in the new population. The 

evolutionary algorithm proceeds with breeding new populations until a termination 

criterion is met, typically if a good solution was found or a certain number of 

generations has been completed. 

The traditional generational evolutionary algorithm uses two populations for the 

parent and offspring generation. A different concept to the generational algorithm is 

the steady- state algorithm, which involves only one population. The offspring 

generated by the EA is inserted back into the same population the parents were 
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picked from by replacing selected, usually poorly performing individuals. This 

creates a generational overlap of individuals within the population and permits a 

direct competition of parents with offspring in the evolutionary process. Since the 

life spans of the individuals during the evolution may be different (some individuals 

may even survive the whole evolutionary process unchanged) the actual numbering 

of generations is difficult. Hence the steady-state evolutionary algorithm is said to 

have completed a generation if the number of children created since the last 

generation change is equal to the size of the population. 

3.2.1 Fitness evaluation 

Fitness evaluation of an individual is performed by examining its performance in 

the problem domain. In implementations of evolutionary algorithms such as 

evolutionary strategies that optimise a set of model parameters this would typically 

include the transfer of those parameters into the particular model and subsequently 

the assessment of the accuracy of that model. For domain independent 

representations of the genotype used e.g. by GA’s the fitness evaluation involves 

decoding16 (or interpreting) the genotype of a solution into its phenotypic 

representation. This process is known as ontogenetic mapping and establishes the 

representation of the individual in the particular problem domain, where the actual 

performance measure can be taken by an objective function. The value returned by 

this function may be a scalar, but is often a vector since several aspects17 of 

performance (multi- objective) may need to be recorded. 

The result of the performance measure of an individual is used for the 

determination of a scalar (usually positive) fitness value. For a scalar performance 

measure the fitness value may be equal to the return value of the objective function. 

In the case of a multi-objective performance measure the fitness is determined from 

the vector returned by the objective function by applying scaling or ranking 

strategies [33]. The fitness value is assigned to an individual and enables the 

                                                 
16 Decoding is however not always necessary. For parameter optimisation problems the genotype 
often used by GA’s is a string of real values that undergo modification. Since the same representation 
is used in the problem domain (binary coding of the parameters) there is no decoding required. 
17 For example gradient information may be included as an indication as to how this particular may be 
improved. 
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selection mechanism of an EA to perform a comparative performance analysis 

between the individuals in a population. The preparation of an individual for the 

fitness evaluation (decoding) and actual performance measure is carried out by the 

performance and fitness functions, which both need to be implemented by the user. 

3.2.2 Selecting individuals 

Having assigned the fitness value to all individuals in a population the breeding 

process of new offspring can be initiated. Each offspring producing cycle begins with 

the probabilistic (respectively deterministic in evolutionary strategies) selection of 

parent individuals according to their fitness. The selection operator has a large 

influence on the convergence properties of the EA. By favouring better performing 

individuals for breeding this operator applies selective pressure of some degree to the 

population. The higher the selective pressure the higher is the preference for 

selecting highly fit individuals for the breeding process. Also, high selective pressure 

usually increases the convergence rate, i.e. the pace with which an optimal solution 

is approached. A strong preference for only highly fit individuals may however 

prevent the EA from globally exploring the search space of solutions (biased search). 

As a consequence the search space is narrowed down too early limiting the diversity 

of individuals in subsequent populations and may hence lead to local premature 

convergence of the population around a sub-optimal solution. A too low selective 

pressure in turn increases the time used by the EA to find an optimal solution 

(possible stagnation of evolutionary progress). Therefore it is desirable to use a 

selection operator that applies high selective pressure and preserves the diversity of 

individuals in a population. 

Commonly used selection methods divide into proportionate-based and ordinal- 

based selection [56]. Proportionate-based strategies select individuals according to 

their relative fitness. Holland introduced proportional selection [42] with the 

individual having the normalised fitness being the selection probability 

p(si) = P
k=1

n f(sk)
f(si)  for breeding (f (s)  is the fitness value of individual s). This 

selection scheme however is not applicable for negative individual fitnesses or 

minimisation tasks [7] unless proper scaling is applied. Roulette Wheel selection [35] 

is another popular proportionate selection strategy where each individual is assigned 
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a slot in the selection interval [0, 1] . The size of such a slot adjusts in proportion to 

the normalised fitness of the particular individual in the population. The slots in the 

interval are positioned according to the order of the individuals in the population. 

The selection is performed by drawing a uniform random number λ, which acts as an 

“index” pointing into that selection interval and chooses the individual found at this 

index similarly to a Roulette wheel. Convenient for the implementation is that 

individuals do not need to be ordered according to their fitness. However, this 

selection method introduces a bias for highly fit individuals since they receive larger 

slots in the selection interval. Another problem occurs when the population 

converges and the differences between fitnesses of the individuals become smaller. 

The method then resembles random selection with no guarantee of propagating fitter 

individuals (stagnation). To overcome this problem fitness scaling18 needs to be 

introduced which amplifies the differences in fitness between individuals. Baker [9] 

introduced stochastic universal sampling, which works similar to roulette wheel 

selection, however with no bias and minimal spread19. This method chooses n 

individuals for the mating pool simultaneously from the selection interval. n 

equidistant pointers (distance 1/n) are used as “indices” into the selection interval 

beginning from the initial “index” given by a uniform random number. 

Contrary to proportionate-based methods ordinal-based selection techniques are 

those, which do not pick individuals based on their fitness value. Instead they 

introduce a ranking of the individuals within the population based on their fitness and 

select those individuals according to their position in this ranking. Through ranking 

the selective pressure is independent from the fitness distribution of the individuals 

[56]. Truncation selection [60] introduces a threshold T ∈ [0, 1] , which is used to 

identify the proportion of the population with the fittest individuals from which 

parents will be selected. In this proportion all individuals are equally ranked for 

selection. This method requires the individuals in the population to be ordered 

according to their fitness. Truncation selection is equivalent to deterministic (ö, õ)- 

                                                 
18 Scaling is performed by multiplying some constant to all fitness values. This however changes the 
selective pressure and therewith the statistical properties of the selection scheme. Therefore care needs 
to be taken in the choice of the scaling method. Contrary to proportionate selection methods ranked 
based selection techniques are translation and scale invariant [56]. That is neither adding (translating) 
nor multiplying a constant to all individual fitness values would change the selective pressure of the 
selection scheme used. 
19 Spread: Range of possible values for the number of offspring of an individual [7]. 
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selection used in ES with T = õ
ö [6] where õ  is the number of parents and ö  a 

number of best performing offspring individuals. 

Using ranked selection all individuals in a population are sorted according to their 

fitness, and assigned an index describing its rank in the population. This implies that 

each individual has a different rank and hence usually a different selection 

probability, even if there are individuals with the same fitness. Since the probability 

for an individual to be selected does not (directly) depend on its fitness, ranked 

selection avoids the problems of proportional fitness selection such as stagnation (see 

proportional selection section 3.2.2) and necessary scaling [35][80]. In linear ranking 

[38] the selection probability is assigned linearly to individuals (more specifically to 

their ranking index) across the population according to: 

 pi = N
1
à
2 à ñ+ + (2ñ+ à 2)Nà1

ià1
á
; i ∈ {1, . . ., N}  [13] 

with 1 ô ñ+ ô 2 being the selection bias to adjust the selection pressure and N the 

population size. The individuals in the population need to be ordered according to 

their rank (The first individual has the lowest rank and the last the highest). The 

higher ñ+  the higher is the preference for better individuals with the best individual 

being selected according to the probability N
ñ+ . In exponential ranking as one example 

of non-linear ranking the selection probability of a population index (population is 

ordered as in linear ranking) can be obtained from 

 pi = P
j=1

N cNàj

cNà i

; i ∈ {1, . . ., N}  

with 0 < c < 1 being the parameter to determine the exponential characteristic of 

this mapping. A low value for c reflects a strong exponential bias for highly fit 

individuals while a value close to 1 resembles approximately linear ranking. The 

normalisation by 
P

j=1
N cNàj  guarantees the compliance of the fitness distribution 

within the population to the uniformity condition 
P

i=1
N pi = 1 . There are however 

variants of this methods that do not meet this constraint [55]. 

A very popular and often used method based on ranked selection is tournament 

selection, which is also applied in this research. 



Chapter 3. The principles of evolutionary computation 45 
 

 
3.2 The evolutionary algorithm  

Figure 3-2: Binary tournament selection 

This selection technique uses n sets of individuals (also known as tournament sets; 

for n = 2 the selection technique is referred to as binary tournament selection shown 

in Figure 3-2). These sets are filled with a number (typically smaller than the size of 

the parent population) of uniformly randomly picked individuals from the parent 

population. From all tournaments the fittest individuals are then chosen into the 

mating pool for breeding. 

The popularity of tournament selection is due to its computational efficiency and 

statistical properties [53]. Due to the independent random selection20 of individuals 

for the tournament sets the parent population does not need to be ordered (no pre-

processing of the population is required) which makes this selection method fast. By 

altering the tournament size the selective pressure can be varied. A low tournament 

size corresponds to a low selective pressure. In fact, a tournament size of 1 would 

result in uniformly random selection while a large tournament size allows more 

individuals from the parent population to be compared to find the fittest and hence 

increases the selective pressure. 

A general issue in evolutionary computation is the potential loss of good 

genotypes. This can be prevented by applying elitist selection, which carries the 

fittest parent unchanged over to the offspring generation if this individual has not yet 

been copied by reproduction. Elitist selection was introduced in GA context by De 

                                                 
20 Independent selection, individuals may be picked more than once into a tournament. 
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Jong [20] and found to improve the performance of the GA particularly in uni-modal 

but to degrade the performance in multi-modal search spaces. 

3.2.3 Generating offspring 

After selecting parent individuals the next breeding step involves the actual 

creation of offspring. There are in general three ways of producing new individuals 

from parent individuals: recombination, mutation and reproduction. 

Recombination is often used and involves two or more parents swapping 

genotypic material (sexual reproduction) by applying a crossover operator, which 

needs to be adapted to the particular representation of the genotype. This is the only 

offspring-generating operator that actually benefits from the populational search 

concept in EC in the sense that it combines components of different good performing 

solutions from the population to produce a new solution. In order to apply crossover 

the genotypes need to provide a certain number of crossover points, places at which 

the solution can be broken down into their constituent parts. Crossover can be 

applied at a single point, i.e. each parent only swaps one component. Alternatively, 

with multi-point crossover (this is demonstrated by De Jong [21]) an individual may 

swap several components simultaneously with other parents. However the 

recombination operator should always adhere to a closure property, which means that 

it should always produce valid offspring. Invalid offspring would cause the fitness 

evaluation to fail and therefore make the fitness assessment of those individuals 

impossible. 

Introduced and promoted by Holland [42] recombination builds upon a significant 

body of theory in GA context. As indicated in section 3.1.1 the genotypes in GA are 

gene strings, which appear to be a representation ideally suited for crossover. 

Holland showed that by swapping string fragments of individuals during the course 

of evolution string patterns or schemata accountable for fitness emerge in individuals 

across the population. It is believed that fit individuals contain a set of schemata that 

this fitness can be attributed to. Since individuals are selected according to their 

fitness beneficial patterns are combined and passed on to the offspring resulting in 

potentially better performing solutions. The existence of several different schemata 

in an individual involves many of these patterns when undergoing modification e.g. 
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by crossover which is known as implicit parallelism and an explanation for the 

efficiency of genetic algorithms established by Holland in his Schema Theorem [42]. 

Goldberg explained in his Building Block Hypothesis [35] the efficiency of GA’s by 

attributing the fitness of individuals to the presence of certain string sequences 

(building blocks) in the genotype. Using crossover building blocks from different 

individuals can be combined to form fitter offspring and thus spread across future 

populations. 

In contrast to recombination the generation of offspring by mutation involves only 

one parent individual (asexual reproduction), hence there is no interaction between 

different genotypic material in the population. The populational search concept of 

evolutionary computation is only exploited through the wide coverage of the search 

space by the diversity of individuals. During mutation a genotype undergoes random 

modification to some degree depending on the representation. In parameter 

optimisation problems with binary representation of the individuals this usually 

involves flipping one or more bits. In genetic programming on the other hand the 

mutation operator is very complex (see section 3.3.4). Mutation is particularly useful 

in cases where certain genotypic material is needed, which is not contained in any 

individual in the population. During the evolution it may happen for example that 

individuals carrying certain genotypic material extinct. In a different context 

however, these particular genotypic characteristics may greatly improve the 

performance of some individuals in subsequent populations and might therefore be 

restored by mutation. 

Contrary to recombination in GA’s, mutation has been advocated by Fogel [31] 

who used it as the only offspring-generating operator in evolutionary programming 

(EP). Similarly, early work in evolutionary strategies (ES) [65] involved only 

mutation for breeding. Both, EP and ES differ in the application of crossover, which 

is deterministic in ES and stochastic in EP. 

Finally, reproduction is the plain generation of copies of the parent individuals, 

which is useful if the parents have a high fitness e.g. above the population average. 

Reproduction is also often performed in recombination cases where generated 

offspring is less fit than the parents or even invalid, which e.g. occurs at times in 

genetic programming if tree generation constraints are violated for example as a 

consequence of code bloat [53]. 



Chapter 3. The principles of evolutionary computation 48 
 

 
3.3 Genetic programming  

3.3 Genetic programming 

One of the main differences between evolutionary computation paradigms is the 

representation of the individual solution undergoing modification. Chosen depending 

on the problem context this representation in conjunction with appropriate 

evolutionary operators provide a certain degree of freedom for finding a good 

performing solution. In classical EP, ES and GA these representations involved sets 

of parameters hence constraining the search to the space of possible parameter 

configurations. Genetic programming (GP) departs from these approaches of 

numerical search by attempting to evolve symbolic computer programs that solve the 

problem. Hence GP can be viewed as a stochastic program compilation method. 

Computer programs are very complex (usually variable-length) compositions of 

program code and data. Thus this representation spans a large search space of 

possible programs (there are usually several alternative algorithms) for the 

evolutionary algorithm to be explored. However, this large degree of freedom also 

explains the potential GP has to find or to program very good performing solutions21. 

The general idea underlying genetic programming namely the evolutionary 

synthesis (or induction) of computer programs from primitive components has been 

initially investigated by Cramer [17] who designed a “number string” language (JB 

and TB language) to code simple sequential programs that undergo adaptation by a 

genetic algorithm. The main principles of genetic programming and its terminology 

based on the LISP programming language were introduced by Koza [49]. 

3.3.1 Representation of individuals 

Since it involves the synthesis and evaluation of computer programs GP works on 

the same level as an interpreter for programming languages and hence utilises 

program and data structure concepts used by those tools. To implement a GP system 

Koza [49] used the LISP programming language since it provides built-in 

mechanisms to modify program code and data syntactically in the same way at 

                                                 
21 There are however concepts e.g. for program modularisation such as ADF (Automatic Defined 
Functions, see e.g. [50][66]) which can greatly improve the search efficiency in domains where 
several similar tasks have to be learned. Those tasks could be described with one program module 
being called with different arguments (see e.g. the lawnmower example in [50]). 
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runtime. He called the evolved programs s-expressions, which are internally 

represented by rooted labelled trees containing two kinds of nodes: inner tree nodes 

or non-terminal nodes and leaf nodes or terminal nodes. 

 

 

 

 

 

 

 

 

 3 á sin(q) + cos(1à q)  

Figure 3-3: Genetic programming tree example for a mathematical expression 

Non-terminals have at least one argument (child node or branch) that is there is at 

least one arc leaving the node (out-degree or arity > 0). Terminal nodes are atomic 

nodes (no arguments are to be evaluated) with no leaving arc (out-degree = 0). All 

genetic programming trees have a root from which the evaluation starts. The 

evaluation is performed depth-first and typically by evaluating children from left to 

right. The depth of a tree is the maximum number of arcs on the way from the root 

node to the most remote leaf node. Terminals therefore have a depth of zero while 

function trees have a depth equal to or greater than zero. 

Non-terminal and terminal sets are the only resources of elementary node 

definitions a GP algorithm uses to compose programs. Both sets are defined in 

problem context. The non-terminal set may contain arithmetic, trigonometric, 

Boolean functions, conditional operators (if-then-else) and other problem domain 

depended functions such as motion commands etc. The terminal set typically 

contains constants, variables or other primitive problem domain-dependent entities 

such as functions or commands without arguments. With symbolic regression the 

terminal set may also contain an ephemeral random constant <, which returns a 

random number in a specified range every time this terminal is chosen. An important 

requirement for non-terminal and terminal set is sufficiency. This means both sets 

need to have all node definitions that are necessary to induce a program that solves 

cos 
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the particular problem22. Also, all nodes in particular function nodes are required to 

adhere to the closure property, i.e. the evaluation result of any node is always well 

defined. Since GP is typically unconstrained23 in the way of constructing programs, 

the closure property ensures that all nodes (terminals and non-terminals) have the 

same type. Also, possible invalid operations need to be prevented by securing 

(redefining) all used operators that may have undefined results in certain situations. 

For example if the division operator is used, the protected division24 

a%b =
1 ;b=0
a/b ;else

ú
 needs to be introduced to prevent invalid results from a 

possible division by zero. Correspondingly the protected square root is defined as 

sqrtp(x) = |x|p
 or the protected logarithm as log

p
(x) =

0 ; x=0

log(|x|) ; else

ú
. 

3.3.2 Tree generation 

Individual trees can be created by two recursive methods: GROW and FULL [49]. 

The GROW algorithm (Figure 3-4) generates trees in which leaf nodes may have 

different distances (number of arcs) to the root node. Supplied with the maximum 

tree depth parameter D, the algorithm first generates a local root node. If the 

maximum tree depth is reached this node will be a randomly chosen terminal node 

since no further tree growth from this local root is permitted. If the maximum tree 

depth is not reached yet this node is randomly chosen from the union set of terminals 

or non-terminals. If a terminal was chosen the tree growth ends at this node. If a non-

terminal was chosen the algorithm recursively creates its arguments trees and thus 

increases the depth of this particular branch. 

                                                 
22 Sufficiency in genetic programming is a quite similar concept to completeness in context of 
parametric kinematic modelling (see section 2.2). Both, sufficiency and completeness are 
requirements to be met (typically by human intervention) in order for the respective paradigm to 
succeed. Whereas completeness is required to numerically identify true parameter values, sufficiency 
is essential to enable the GP algorithm to find the actual model structure and parameter values. 
23 However, usually there is a maximum tree depth constraint that prevents the tree offspring from 
growing beyond a certain limit (see also section 3.3.4). Another example: Since in strongly typed 
genetic programming [58] trees may have different types, a constraint has been introduced that 
ensures type compatibility between formal parameters in the function declaration (non-terminal set) 
and actual arguments. 
24 It is important to preserve the precedence level of the protected division operator when representing 
symbolic expressions in infix notation without redundant parentheses. For example, using the ordinary 
division operator the expression a ã (b/c)  is equivalent to a ã b/c . However, a ã (b%c)  is, due 
to the definition of the protected division (see above), not equivalent to a ã b%c  ! 
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Figure 3-4: The GROW algorithm 

The FULL algorithm always creates balanced trees (see the left-hand parent 

shown in Figure 3-6), which means that all leaf nodes in a tree have the same 

distance to the root node. While trees generated by the GROW method using the 

same depth parameter D may vary in depth across the range of integers {0, . . .,D} , 

the FULL method always produces trees with a depth specified by D. 

Figure 3-5: The FULL algorithm 

These tree generation algorithms are an important part of a GP system for creating 

the initial generation of individuals and for the subtree mutation operator (see section 

3.3.4). 

function GROW(D,T,N) //D=Tree depth; T=Terminals; N=Non-terminals 
{ if (D=0) then 

return randomly chosen terminal from T; 
 else 
 { t := randomly chosen from  T∪N; 
  if (t is a terminal) then return t; 
  else 
  { Instantiate each parameter in t by GROW(D-1,T,N); 
   return t with instantiated parameters; 
  } 
 } 
} 

function FULL(D,T,N) //D=Tree depth; T=Terminals; N=Non-terminals 
{ if (D=0) then 

return randomly chosen terminal from T; 
 else 
 { t := randomly chosen non-terminal from N; 
  Instantiate each parameter in t by FULL(D-1,T,N); 
  return t with instantiated parameters; 
 } 
} 
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3.3.3 Initialisation of the first population 

Before the evolution begins an initial population needs to be created. To provide a 

large diversity of programs the most widely used method to generate the first 

population is RAMPED HALF & HALF proposed by Koza [49]. This method 

combines GROW and FULL method and is capable of generating trees of various 

shapes and depths. It splits the population into intervals in which one half of the 

individuals are created by the GROW method and the other by the FULL method. 

Each interval represents a different tree depth starting from the minimum to the 

maximum tree depth forming a tree depth ramp. The minimum tree depth is usually 

greater than zero in order to prevent terminal nodes from becoming individuals 

(zero-depth individual) in a population. Terminal nodes only have one crossover 

point (respectively mutation point). Hence single terminal nodes being individuals in 

the population usually have less potential to introduce larger changes to their 

offspring. In fact, the crossover operator is disabled for two zero-depth individuals. 

In this scenario the parents are only swapped and reproduced without any changes to 

the genotypic material. The only way to produce offspring from zero-depth 

individuals that is different from its parents is the application of mutation (e.g. by 

changing variable values or replacing the terminal nodes by randomly generated 

trees). Since the GROW method may occasionally produce zero-depth trees (plain 

selection of terminals), those trees need to be discarded. The GROW method is then 

applied with the same parameters until a tree with a desired minimum depth> 0 has 

been created. 

3.3.4 Crossover and mutation 

In genetic programming offspring is generated by applying crossover and 

mutation25 to selected parent individuals. 

Subtree crossover as shown in Figure 3-6 is performed by selecting one crossover 

node (also known as single point crossover) in each of both parents and swapping the 

tree fragments rooted at these nodes. Since the crossover operator may select 

subtrees of different depths, the offspring trees may grow. Larger trees imply 

                                                 
25 Initially crossover was the only offspring-producing operator in GP [49]. 
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expensive evaluation. They are however not necessarily fitter than less complex 

trees, which is one reason why GP systems impose a maximal depth constraint on the 

trees in a population. If a tree generated by crossover exceeds this limit it will be 

discarded. If the crossover operator fails to generate valid offspring after a certain 

number of repeated attempts, the parents will be reproduced instead26. 

 

Figure 3-6: Subtree crossover example 

Since swapping non-terminal trees usually results in larger performance changes27 

between parents and offspring, the probability of selecting non-terminals for 

crossover is typically 90% [53]. 

The mutation operator selects a node in a parent tree and replaces the tree rooted 

at this node by a randomly generated tree (See Figure 3-7). This new subtree may be 

produced by either FULL or GROW method with the depth parameter being 

D = DMax àDMP, where Dmax is the maximal depth allowed for trees and DMP is 

the depth of the tree rooted at the mutation point. This ensures that the mutated tree 

                                                 
26 This phenomenon occurs more often in later generations as the trees usually grow during the course 
of evolution. This code bloat however presents serious problems for the evolutionary progress as the 
applicability of crossover as the main offspring-generating operator becomes limited or even 
ineffective as more parents are reproduced [53]. 
27 This is a reason why genetic programming is less sensitive to premature convergence than genetic 
algorithms. 
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will always be of valid length. Mutating non-terminal nodes is referred to as macro 

mutation (The same concept applies if fit individuals swap trees with random 

individuals [63]) whereas micro mutation involves terminal nodes. Shrink-mutation 

is a process where a subtree is replaced with another tree having a lower depth 

eventually leading to a lower depth of the overall tree. An example for grow-

mutation where the modification of the individual results in a higher tree depth is 

depicted in Figure 3-7. Other forms of mutation implement swapping subtrees within 

an individual, replacing trees with trees of the same arity (number of arguments), 

modifying random constants etc. (see [16] for reference). 

 

Figure 3-7: Example of subtree mutation in GP 

3.3.5 Symbolic regression 

Genetic programming has been applied to a variety of problem domains such as 

structured process modelling [64], parameter identification (e.g. analysis of the 

existence and identification of multi-steady states in non-linear dynamical systems 

[57]), machine learning (e.g. evolution of multiplexers; control strategies of 

autonomous robots [61]28), artificial intelligence (e.g. synthesis of artificial neural 

networks by grammar evolution [39], navigation strategies e.g. of an artificial ant in 

the “Santa Fe Trail” [49] or of a Lawnmower [50]) etc29. 

                                                 
28 Interestingly, in this approach genetic operators are applied to linear strings (rather than trees; Æ 
Linear Genetic Programming) of 32 Bit CPU instructions. Since machine code is generated the 
concept is called Compiling Genetic Programming (CGP). 
29 See also [51] for further applications of genetic programming. 
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3.3 Genetic programming  

The GP domain addressed in this work is symbolic regression [49]. Classical 

mathematical regression techniques (traditional robot calibration methods belong to 

this category) typically utilise a regression model (e.g. linear, non-linear, parametric) 

pre-specified by a user according to the requirements of the problem domain. The 

parameters of these models are subsequently fitted to measured data. Symbolic 

regression in contrast attempts to find (or induce) a symbolic description for the 

relationship typically between two variables (action and response) by evolving an 

appropriate mathematical model consisting of functions and parameters (see example 

application in [48]). Since symbolic regression is not limited to a predefined model 

structure it has more potential in terms of accurate modelling than conventional 

regression methods. In fact, it is principally capable of identifying the true functional 

relationship of variables based on measurement data, provided sufficiency of 

terminal and non-terminal set is given. The terminal set must contain the dependent 

variables30 and usually an ephemeral random constant. The non-terminal set contains 

mathematical functions and operators that are assumed to be part of the solution, for 

example, periodic data is likely to be modelled by sine/cosine-functions. The 

principal representation of the mathematical expressions that are subject to evolution 

is shown in Figure 3-3, Figure 3-6 and Figure 3-7. 

Fitness measures typically applied in genetic programming and particularly in 

symbolic regression are raw fitness, standardised fitness, adjusted fitness and 

normalised fitness [49]. A fitness measure often used (also in this work) is raw 

fitness r(i) =
P

j=0
N |S(i, j) à C(j)|  of the ith individual with S(i, j) being the value 

returned by the individual and C(j)  the value to be pursued for the jth out of N fitness 

case. Standardised fitness is defined either as s(i) = r(i)  or s(i) = rmax à r(i) , 

adjusted fitness as a(i) = 1+s(i)
1  and normalised fitness as n(i) = P

k=1

N a(k)
a(i) . 

                                                 
30 Variables used in symbolic regression are usually continuous. However, function induction is also 
possible in discrete domains (multiplexer synthesis using Boolean variables). 
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3.4 Summary 

This chapter introduced the principles of evolutionary computation as alternative 

stochastic search methods to conventional deterministic optimisation techniques. 

Based on [32] the general advantages of EC techniques are summarised as: 

 

• Domain independence and hence a wide area of applications (The same 

algorithm (Figure 3-1) applies to all implementations (conceptual simplicity) 

with specially adapted fitness function and evolutionary operators). 

• Incorporation of domain specific knowledge possible. 

• Parallelism (The process of breeding new individuals is an independent local 

process and can be performed in parallel). 

• Good chances for global convergence (Usually outperforms gradient methods in 

multi-modal search spaces due to better search space coverage by multi-

individual search). 

• Reuse of solutions (Exploiting good characteristics of former solutions). 

• Potential to solve problems with unknown solutions or in areas with no human 

expertise 

 

If solutions to problems can be formulated as computer programmes the 

performance of which can be evaluated by computers, genetic programming can be 

applied to populations of these solutions to automatically combine or modify their 

different subprograms to eventually form optimal programs. 

Section 3.3 presented genetic programming, which is the evolutionary paradigm 

used in this work. The principles of genetic programming were introduced with focus 

on symbolic regression, which is the application domain for the inverse kinematic 

calibration method described in Chapter 4. 
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4.1 Evolutionary calibration concept  

Chapter 4 

Static symbolic robot calibration based 
on genetic programming 

This chapter presents a new application of genetic programming particularly 

symbolic regression to static inverse kinematic robot calibration in context of offline 

programming. Building upon the robot calibration and evolutionary computation 

basics introduced in chapters 2 and 3 a general symbolic calibration system is 

developed and its principles and properties detailed. 

4.1 Evolutionary calibration concept 

As outlined in section 2.1.3 the objective of static calibration in context of offline 

programming is to establish an accurate calibration model, which provides a 

mapping between nominal and corrected end-effector poses. These corrected poses 

represent false targets that compensate for path deviation and eventually lead the 

robot to the desired location. This pose-correcting mapping can either be based on 

parametric or non-parametric models. The principle structure of the mapping model 

used in this work is illustrated in Figure 4-1. This model fits into the category of 

compensation models that use a nominal inverse kinematic model as outlined in 

section 2.2.4 and illustrated in Figure 2-6. Hence it avoids the problems of finding 

the calibrated inverse of the overall kinematic model (section 2.2.4), which expresses 

the calibrated joint configurations indirectly by calibrated parameters in geometric 
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and non-geometric model components. The calibration model in Figure 2-6 is 

represented by a vector of joint correction functions followed by a nominal forward 

kinematic model. The joint correction functions, which are subject to calibration, 

describe herein the error of the nominal inverse kinematic model (as used by the 

robot controller) hence it fits into the category of inverse kinematic calibration. This 

calibration principle using correction functions was initially tested by Shamma [70] 

(recently by Jenkinson [45]) and is outlined in section 2.2.4. However, in Shamma’s 

approach pre-specified polynomial functions have been used with little of no 

physical significance. The accuracy of those models depends on the functions used 

and is hence also pre-specified. The calibration of these models again involved 

numerical identification of the parameters (coefficients). 

Figure 4-1: Calibration model: Joint correction functions are evolved in context 
of nominal inverse and nominal forward kinematic models establishing a 
mapping between nominal and corrected 3D poses 

In this research the joint correction functions are evolved by applying genetic 

programming particularly symbolic regression to the calibration problem. In result 

correction functions for joints are obtained in symbolic form rather than numerical 

values of parameters within predefined models. Therefore this calibration method is 

denoted as symbolic calibration. By providing appropriate sets of terminals and non-

terminals (e.g. functions that typically occur in non-geometric models; see e.g. 

section 2.2.2) this approach has the potential not only to compensate for positional 

error of the manipulator, but also to identify the structure and parameters of the 

correction functions enabling further mathematical analysis. 

Performing the calibration on joint level the method primarily avoids the 

problems related to task space correction of redundant manipulators. A redundant 

manipulator can reach a pose using different joint configurations. Since the 

positional error caused by different joint configurations is typically different, the 

calibration algorithm would have to calibrate a one-to-many mapping. This would 
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result in an averaged compensation for these different joint configurations, which 

does not reflect the error in the individual configuration. This problem does not arise 

when calibrating joint correction models as proposed in this work. Possible different 

joint configurations of a pose are obtained as different solutions from a nominal 

inverse kinematic model, which is not subject to calibration. 

4.2 Pose correction principle 

Prior to the actual calibration of the model in Figure 4-1 a set of data pairs 

(PN,PC) has to be generated where PN is a nominal pose e.g. generated by an OLP 

system, and PC  the corresponding corrected pose (false target) to compensate for 

positional error and lead the robot to the desired pose. The robot is programmed to 

move to the nominal positions and the actual achieved positions are recorded by an 

external measurement device. In the experiments reported in this work the Robotrak 

measurement system was used (See section A.1 and A.1.1 for reference about 

measurement principle and data transformations). A corrected pose is obtained by 

subtracting the positional error represented by the difference between corresponding 

measured pose PM  and nominal pose PN from the nominal pose (see Figure 4-2). 

Note that in this work only the position vector of a pose is subject to correction. 

Figure 4-2: Illustration of the correction principle 

Corrected poses for the calibration data set are established from nominal 

calibration poses using the algorithm shown in (Figure 4-3). Arguments for this 

algorithm are nominal end-effector poses and local frame poses31. First the robot is 

                                                 
31 In this work calibration is carried out relative to a local frame (see also [45]). The local frame 
concept is explained in the appendix section A.1.1. 
 

PM

PC

PN

PC = PN à (PM àPN)
= 2PN àPM
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sent to all local frame points and the end-effector poses are measured and stored in 

LLM. Then the robot is sent to all poses in the calibration data sample set P and the 

corresponding end-effector poses are measured and stored in PLM. Since the 

calibration poses have been measured relatively to the measurement system frame, 

they need to be transformed into robot base frame co-ordinates. The therefore 

required transformation matrices are constructed from the local frame points 

expressed relative to robot base frame (set L) and measurement system frame (set 

LLM) (See also appendix section A.1.1). Having established this transformation, 

nominal and actual poses can be compared and the corrected poses generated as 

illustrated in Figure 4-2. A further result of the data preparation procedure is an error 

statistic computed from transformed measured and nominal poses (describing the 

error prior to calibration), and a set of joint angles generated from the corresponding 

nominal poses. 

Figure 4-3: Abstract data preparation algorithm 

4.3 Calibration principle: Distal Supervised Learning 

The problem of finding the joint correction functions in Figure 4-1 can be 

interpreted as a distal supervised learning problem. The problem of distal supervised 

learning is generally stated as finding a mapping from intentions to desired distal 

results or tasks (Figure 4-4). A model to provide this mapping is trained with pairs of 

(intention, result) in a supervised fashion. The model internal problem is to find a 

function data_preparation(P, L) 
//P= Robot Poses; L= Local Frame Poses 
{ LLM :=goto_poses_and_measure(L); 
 PLM :=goto_poses_and_measure(P); 
 M  :=transform_calibration_data(PLM, L, LLM); 
 C  :=compute_corrected_poses(M, P) 
 S  :=write_error_statistic(M, P); 
 J  :=compute_joint_angles(P); 
 return {C, J, S} 
} 
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mapping that transforms given intentions into appropriate proximal actions32 (inverse 

mapping), which can then be transformed into the desired distal results in the 

problem domain [46]. 

Figure 4-4: Distal supervised learning 

To transfer these concepts into the symbolic kinematic calibration domain of this 

research: intentions are interpreted as nominal end-effector poses PN, actions as 

calibrated joint configurations òC  and results as the corrected end-effector poses PC . 

Hence the task of the model in Figure 4-1 is to find an accurate mapping between 

nominal and corrected end-effector poses by establishing the required calibrated joint 

configurations. Learning of these calibrated33 joint configurations from nominal joint 

configurations is performed by evolving joint correction functions implicitly using a 

forward kinematic (geometric) model as a distal teacher. Implicit learning refers to 

the fact that the calibrated joint configurations as being the target configurations are 

not explicitly provided. Instead the evolution of the correction models is driven by 

their distal performance being the accuracy of the whole forward kinematic model 

(geometric model + evolved joint correction models). 

Correction of a joint configuration ò is performed as shown in equation 4.1 by 

adding a vector of correction values computed at ò by correction terms stored in g: 

 h(ò) = ò+ g(ò)  (4.1) 
 
where h  is a function vector consisting of k joint correction functions where k is the 

number of joints in ò. The correction term to each function in h  is stored in the 

corresponding component of function vector g. These correction terms in g are the 

actual subject to evolutionary refinement by symbolic regression (In the following 

the correction terms in g are also referred to as correction models). At any 

                                                 
32 There may however be several different proximal actions that have the same distal result [46]. In 
robot calibration context this is equivalent to the problem of redundant manipulators, which can 
establish certain poses with different joint configurations. 
33 A calibrated joint configuration òC  results exactly in the desired target end-effector pose PC . Note 
however that òC  is not explicitly given in this approach. 
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4.3 Calibration principle: Distal Supervised Learning  

evolutionary step the components of g contain the currently best performing evolved 

correction model (see section 4.4.1). Using these currently evolved correction models 

in g an evolved joint configuration òE (as an intermediate result of the evolution 

from nominal to calibrated joint configurations) is computed from a nominal end-

effector pose PN as the result of the correction applied at the current stage of 

evolution: 

 òE := h(òN)  (4.2) 
 
 with   òN := fà1(PN, þN) . (4.3) 
 
The nominal joint configuration òN, which is corrected by h  resulting in òE, is 

obtained from PN using the nominal inverse kinematic model (equation 4.3). From 

the evolved joint configuration òE the corresponding evolved end-effector position 

PE can then be obtained using the nominal geometric forward model (in this work a 

Denavit-Hartenberg model is used; see Appendix section A.2) based on nominal 

geometric parameters þN of a Unimation PUMA 761 industrial robot (Table A-1): 

 
 PE := f(òE, þN) . 

 
Hence, using equation 4.2 and 4.3 the entire mapping from nominal to evolved end-

effector positions can then be written as: 

 

 
PE = f(h(fà1(PN, þN)), þN)

= Fmap(PN).
 (4.4) 

 
In order to illustrate the location of the correction functions in h  being the 

arguments of the forward kinematic model the mapping can also be formulated using 

the sequential structure of the Denavit-Hartenberg parameterisation as: 

 PE =
Q
i=1

k
Ai(hi(òN))  (4.5) 

where k is the number of links, hi is the ith correction function (òN has been obtained 

from PN using the nominal inverse using equation 4.3) being the argument of Ai 

which is the DH transformation matrix (see Appendix A.2) for the ith link (Ai 

absorbs the (nominal) DH parameter ëi, ai and di, hence this formulation is only 

valid for manipulators with exclusively revolute joints as for the PUMA 761). 



Chapter 4. Static symbolic robot calibration based on genetic programming 63 
 

 
4.4 The evolutionary calibration system  

During the learning (or training) phase the mapping model (equation 4.4) is 

presented a number of pairs of nominal and corrected end-effector poses (PN,PC) . 

In order to establish an accurate mapping between all n  training pairs in the 

calibration sample set the objective of the supervised learning process is to minimise 

the performance index: 

 
P
i=1

n
eiTei ;    where     

ei = Pi
C
àPi

E

= Pi
C
à Fmap(P

i
N)

. (4.6) 

 
(Note that the superscripted i does not represent exponentiation). The 

minimisation is performed by evolving the joint correction models (using symbolic 

regression) in g so as to minimise the differences between corrected end-effector 

poses from the training set (desired pose) and those computed (by the mapping 

model) from the corresponding nominal end-effector pose. Practically, the inverse 

transformations of the nominal poses PN by the nominal inverse model in Fmap  may 

not be computed explicitly by the calibration program. Instead the joint 

configurations of the nominal poses may be taken directly from the robot control 

system by storing34 them in controller memory when the robot is sent to these poses 

to establish the external measurements as part of data preparation algorithm (Figure 

4-3). Using calibration (or training) samples (òN,PC)  comprising of nominal joint 

configuration and corresponding corrected target pose the performance index in 

equation 4.6 can then be rewritten with: 

 ei = Pi
C
à f(h(òiN), þN) . 

The performance index in the experiments reported in this work is a raw fitness 

measure (see section 3.3.5) used by the EA to select individuals. 

4.4 The evolutionary calibration system 

The context and the components of the evolutionary calibration system are 

illustrated in Figure 4-5. The input calibration data for the system are obtained from 

data preparation module as outlined in section 4.2. For the laboratory PUMA 761 

robot used in the experiments the calibration system consists of 6 separate genetic 

                                                 
34 In VAL II the joint configurations of corresponding Cartesian poses can be logged into system 
memory as precision points by issuing e.g. “here #p” [72] (see also section 6.1.1). 
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programming system instances (one for each joint), each of which works on one 

population of parent models. The fittest correction model of each population in these 

GP systems at any evolutionary step constitutes the corresponding component in the 

correction model vector g. 

 

Figure 4-5: Overview of the evolutionary calibration system 

4.4.1 The symbolic co-evolutionary calibration algorithm 

The principle of the calibration algorithm used to evolve the joint correction 

models is shown in Figure 4-6. First the populations of correction models are 

initialised using the RAMPED HALF & HALF method (section 3.3.3). The terminal 

set contains the joint variable ò and an ephemeral uniform random constant 

< ∈ [0, 1] . The function set contains functions that typically occur in joint-related 

non-geometric models i.e. arithmetic functions such as addition, subtraction, 

multiplication and protected division, and trigonometric functions such as sine and 

cosine (see section 2.2.2 and section 6.2). At initialisation one non-random neutral 
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model35 is introduced to each population. Such a model returns a zero value (no 

correction), which corresponds to an uncalibrated joint angle. The reason for this is 

to guarantee (elitism provided) the evolution to start with at least the uncalibrated 

(nominal) joint configuration. This is particularly important when the algorithm 

switches to a joint for the first time, which is explained in context later in this section 

(see page 67). 

After creation and initialisation of the populations the components of the 

correction model vector g are initialised with neutral models (no correction). In this 

way it is ensured that the initial performance index (measure of positional error at the 

beginning of the evolution) of the kinematic model is equal to the performance index 

of the plain uncalibrated kinematic model (without correction models). 

 

Figure 4-6: Co-evolutionary calibration algorithm 

An evolutionary cycle (wrapped into the repeat-until statement in the algorithm 

illustrated in Figure 4-6) begins by selecting a joint corresponding to the contribution 

of its correction model in g to the positional error (see section 4.4.2). As shown in 

equation 4.5 the kinematic forward model is represented by a sequence of 

homogenous Denavit-Hartenberg transformations. Hence the correction models in 

                                                 
35 In the experiments g(ò) = (òà ò)   (more specifically the right hand side of it) has been inserted 
as an individual providing no correction into the initial population. Principally, g(ò) = 0  could have 
been used. However, the right hand size of this expression is a plain terminal the occurrences of which 
as single individuals are to be avoided in the population due to their limiting influence on the 
crossover operator and population diversity as described in section 3.3.3. 
 

k:= Number_of_joints 
P:= Create populations of correction models for k joints 
for each k do  
 gk(ò) := neutral correction 
Compute initial performance index 
repeat 
 j := Select Joint according to the contribution of its  

  corresponding correction model in g to the 
  positional error of the end-effector 

 Evolve correction model for joint j in population P[j] 
  until performance index improves 
 Update gj(ò) := fittest model of population P[j] 
until terminated 
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their corresponding correction functions (equation 4.1), which are arguments of their 

corresponding DH transformations, collectively contribute to the performance index 

within this serial arrangement. This also implies that the correction models depend 

on each other during the evolutionary learning process. When altering one correction 

model the other models are directly affected in their potential to minimise the 

remainder of the positional error. An example is illustrated using a planar 

manipulator in Figure 4-7: 

 

Figure 4-7: Dependence of joint corrections: The positional error between 
target and tool endpoint was reduced by increasing joint angle ò1 . In effect the 
correction that needs to be applied to joint ò3  compared to the previous state is 
now reduced. 

Since this property prohibits a parallel implementation of evolution for each joint 

(in this calibration method), only correction models for one joint are evolved at the 

time with the objective to minimise the performance index in the “environment” 

provided by the fittest correction models of the other joints. This concept is also 

known as co-evolution since the performance of individuals depends on the 

performance of individuals in other populations. While one correction model is 

evolved in its corresponding population, the evolution of the other models is 

suspended. The generations used by the calibration system (in Figure 4-5) to evolve 

the correction model vector g are the sum of the generations completed by each GP 

system. 
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Figure 4-8: Necessity of joint selection: The desired pose cannot be reached by 
altering joint angle ò1  

The necessity of selecting a correction model for evolutionary improvement 

depending on its contribution to the positional error is illustrated in Figure 4-8. The 

depicted 3-link manipulator is not capable of reaching the desired position by 

modifying the angle of 1st joint since this joint does not contribute to the positional 

error (The angle determined by X and Y co-ordinates of this pose is assumed to be 

equal to joint angle ò1). Hence it would not be possible to minimise the performance 

index by evolving a correction model for joint 1. Instead appropriate correction needs 

to be applied to joint 2 and 3 by co-evolving their correction models based on an 

appropriate joint selection. 

A problem occurs when a joint is selected for the first time. Its population of 

correction models has been randomly initialised with functions the fittest of which 

however might deteriorate the currently archived performance index (Note that the 

corresponding component in vector g (see equation 4.1 on page 61) is updated for 

evaluation with the fittest model of that population). This would mean a further 

unnecessary computational expense since the correction model of this joint would 

have to be evolved until the previous better performance index is regained and the 

evolution can actually progress. By introducing a neutral model (non-correcting 

model) to each initial population as explained before it is ensured that the currently 

achieved performance index of the model (kinematic plus best performing correction 

functions for all joints so far) is not degraded when the algorithm selects a joint for 

the first time. Since the GP system used in this work implements elitism, the best 

performing correction model is carried over to the next generation without changes. 

Hence the fittest correction model is kept until a better performing model emerges. In 

Desired Pose 

ò3

ò2

ò1
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this way it is ensured that the currently achieved correction models and hence the 

performance index cannot be degraded. 

Whenever the performance index (and thus the positional error between evolved 

and corrected position) has been reduced (which may take several generations) by 

evolving a particular joint correction model, the next step in the algorithm in Figure 

4-6 is to update the corresponding component in the correction model vector g with 

the fittest model of that population. Then the evolutionary cycle starts again by 

selecting a joint corresponding to the contribution of its correction model in the now 

updated correction model vector g to the remainder of the positional error (see 

section 4.4.2). This evolutionary cycle is repeated until the performance index drops 

below a certain limit or the sum of generations used to evolve all joint correction 

models exceeds a certain number. 

 
Joint 
number 
 

Gene-
ration 

Symbolic expression of the fittest correction model Perform. 
Index 

2 3 theta+SQRTp(0.3988464003418073)*0.0002441480758079775 98.18535 
2 4 theta+SQRTp(theta)*0.0002441480758079775 95.77828 
2 5 theta+(0.8793908505508591-theta-

SIN(theta))*0.0002441480758079775 
94.24098 

2 7 COS(0.5919370097964416*0.04806665242469558*theta)*theta 88.69122 
2 8 theta+theta*(theta-(theta-

COS(0.260567033906064))*0.04806665242469558*0.790063173
3146153)*0.001244148075807978 

88.45305 

2 9 theta+0.6468703268532365%(theta-(0.1467635120700705-
SIN(0.837916196172979)+theta-(theta-(0.2048097170934172-
theta))))*0.0002441480758079775 

86.1388 

2 10 theta+theta*(theta-0.6468703268532365%(theta-
(0.3129062776573992*0.001244148075807978-(theta-
0.4824976348155156))))*0.001244148075807978 

84.39505 

1 14 COS(SQRTp(0.9591051973021638)-
SIGN(0.4750205999938963))*theta 

83.3114 

1 16 COS(SQRTp(SQRTp(SIN((theta+0.03137302774132512)*SIGN(0.
03338724936674093))))-SIGN(0.4750205999938963))*theta 

65.1133 

2 17 theta+theta*(theta-0.6468703268532365%(theta-
(0.3988464003418073*0.0002441480758079775-(theta-
0.4824976348155156))))*0.001244148075807978 

65.11246 

 

Table 4-1: Symbolic expressions of the correction models generated during a 
typical run of the symbolic calibration algorithm beginning with a performance 
index of 106.203676 (uncalibrated model without joint corrections) 

The results from the beginning of a typical run (captured from the log-file of the 

calibration system during the experiments) of the calibration procedure is shown in 
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Table 4-1 which lines up in rows the evolved correction model of a particular joint, 

the generation36 at which this correction model emerged and the resulting improved 

performance index. Based on the calibration data used in this experiment joint 2 is 

first selected (see details of the selection method in section 4.4.2). Breeding of new 

correction models in the corresponding (second) GP system (see Figure 4-5) is 

performed until the performance index could be improved in generation three. The 

second component in correction model vector g is updated with the obtained 

correction model for the second joint. Based on the remainder of the positional error 

and the updated vector g joint 2 is selected again for further improvement of its 

correction model. In this way genetic programming gradually improves the 

performance index by refining the correction model of the second joint. In generation 

ten however a correction model emerges which reduces the positional error in a way 

that gives a correction of joint 1 more potential for a further reduction of the 

performance index (see section 4.4.2). Hence from generation 11 the algorithm 

switches to joint 1 and successfully evolves the first correction for this joint in 

generation 14 with a further refinement in generation 16. Based on the currently 

evolved correction models for joint 1 and 2 the algorithm switches at generation 16 

to joint 1 and proceeds evolving its correction model from generation 17. In this way 

the calibration algorithm automatically selects and improves joint correction models 

in g. 

4.4.2 Joint selection 

A problem of the symbolic calibration method described in section 4.4.1 is that 

applying corrections to joint configurations inevitably implies an alteration of the 

tool orientation (applies to the laboratory robot used in the experiments). To 

approach this problem a joint selection method has been used that selects joint 

correction models according to their potential to improve the positional error of the 

end-effector by applying minimal correction. The method is described as follows: 

                                                 
36 Note that the generations within the single GP systems in Figure 4-5 are numbered globally due to 
the serial processing. For example, in Table 4-1 after the initialisation the GP system 2 has completed 
10 generations. Then from the next generation (globally the 11th) the focus is switched to the GP 
system for joint 1, which processes locally its first generation. 
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The overall kinematic forward model can be expressed using the Denavit- 

Hartenberg parameters as: 

 T = Tr Tp
0T 1

ô õ
= A1A2A3A4A5A6P  

where Ai is the homogenous DH matrix for the ith link, P  the 4×4 tool 

transformation matrix (see also Appendix A.2), Tr the 3×3 rotation matrix of the 

tool frame and Tp  the 3×1 position vector (x, y, z) of the tool endpoint. 

Provided it is small the positional error contributed to the overall positional error 

∆Tp  of the robot by the ith link is estimated by the total error relation: 

 ∆Tpi = ∂ò i

∂Tp∆òi + ∂ai

∂Tp∆ai + ∂di

∂Tp∆di + ∂ë i

∂Tp∆ëi 
where ∆òi,∆ai,∆di and ∆ëi are small errors in the DH parameters. Since the joint 

compensation algorithm assumes that the positional error is only due to joint variable 

ò the following heuristic is applied: 

 ∆Tpi = ∂ò i

∂Tp∆òi 
which sets the error of the geometric parameters a, d and ë  to zero. For a 6 DOF 

industrial robot the positional error therefore is  

 ∆Tp =
P
i=1

6
∆Tpi = J∆ò (4.7) 

with J = [ ∂ò1
∂Tp, ... ∂ò6

∂Tp]  being the 3×6 positional Jacobian (three positional 

components and six joints) of T  with respect to the joint variables. This equation 

relates the joint angle error ∆ò = [∆ò1, ...,∆ò6]T  to the positional error ∆Tp  of the 

robot end effector for a particular pose. The potential of a joint to compensate for 

positional error at a particular pose using only a small change of the joint angle is 

indicated by the values in the respective column of the Jacobian J evaluated at the 

joint configuration corresponding to that pose. High absolute values indicate a high 

error compensation potential of the particular joint (column index) at the 

corresponding pose component (row index determines x, y  or z value) while low 

absolute values represent the need for a larger compensation to reduce the error at 

this pose component. A zero value in J shows that the corresponding joint is not 

capable of reducing an error in the particular pose component.  

The measure of the potential of joint j to compensate for a particular error 

described by a data sample (nominal joint configuration òN, corrected pose PC; see 

section 4.3) has been implemented as: 
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mj(òN,PC) :=
ììì
∂òj

∂Tp
(gj(òN))

T(PC àTp(gj(òN)))
ììì

:=
ììì
∂òj

∂Tp
(òE)

T∆Tp
ììì  (4.8) 

 

where ∆Tp = PC àTp(òE) = PC àPE is the positional error between corrected 

pose (target) and currently evolved pose37. To explain the principle of the 

performance measure equation 4.8 is rewritten as: 

 
 mj(òN,PC) :=

ììì ∂ò j

∂Tpx(òE)∆Tpx + ∂ò j

∂Tpy(òE)∆Tpy + ∂ò j

∂Tpz(òE)∆Tpz

ììì . (4.9) 
 

The measure is defined as the absolute scalar product of the derivative of the 

position equation vector with respect to the j th joint (j th column of the Jacobian) 

evaluated at the currently evolved joint configuration òE, and the corresponding 

positional error vector ∆Tp . Each of the three terms is the product of a positional 

error component and the corresponding change of the end-effector when altering the 

joint angle j by a minimal value. If the absolute value of a term is large it is typically 

due to a high value of the derivative, which indicates that joint j has a high potential 

to compensate this particular positional error component. However, the value of a 

term can be positive or negative. A positive value indicates that the particular error 

component can be compensated by reducing the value of the joint variable38. A 

negative value of a product term indicates that the value of the joint variable should 

be increased to compensate for the error component39. Different signs of the terms in 

equation 4.9 indicate that by applying a small correction to the joint variable j the 

values of the terms would change contrarily. While the (absolute) error in one 

component is reduced the (absolute) error in other components with opposite sign is 

                                                 
37 Tp(ò)  is identical to the notation f(ò, þN) used in this work for nominal kinematic models since 
only position measurements were considered. 
38 In this case derivative and error are both either positive or negative. In the first case the positive 
derivative indicates a compensation of the positive error component by reducing the value of the joint 
variable. If both factors are negative the negative derivative also indicates reducing the value of the 
joint variable so as to compensate for the negative error component. 
39 In this case both factors have opposite signs: If the derivative is negative it indicates increasing the 
value of the joint variable to compensate for the positive error component, as well as a positive 
derivative does to compensate for the negative error component. 
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increased. A possible situation is that the terms cancel each other resulting in a zero 

measure. This means that a small correction (regardless whether positive or negative) 

applied to joint j would not change the summed squared error ∆TpT∆Tp  of the 

pose. Hence the joint j would not have potential to compensate for the whole 

positional error of that particular pose. 

Using equation 4.8 the measure of the error compensation potential of the j th joint 

on n  data samples has been implemented as  

 M j :=
P
i=1

n
mj(ò

i
N,P

i
C)  (4.10) 

which sums the absolute measures of each data sample for this particular joint. For 

all six joints of the PUMA 761 the measure of the compensation potential over n data 

samples can then be written as 

 M :=
P
i=1

n ìììJT(g(òiN))∆Tpi
ììì  (4.11) 

with M  being the vector that receives the measured values for each joint. Eventually, 

the joint that corresponds to the element of M  with the largest value is selected for 

further evolutionary refinement of its correction model. (Note again, that the 

superscripted i in both previous equations is an index and does not represent 

exponentiation.) 

4.5 Direct learning of joint correction models 

An alternative approach to the evolution of joint correction models controlled by a 

distal teacher (the forward model) is the direct learning of the joint correction 

models. Direct learning means that not the performance index of the whole kinematic 

model as with the distal result of learning is subject to minimisation, but the direct 

error between nominal and calibrated (false target) joint configurations. Therefore in 

the remainder of this work the procedure of direct learning of correction models will 

also be referred to as direct joint error learning. Contrary to distal supervised learning 

the calibrated target joint configurations are explicitly given. The calibration data set 

containing nominal and calibrated joint configurations (òN, òC) is obtained using the 

nominal inverse model from the nominal and corrected poses (PN,PC) 
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respectively40. An advantage of this approach as opposed to distal supervised 

learning is a computationally more efficient evaluation since the global performance 

index (equation 4.6) involving the evaluation of the whole DH model does not need 

to be computed. Instead the evolution of the ith joint correction model is driven by its 

raw fitness measure 

 r(i) :=
P
k=1

n
òkC[i] à hi(ò

k
N[i])

ììì ììì  (4.12) 

being the summed absolute error between the targeted calibrated joint configuration 

and the joint configuration computed by the correction function (equation 4.1) from 

the corresponding nominal joint variable for n  calibration samples (Note that k in 

equation 4.12 is an index and no exponent). As this objective of minimisation is 

decoupled from the global performance index of the whole model, the joint 

correction models can be evolved independently for each joint. Since calibration data 

(òN, òC) from inverting the nominal and corrected poses is provided for all joints 

simultaneously, this property enables the parallel evolution of the joint correction 

models in GP systems being implemented on distributed computers. 

Principally, the calibration set-up illustrated in Figure 4-5 applies to this 

calibration method too. However, the fitness evaluation within the populations needs 

to be implemented as measuring the raw fitness described in equation 4.12 and data 

preparation procedure involves the inverse transformation of the corrected poses PC  

into calibrated joint configurations òC . 

4.6 Summary 

This chapter presented details of a general genetic programming method for static 

inverse positional calibration of industrial robots. The basic idea of this approach is 

to evolve symbolic joint correction models so as to compensate for positional error of 

the end-effector of the robot when sent to offline generated poses. Two symbolic 

calibration methods have been proposed which basically differ in the format of the 

                                                 
40 In this work only positional measurements were taken from the robot tool. The calibrated joint 
configuration of an end-effector pose (3 DOF) is hence computed from the nominal orientation and 
corrected position using the nominal inverse kinematic model. In case of full pose measurement (6 
DOF) the calibrated joint configurations of a pose are obtained from the corrected orientation and 
corrected position. 
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calibration (or training) data and in the implementation of the fitness evaluation. The 

first method evolves (more specifically co-evolves) and evaluates the correction 

models in context of a nominal kinematic forward model being a distal teacher. The 

underlying concept of distal supervised learning being a general approach for 

learning inverse models is used to establish joint correction functions, which model 

the error of the nominal inverse kinematic model. Learning of these functions (more 

specifically the correction models) is performed sequentially by implementing a co-

evolutionary scenario with the objective to minimise the performance index being a 

measure of the total positional error of the robot end-effector. In the second method 

the evolution of the correction models is performed by direct learning. Instead of 

evaluating the impact of an individual correction model on the total positional error 

of a kinematic model, the evolution is driven by the direct error between nominal and 

calibrated joint configurations. The implementation of a nominal inverse kinematic 

model is required to obtain the calibrated joint configurations from corrected training 

poses. The advantage of the direct learning method is a more efficient evaluation of 

the individual fitnesses, and a potential parallel (possibly distributed) implementation 

of the evolution of correction models for each joint. 
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Chapter 5 

Implementation of the evolutionary 
calibration system 

This chapter presents software implementation details of the new symbolic 

calibration concept developed in Chapter 4. Object oriented concepts have been 

applied to design the calibration system and the relationships between its 

components. First general issues for the design of the genetic programming system 

are discussed. Then the main object structures, which constitute the calibration 

system, are described. 

5.1 GP implementation issues 

An inherent property of evolutionary computation is multiple occurrence of 

genotypic material41, which implies multiple and usually redundant evaluation. For 

standard genetic programming this means that several equal trees, which occur in 

different or within the same individuals, have to be traversed more than once. This is 

necessary for programs in which the result of the evaluation depends on the context. 

For example the control strategy of an artificial ant on the “Santa Fee Trial” is coded 

as a tree of motion commands [49]. The execution of those commands moves the ant 

                                                 
41 Equal chromosome fragments may occur in individuals across the population. This is mainly due to 
the crossover operator. In genetic programming equal trees particularly small trees are often generated 
during population initialisation or by subtree mutation. 
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relatively to its current position in the toroidal grid. Thus evaluating the same control 

strategy in a different context results in different positions. However, in symbolic 

regression as used in this work the evaluation of mathematical expressions with the 

same arguments will always produce the same results. Hence a multiple evaluation of 

equal subtrees is very inefficient. In order to avoid this inefficiency equal subtrees 

could be shared as illustrated in Figure 5-1. The subtree is evaluated only once and 

the result reused for the evaluation of all trees sharing this subtree 

Figure 5-1: Ways of dealing with equal subtrees in genetic programming 

In the GP implementation described in this chapter equal subtrees are shared 

between individuals across the population enabling them to be evaluated in parallel. 

The similarity between tree generation and tree evaluation in terms of beginning 

from the leaf nodes up to the root node (bottom-up tree generation, depth-first 

evaluation) has been exploited by storing the nodes in linear lists. The position of 

each node in the list corresponds to the order they were created with the first created 

node being on the bottom and the last node on the top of the list (Reverse Polish 

Notation). Thus nodes implement a dual representation as being tree nodes and list 

nodes as illustrated in Figure 5-2. Two lists are used to register the nodes of a 

population: one for terminals and for non-terminals i.e. functions (Note that these 

lists are not the terminal and non-terminal sets used for tree generation described in 
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section 3.3.2). Terminals are kept in a separate list since they do not change their 

value depending on other nodes. In order to evaluate a population it is necessary to 

specify particular values for the variable(s) in the terminal list and to evaluate each 

node in the non-terminal list sequentially bottom-up beginning from the first node 

created up to the last. During the evaluation each node stores its evaluated result, 

which can subsequently be accessed from other nodes that have been generated past 

this node. Thus the results of previous evaluations are reused which avoids multiple 

evaluations of shared subtrees. 

Figure 5-2: Internal dual representation of a population: to support efficient 
evaluation GP tree nodes are elements in a linear list arranged corresponding to 
the order of their creation (last created node on top) 

The evaluation result of each tree in the population can be taken from the 

respective root node in the non-terminal list shown in Figure 5-2 (Note that the 

logical structure of the trees has not been changed). In this way the whole population 

is linearly evaluated avoiding inefficient multiple evaluation of common subtrees. 

Moreover, linear evaluation is computationally much more efficient than recursively 

traversing each individual tree in the population. However, compared to standard GP 

implementing individual tree evaluation the maintenance of shared substructures as 

explained above also involves a higher administrative overhead. A database of nodes 

currently used in all trees throughout the population must be established to enable all 

tree-producing mechanisms such as initial tree generation, mutation and crossover 

operator to find previously generated nodes. A garbage collection mechanism for 

example based on reference counting needs to be implemented to avoid unnecessary 
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evaluation of unused nodes. This mechanism keeps only those tree nodes in the 

database, which are either root of a tree in the population, or which are referenced by 

other trees. 

The programming language chosen for this project was C++ [74] although LISP 

was initially considered. However, C++ was eventually selected since it exhibits 

better runtime performance and offers object oriented concepts, which permit a 

modular description of the very complex program and data structures used for the 

application of genetic programming in this work. In contrast to C++ the modelling 

and implementation of shared structures and hence the simultaneous evaluation of all 

individuals in a population is more complex using LISP. 

5.2 Design and implementation of the main calibration 
system components 

This section describes implementation details of the evolutionary calibration 

system developed in this work. This system is generally applicable to symbolically 

generate correction models to calibrate any manipulator. Due to the complexity of 

the whole software system only the main components (C++ classes) are listed and 

their structure briefly described. Also, only the main declarations (predominantly 

interfaces) relevant to explaining the functionality of the C++ classes are described. 

Figure 5-3 depicts the dependencies and relationships of the C++- classes for the 

main components based on the illustration of the basic calibration procedure in 

Figure 4-5. This graph shows the inheritance, membership and relational information 

about the system classes used in the calibration system. It also shows the hierarchical 

structure of the calibration system, i.e. the decomposition of the main system into 

sub-components which are themselves aggregated from less complex components. 

References (implemented as pointers) between class instances (also known as 

objects) are used to send messages to the referenced object (by calling a 

corresponding method) to trigger a certain event (for instance from the calibration 

system object to a gp_system object to start the breeding process). Figure 5-3 also 

depicts the inheritance hierarchy (arrows point in direction of inheritance source) of 

system classes, if applicable. Furthermore the system classes are graphically grouped 

into different categories to illustrate their functionality and application context. The 
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evolutionary calibration system is mainly divided into classes, which implement the 

tree representation, the genetic programming mechanisms and the system classes 

controlling the calibration. 

Figure 5-3: Combined dependency digraph of main C++ classes of the 
evolutionary calibration system 

5.2.1 Tree implementation 

The dual representation of GP tree / linear list shown in Figure 5-2 is implemented 

by four classes. As can be seen in Figure 5-3, the only interface class for the genetic 

programming algorithm to operate on this representation is the core class Node (see 

Table 5-1). This class implements a GP tree node including the evaluation algorithm 

described in section 5.1. The functionality’s of the other three tree implementation 

classes are entirely transparent for the GP algorithm and are hence not described in 

detail. The class nlist_type inherited by Node implements an element of a double-

chained linear list with the required list manipulation methods (insertion, deletion). 
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Hence each tree node is at the same time an element in a linear list. This 

implementation establishes the dual representation illustrated in Figure 5-2. The class 

nlist_type itself inherits the class reference_type, which provides a garbage collection 

mechanism based on reference counting as described in section 5.1. In order to 

establish shared substructures (in the case of equal subtrees) previously created equal 

nodes need to be found by the tree producing mechanisms (initial tree generating, 

mutation and crossover). This search is performed by the class node_manager_type, 

which implements a database to register nodes in two lists as described in section 5.1 

and depicted in Figure 5-2. The node database and therefore the garbage collection is 

transparently operated by the class Node. 

 

Class Node  

 Data structure  

 Constant Value of the node as string (only for variables, numbers and 
unary functions (SIN, COS etc.); otherwise the value is 
NULL.) 

 

 Symbol Node descriptor. To identify the kind of the node: Possible 
values: PLUS, MINUS, MUL, PDIV, PLOG; and in 
conjunction with the value of constant: VARIABLE, 
NUMBER and FUNCTION. 

 

 node_list Pointer to the node database  
 Lnext Pointer to left subtree  
 Rnext Pointer to right subtree  
    
 Methods  

 Node(name,sym,l,r,
nl) 

Constructor: initialises data structure: constant=name, 
symbol=sym, lnext=l, rnext=r, node_list= 
nl, and registers the node in database node_list. 

 

 ~Node() Destructor: releases used resources and deletes the instance 
from the node database. 

 

 get_node(name,sym,
l,r) 

Retrieves a node. First the database node_list is searched 
for a node with a data structure corresponding to the 
parameter values. If no node is found it will be created. In that 
way the node database is operated entirely transparently. This 
is the only method used to generate tree nodes. 

 

 output_infix( 

stream) 

Outputs the expression rooted at the current node into the file 
stream. 

 

 calculate_list(); Bottom up evaluation (as illustrated in Figure 5-2) of the 
entire expression stored in the node database. 

 
    

Table 5-1: Structure of class Node 
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5.2.2 Calibration system structures 

The actual genetic programming mechanisms are implemented in class gp_system 

(Table 5-7), which encapsulates an instance of the class gp_resource (see Figure 

5-3). The class gp_resource (Table 5-2) provides the terminal and function set (of 

type gp_i_set) as well as the implementation of basic tree generation (GROW, 

FULL) and validation (maximum tree depth etc.) methods used by the genetic 

programming algorithm. 

 

Class gp_resource  

 Data structure  

 node_db Pointer to node database of the population  
 Terminals Set of terminals  
 Functions Set of functions  
    
 Methods  

 gp_resource() Constructor, creates empty node database and initialises 
terminal and function set. 

 

 create_tree(d, 

fulldepth) 

Creates trees of depth d; the fulldepth parameter determines 
the tree generation method: 
fulldepth==false: GROW method 
fulldepth==true: FULL method 

 

 valid_tree(node) Checks if node fulfils tree generation constraints (minimal and 
maximal tree depth). 

 

 tree_depth(node) Returns the depth of the tree rooted at node.  
    

Table 5-2: Structure of class gp_resource 
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As shown in Figure 5-3 the class gp_system also refers to an instance of class 

kinematic_type (Table 5-5), which implements a general forward kinematic model 

(geometric) required for evaluating correction models evolved using distal 

supervised learning. The kinematic model equations are represented as a 

homogenous matrix of symbolic expressions (GP trees), which is implemented in 

class h_matrix (Table 5-3). For this representation of the model equations the class 

Node has been reused due to its efficient evaluation mechanism (calculate_list() 

method in Table 5-1). The model equations have been established from Denavit-

Hartenberg (DH) specifications stored in string matrices (see Table 5-4). The 

elements of such a string matrix are strings representing the corresponding terms of a 

DH matrix. In order to build a kinematic model DH of a particular robot the string 

matrices for all links are parsed42 into matrices of symbolic expressions, which are 

symbolically multiplied according to their order. By symbolic multiplication of two 

trees is meant the creation of a new node representing multiplication with the two 

factor trees being child (or argument) trees. Symbolic addition is performed 

accordingly. Both, symbolic multiplication and addition are then used to implement 

the matrix multiplication operation in method r_multiplication(…) (Table 5-3). 

 

Class h_matrix  

 Data structure  

 matrix 3×4 matrix of Node pointers, represents the kinematic 
equations in a homogenous matrix. 

 

 node_set Pointer to the node set from which the equations in matrix are 
constructed. 

 
    
 Methods  

 h_matrix(strm,set) Constructor: Creates matrix of symbolic expressions by 
parsing the string matrix strm (see Table 5-4 for example) into 
member matrix. The variable node_set is initialised with set. 

 

 ~h_matrix() Destructor: Deletes the symbolic expressions in matrix.  
 r_multiplication( 

strm) 
Parses the string matrix strm (example matrix Table 5-4) and 
right-multiplies the result symbolically with the current 
expressions in matrix and stores the product in matrix. This 
method is used to multiply the single DH matrices when 
building the overall kinematic robot model. 

 

 add_tool(t) Adds the translation t of the tool tip relative to the tool frame.  
    

Table 5-3: Structure of class h_matrix 
                                                 
42 Expression parsing has been implemented using recursive descent. See [3] for a description of 
parsing principles. 
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String_matrix_type dh1= 
{{"cos(theta1)","-cos(PI/2)*sin(theta1)","sin(PI/2)*sin(theta1)" , "0"}, 
 {"sin(theta1)","cos(PI/2)*cos(theta1)" ,"-sin(PI/2)*cos(theta1)", "0"}, 
 {"0"          ,"sin(PI/2)"             ,"cos(PI/2)"             , "0"} 
} 

Table 5-4: An example of a string matrix: DH matrix for the first link of the 
PUMA 761 

An instance of class kinematic_type is initialised with a sequence (array) of DH 

matrices represented as string matrices (see Table 5-4). All string matrices (See also 

source code at page 161 in the appendix) are parsed into matrices of GP trees and, 

corresponding to their order, subsequently multiplied together (calling method 

r_multiplication(…) of member matrix for each string matrix) to constitute the 

overall kinematic model (stored in matrix) of the particular robot. In this way the 

kinematic model of any manipulator can easily be established from its DH 

description. 

 

Class kinematic_type  

 Data structure  

 matrix Matrix containing the kinematic equations as symbolic 
expressions. 

 

 joints List of direct accessible nodes of the joint variables (needed 
for assigning the joint values when evaluating the kinematic 
model). 

 

    
 Methods  

 kinematic_type(nod
e_db,string_matric
es[],n,tool); 

Constructor: Initialises matrix with the kinematic model from 
DH description stored in field string_matrices[] of length n 
using node database node_db. The tool parameter determines 
the dimension of the tool used for calibration. The member 
variable joints is initialised with the nodes representing the 
joint variables. 

 

 ~kinematic_type() Destructor: Destroys the joint variable list joints and the trees 
stored in matrix. 

 

 compute_forward_ki
nematic(dataset[],
n) 

For each of the n joint configurations in dataset[] the 
corresponding end-effector position vector is computed and 
assigned to the particular dataset sample.  

 

 compute_position_e
rror(dataset[],n) 

Returns the performance index (equation 4.6 on page 63) of n 
samples of calibration data in dataset[] (joint configurations 
and corresponding target position). 

 

    
Table 5-5: Structure of class kinematic_type 

The genetic programming algorithm implemented by class gp_system (Table 5-7) 

operates on a population of instances of the class gp_robot_chromosome (Table 5-6) 
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which encapsulates a single joint correction model as a tree constructed from 

instances of the class Node. Furthermore this class implements mutation and 

crossover operators, which are applied to the correction model when undergoing 

genetic modification. 

 

Class gp_robot_chromosome  

 Data structure  

 theta_index Indicates the number of the joint the correction model is 
applied to. Since each instance of this class implements the 
correction model of one particular joint, this information is 
required for the evaluation mechanism. 

 

 data[] Set of calibration samples (joint configurations and target end-
effector positions (see section 4.3). 

 

 resource Pointer to gp_resource instance that defines the terminal and 
function sets linked to the population this particular 
chromosome belongs to. This information is particularly 
needed for mutation. 

 

 joint Root of the GP tree representing the correction model.  
    
 Methods  

 gp_robot_chromosom
e(resource,max_dep
th,full_depth,j_in
dex) 

Constructor: Links the instance to its joint j_index and to its 
terminal and function set in resource (type gp_resource) and 
prompts resource to create a tree using the parameters 
max_depth and full_depth (see Table 5-2). 

 

 ~gp_robot_chromoso
me() 

Destructor: Destroys the GP tree rooted at the node stored in 
joint. 

 

 mutation() Performs mutation on the tree rooted at the node stored in 
joint according to globally specified parameters (see Table 
5-8). 

 

 crossover(c) Performs crossover with chromosome c.  
 apply_corrections(

dataset[],n) 
Core method: Applies correction to each of the n data samples 
in dataset[]. Corrected in each sample will be the value of the 
joint specified by the member variable theta_index. This 
method is used after calibration to correct offline generated 
poses.  

 

 equals(c) Returns true if this instance is equal to chromosome c. 
Otherwise it returns false. This method is used during the 
initialisation of the population to prevent the emergence of 
equal chromosomes. 

 

 evaluate(n,km) Returns the fitness value, which is the performance index of n 
samples of the calibration data stored in member variable 
data[] using the kinematic model km (type kinematic_type). 

 

 evaluate_populatio
n(p[],pn,ds[],n,km
); 

Parallel evaluation of all pn chromosomes in population p[] 
using the kinematic model km on n calibration data samples 
stored in ds[]. 

 

    
Table 5-6: Structure of class gp_robot_chromosome 
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The class gp_system (Table 5-7) encapsulates and implements the basic genetic 

programming algorithm operating on a population of correction models. This 

includes control over population administration (i.e. initialisation, evaluation) and the 

actual breeding mechanism based on tournament selection. Each instance of this 

class within the calibration system (implemented by class calibration_system shown 

in Table 5-10) evolves a correction model for one particular joint. 

 

Class gp_system  

 Data structure  

 gp_set 

 

Function and terminal set linked to this particular genetic 
programming system. 

 

 kinematic_model List of direct accessible nodes of the joint variables (needed 
for assigning the joint values when evaluating the kinematic 
model). 

 

 population Field of chromosomes of type robot_gp_chromosome 
representing the population. 

 

 new_population Population of the offspring chromosomes.  
 theta_index Joint index linked to this GP system.  
 kinematic_model Kinematic model of type kinematic_type required for 

evaluating the correction models (in distal supervised 
learning). 

 

    
 Methods  

 gp_system(ds[],n,k
m,ti); 

Constructor: Links the GP system to the joint denoted by ti, 
initialises the population with chromosomes, n calibration data 
samples in ds[], and a reference to the kinematic model (of 
class kinematic_type). 

 

 ~gp_system() Destructor: Destroys the population of correction models.  
 init_half_and_half

() 
Initialises the population using the RAMPED HALF & HALF 
method (section 3.3.3). 

 

 already_in_populat
ion(ch,n); 

Scans the first n chromosomes in member population for 
occurrences of chromosome ch and returns true if one was 
found. Otherwise the function returns false. This method is 
used for the initialisation of the population to prevent multiple 
occurrences of chromosomes. 

 

 breed_until_improv
ement(ds[],n,f,g, 
max_gen) 

Breeds new populations until the performance index on n 
calibration data samples in ds[] could be improved (see also 
Figure 4-6) or the current generation g exceeds the maximum 
number max_gen of generations. Status information (fittest 
individual, current generation) will be logged into file f. 

 

 correct(ds[],n) Calls the method apply_correction(ds[],n) (see Table 5-6) 
from the best correction model in the population. 

 

 write_statistic(f) Stores the best performing correction model in file f.  
    

Table 5-7: Structure of class gp_system 



Chapter 5. Implementation of the evolutionary calibration system 86 
 

 
5.2 Design and implementation of the main calibration system components  

The run of the genetic programming algorithms in the individual instances of class 

gp_system is globally controlled by the parameters listed in Table 5-8: 

 

GP Parameter Description 

POPULATION_SIZE Number of chromosomes in a population 
NUMBER_GENERATIONS Number of populations initially generated. This is 

a parameter, that can be increased interactivly by 
the user in order to continue the evolution. 

TOURNAMENT_SIZE Number of chromosomes competing in the 
tournament . 

INITIAL_MAX_TREE_DEPTH1 Initialisation of a population is performed using 
the RAMPED HALF&HALF method. This 
parameter describes the maximal tree depth at the 
beginning of the ramp. 

INITIAL_MAX_TREE_DEPTH2 Maximal tree depth at the end of the ramp 
MAX_TREE_DEPTH All tree producing operators (initial tree 

generations, crossover, mutation) are constrained 
not to generate a tree with a larger depth than 
described with this parameter. 

MIN_TREE_DEPTH The tree generation of the GROW method and 
mutation operator is constraint to produce trees of 
a minimum depth in order to prevent the 
populations from occurrences of short trees or 
terminals which may not have the potential to 
sufficiently model the joint error. 

INVALID_ATTEMPTS This parameter controls the number of attempts to 
create a valid tree by crossover and mutation. If 
this number is exceeded the respective parent(s) 
will be reproduced for the next generation. 

CROSSOVER_RATE Probability of applying crossover. 
MUTATION_RATE Probability of applying mutation. 
TERMINAL_CROSSOVER_RATE This parameter determines the probability of 

terminals being crossover points (A small value 
characterises a preference for subtree crossover 
which has the potential to introduce larger 
changes to the offspring). 

TERMINAL_MUTATION_RATE Probability of mutating terminal nodes. 
SHRINK_MUTATION_RATE The probability of mutating trees by replacing 

selected subtrees with randomly generated trees 
of lower depth. 

 

Table 5-8 : GP parameters used by the calibration system 

The overall calibration system is implemented by class calibration_system (Table 

5-10), which encapsulates 6 autonomous instances of class gp_system (one for each 

joint of the PUMA 761 robot (see also Figure 4-5)) and an instance of class 

kinematic_type_with_derivative (Table 5-9). The class calibration_system also 

implements the joint selection mechanism used by the distal supervised learning 
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method described in section 4.4.2. The required measure of the compensation 

potential of each joint (equation 4.11) is implemented by the class 

kinematic_type_with_derivative.  

 

Class kinematic_type_with_derivative  

 Data structure  

 der1,der2,der3,  
der4,der5,der6 

Homogenous matrices of type h_matrix (node matrix) 
representing the derivatives of the kinematic model matrix 
with respect to joint 1-6. 

 

    
 Methods  

 kinematic_type_wit
h_derivative(node_
db,string_matrices
[],n,tool) 

Constructor: Parameters are passed on to the constructor of the 
inherited class kinematic_type (same parameter list) to 
initialise the kinematic model used throughout the calibration 
system. 
Initialises the matrices der1 - der6 with the derivatives the 
kinematic equations according equation 5.1. These matrices 
are established by reusing the symbolic multiplication 
mechanism inherited from class kinematic_type. The 
parameter tool expresses the translation of the tool end point 
to the origin of the tool frame. 

 

 get_joint_with_mos
t_p(ds[],n,f); 

Returns the number of the joint with the most potential for 
error compensation (described in section 4.4.2) based on n 
data samples in ds[]. A data sample in ds[] consist of the 
currently evolved joint and corrected end-effector position 
(target). The result of the computation is logged into file f. 

 

    
Table 5-9: Structure of class kinematic_type_with_derivative 

The necessary derivatives of the kinematic model equations with respect to each 

joint are obtained from  

 D j =
ð Q

i=1

6
Kij

ñ
P       with Kij = ∂ò j

∂Ai ; i=j

Ai ; else

(
 (5.1) 

 
where Dj is the matrix derivation of the homogenous overall kinematic model matrix 

with respect the jth joint, where P  is the 4×4 tool transformation matrix and Ai the 

DH matrix of the ith link (see also appendix section A.2). Computation of the model 

derivatives according to equation 5.1 is performed symbolically by class 

kinematic_type_with_derivative (Table 5-9). That is the mechanisms inherited (see 

class graph in Figure 5-3) from class kinematic_type (Table 5-5) for constructing a 

kinematic model from an array of string matrices have been reused to initialise the 

member matrices der1-der6 (Table 5-9). For each joint j the required matrix 
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derivative ∂òj

∂A i = ∂òj

∂R i

∂òj

∂X i

0T 0

" #
 (Ri is the 3×3 rotation matrix and Xi the 3×1 position 

vector of the ith link) in equation 5.1 is provided by a string matrix (see Table 5-4). 

The elements of such a string matrix are the derivatives (with respect to òj) of the 

elements of the ith DH matrix represented as strings. The model derivative Dj is then 

generated according to equation 5.1 using the model generation mechanisms 

(equation parsing and symbolic matrix multiplication) inherited from class 

kinematic_type. Again, this design enables an easy adaptation of the calibration 

system to robots with different kinematics, as only the kinematic parameters in the 

string matrices (see Table 5-4 for example) need to be textually edited prior to 

calibration. 

 
Class calibration_system  

 Data structure  

 gp1,gp2,gp3,gp4, 
gp5,gp6 

6 instances of class gp_system, one for each joint.  

 der Instance of class kinematic_type_with_derivative.  
    
 Methods  

 Calibration_system
(ds[],n,km) 

Constructor: Initialises the six genetic programming systems 
for each joint. Parameters ds[], n und km are passed on to the 
constructor method of gp_system for each instance (see Table 
5-7).  

 

 ga(ds[],n,f) Main method: calling this method starts the calibration 
procedure. Parameters are the n calibration data samples in 
ds[] and the descriptor for the logfile f, which receives 
information about the calibration process. The implementation 
essentially corresponds to the algorithm in Figure 4-6. 

 

 correct(ds[],n) When calibration has been performed, correction is applied by 
calling this method for n joint configurations in data set ds[]. 
This method subsequently calls the correct() method of each 
of the six GP systems to correct the respective joint value in 
each of the n data samples (provided a correction model has 
been evolved). 

 

 write_statistic(f) Calls the write_statistic() of all 6 GP system instances.  
    

Table 5-10: Structure of class calibration_system 

Using the C++ class definitions described in this section the entire calibration 

process is performed by the compact C++ procedure shown in Table 5-11. 

First, a kinematic model object (type kinematic_type) is created, which will be 

used for the preparation of calibration data and the evaluation of correction models 
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throughout the calibration using distal supervised learning. The parameter 

PUMA_parametric contains an array of string matrices (see Table 5-4), which 

describe the 6 DH matrices of the PUMA 761 industrial robot used for the calibration 

experiments in this work. The parameter tool describes the dimension of the tool 

used as being the translation of the tool endpoint from the origin of the tool frame. 

Having initialised the kinematic model the calibration data set is prepared using 

the algorithm shown in Figure 4-3 and a file receiving information about calibration 

process (e.g. joint selection status and performance index) and results is opened. 

Subsequently, the main calibration system (c_system) is instantiated. 

 
void main_gp(Node node_db) 
{  
   kinematic_type kinematic_model(node_db,PUMA_parametric,6,tool); 
   dataset_type data[100]; 
   int data_samples=prepare_calibration_data(data,&kinematic_model); 
   if (data_samples==-1) throw int(0);  
                         //if data preparation was in error throw exception 
   file_manager logfile(“gp_logfile.txt","w+"); 
   calibration_system c_system(data,data_samples,kinematic_model); 
   c_system.ga(data,data_samples,logfile.file); 
   alter_joint_angles("t1.v2","updated_t1.v2",&c_system); 
   alter_joint_angles("t2.v2","updated_t2.v2",&c_system); 
   c_system.write_statistic(logfile.file); 
} 

Table 5-11: C++ implementation of the calibration procedure 

The calibration is started by calling the ga() method of the calibration system 

(c_system) with the calibration data set, the number of data samples in the data set 

and the log file descriptor being the arguments. When the calibration has succeeded 

the evolved joint correction models within the GP systems in c_system are used to 

alter joint configurations stored in offline generated robot program files. For this the 

procedure alter_joint_angles is called for two VAL II files (t1.v2 and t2.v2 in the 

example) to apply corrections to the joint configurations stored in these files. The 

corrected joint configurations are then stored in the files updated_t1.v2 and 

updated_t2.v2 respectively, which are eventually uploaded into the robot controller. 

Finally, the results of the calibration procedure namely the evolved correction 

models are stored in the file logfile. 
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5.3 Summary 

This chapter described software design and implementation issues of the 

evolutionary calibration method presented in Chapter 4. An evolutionary calibration 

software system has been developed, which is generally applicable to symbolically 

generate joint corrections to calibrate any manipulator. The structure of this 

calibration system and its main components has been outlined in this chapter. The 

representation of symbolic expressions is based on shared substructures implemented 

to improve the runtime performance of the calibration system. The application of this 

software to the positional calibration of a PUMA 761 manipulator is described in 

Chapter 6. 
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Chapter 6 

Results from calibration experiments 
on a PUMA 761 manipulator 

This chapter presents the experimental results of the evolutionary calibration 

method described in Chapter 4. The experiments were carried out on a 6 DOF 

Unimation PUMA 761 industrial robot. First the general context is explained i.e. the 

data measurement procedure, GP system set-up etc. Symbolic calibration is then 

performed on a set of measured data using both variants of the genetic programming 

method and the resulting joint correction models are presented. 

6.1 Calibration set-up 

First a calibration area within the workspace of the robot has to be established. In 

the experiments described in this chapter a calibration area of the form of a cuboid 

has been defined the edges of which are parallel to the axes of robot base frame. The 

dimension of this cuboid was defined to be (x, y, z) = (844 mm, 582 mm, 1151 

mm). The location of its corner, which is the closest to the origin of the robot base 

frame, has been defined in robot base frame co-ordinates as (x, y, z) = (432 mm, 

490 mm, -675 mm). The actual robot tool used for the experiments is displayed in 

Figure 6-1 and has been accurately measured using a 3 co-ordinate measurement 

machine. The position of the tool endpoint is described relative to the tool frame as 

the translation (∆x,∆y,∆z) = (150.25 mm, 1.63 mm, 55.69 mm). As generally 
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stated for model-based calibration, all kinematic parameters may be identified using 

only position measurements if the measured points are not located along the tool axis 

[25]. This requirement is met by the tool shown in Figure 6-1 and also applies to the 

symbolic calibration method described in this work if correction models are to be 

generated for all joints. If a tool was used for which the endpoints were located along 

the local tool axis only (x = 0, y = 0)  no error could have been attributed to the last 

joint. In that case the partial derivatives of all components in the position vector with 

respect to joint 6 (used in the error Jacobian in equation 4.7) were zero resulting in a 

zero measure for all calibration poses. Hence no correction model would be 

generated for this joint. 

Figure 6-1: Robot tool used for experiments 

6.1.1 Calibration data 

For the calibration experiment a data sample set consisting of thirty 30 random 

poses within that the calibration area defined in section 6.1 was generated. In order to 

guarantee observability of the error in each joint it was made sure that all joints were 

involved when moving through these poses43. At a speed of 16% (of full speed, see 

equipment manual [75]) the robot was sent to these calibration poses and 

measurements of the actual positions of the tool endpoint were taken using the 

                                                 
43 However, the full possible range of each joint was not considered since the calibration was 
performed local to the defined calibration area and restrictions in the tool orientation were imposed by 
the Robotrak measurement system. 
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Robotrak measurement device (see section A.1). The corresponding joint 

configurations of these poses were obtained directly from the VAL II system during 

the measurement procedure. Therefore there is no need to implement a nominal 

inverse kinematic function to convert the poses into joint configurations required for 

calibration. Each time the robot settles for a pose the corresponding joint 

configuration can be obtained by issuing the VAL II command HERE #p which 

stores the current pose as a precision point (6 joint angles) in variable p. The small 

program in Figure 6-2 was used to drive the robot to the calibration poses and to 

obtain the joint angles, while Robotrak took the positional measurements. Storing 

this program after its execution into a file automatically attaches all used variables 

and therewith the array #cp[] of generated joint configurations [72]. 

 
 .PROGRAM t1 
   FOR l = 1 TO 30 
     MOVE mcp[l] 
     DELAY 3 
     HERE #cp[l] 
   END 
 .END 

Figure 6-2: VAL II program used to obtain measurements and joint 
configurations 

Following the measurements of the calibration poses the three local frame points 

needed for the data transformation (see section A.1.1) were manually taught and 

subsequently measured by Robotrak. 

Figure 6-3: Positional error of the robot tool end point in X, Y and Z on the 
calibration data set prior to calibration 
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The positional error of the robot tool end point in X, Y and Z direction at the 30 

calibration poses prior to calibration is shown in Figure 6-3. The absolute tool error 

(or tool deviation) being ∆x2 +∆y2 +∆z2
p

 at these poses is shown in Figure 6-4. 

Figure 6-4: Absolute positional error of robot tool end point on the calibration 
data set prior to calibration 

6.1.2 Validation data 

In order to evaluate the generalisation capabilities of the evolved joint correction 

models another set of 30 random end-effector poses has been generated within the 

calibration area defined in section 6.1. The measured positional error of the tool 

endpoint at these poses prior to calibration is illustrated in Figure 6-5. 

Figure 6-5: Positional error of the robot tool end point in X, Y and Z on the 
validation data set prior to calibration 
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Figure 6-6: Absolute positional error of robot tool end point on the validation 
data set prior to calibration 

6.2 Experimental symbolic calibration using Distal 
Supervised Learning 

In this section the results are presented obtained from a symbolic calibration 

experiment using the distal supervised learning approach described in section 4.3. 

The GP system instances within the evolutionary calibration system (see Figure 4-5 

and Figure 5-3) implement the generational evolutionary algorithm and tournament 

selection with elitism. The genetic programming parameters, which have been used 

in the experiments, are shown in Table 6-1 (see also Table 5-8 for description). 

 

GP Parameter Value 

POPULATION_SIZE 300 
NUMBER_GENERATIONS 1000 
TOURNAMENT_SIZE 5 
INITIAL_MAX_TREE_DEPTH1 3 
INITIAL_MAX_TREE_DEPTH2 5 
MAX_TREE_DEPTH 9 
MIN_TREE_DEPTH 3 
INVALID_ATTEMPTS 21 
CROSSOVER_RATE 0.8 
MUTATION_RATE 0.2 
TERMINAL_CROSSOVER_RATE 0.2 
TERMINAL_MUTATION_RATE 0.3 
SHRINK_MUTATION_RATE 0.2 

Table 6-1: GP parameters used in the calibration experiment using distal 
supervised learning 
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The terminal set T and the non-terminal set F were defined as: 

T = {ò,<}

F = {+ ,à , ã ,%, SIN,COS, SIGN, SQRTp}
 

with ò being the joint variable, < ∈ [0, 1]  a random ephemeral constant, with 

addition, subtraction, multiplication, the protected division % , sine, cosine, the sign 

function and the protected square root (see section 3.3.1). 

6.2.1 The calibration process 

The process of evolving joint correction models was limited to 1000 generations 

(see other parameters in Table 6-1), the computation of which took about 15 minutes 

on a PC with an Intel Celeron™ processor running at 500Mhz (The time required to 

complete a calibration varies between different trials due to different structural 

complexity of the evolved expressions). The reduction of the performance index 

(equation 4.6) as being the fitness measure during the entire evolutionary process is 

shown in Figure 6-7. This figure also illustrates the discontinuity of the evolutionary 

progress. By evolving more accurate correction models the algorithm rapidly reduces 

the performance index within the first 50 generations followed by a long phase with 

minor improvements, and from generation 815 with a further significant reduction. 

Figure 6-7: Performance index of the kinematic model during the evolution of 
the joint correction models 

The individual components of the performance index during the entire 

evolutionary process are shown in Figure 6-8 documenting the contribution of the 

summed squared error in X, Y and Z direction over all data samples. The number of 
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a joint for which a correction model is being evolved at a particular generation is 

shown in Figure 6-9. The selection of a currently evolved joint correction model 

during the evolution is based on the current error correction potential of the joints 

shown in Figure 6-10 and Figure 6-11. It can be seen from these figures that rapid 

improvements of the performance index occur particularly after the algorithm 

switched to another joint to proceed refining its correction model. 

Figure 6-8: Components of the performance index (summed squared error in X, 
Y and Z between target pose and evolved pose over all 30 data samples) during 
the evolution of the joint correction models 

Figure 6-9: Joint selection performed by the calibration system during the 
evolution 

Figure 6-9 shows the behaviour of the joint selection mechanism (see also section 
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model is to be evolved, is based on the current error correction potential (see 

equation 4.11) shown in Figure 6-10 and Figure 6-11. As it can be seen from these 

figures, only the joints 1-3 have been selected during the evolution. This suggests 

that based on the particular calibration poses used in this experiment and by 

neglecting the small changes in tool orientation, the positional error of the robot tool 

end point could be reduced by evolving correction models for joint 1-3 only. 

Figure 6-10: Error correction potential of joint 1-3 based on equation 4.11 
during the evolution of correction models 

Figure 6-11: Error correction potential of joint 4-6 based on equation 4.11 
during the evolution of correction models 
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6.2.2 Calibration results 

In this section the results of correcting the positional error of the robot tool 

endpoint by the evolved joint correction models are documented. Figure 6-12 

graphically depicts the absolute error of the tool endpoint on the calibration data set 

prior to calibration and using the correction models for joint 1-3 (see Table 6-2). 

Figure 6-12: Comparison of the absolute positional error of the robot tool end 
point on the calibration data set prior and after calibration 

The error reduction property of the evolved correction models on poses not 

included in the calibration is illustrated in Figure 6-13. This figure shows the 

reduction of the absolute positional error of the poses from the validation data set in 

comparison to the uncalibrated manipulator. 

Figure 6-13: Comparison of the absolute positional error of the robot tool end 
point on the validation data set prior and after calibration 
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Joint 
 

Evolved symbolic expression 

1 (SIGN(COS((0.05885035248878445%theta*COS(0.0585776238288522))-theta%COS 
(SIN(0.0585776238288522))))*COS(COS(( COS(theta) %theta*theta%theta)-theta% 
COS(0.2788446302682577*theta)))*(COS (theta)*COS(SIN(0.05852710043641468) 
)*0.9934800561540573-COS (theta))%(COS(COS(COS(theta)-0.2787233039338359 
*theta-theta% (0.07754042176580096%0.6930728629413739))) %COS(COS((COS 
(0.9036369823297831)%theta*COS(0.9041817529831843)%theta))))) 

2 SIN((COS(theta)*(0.0004272591326639607%theta)%0.5609912411877804)) 
3 (((0.9522924588763085-0.7845088045899838%0.8250679036835841) *COS(SIN 

((SIGN(0.8828394421216468)%SIN(theta)*0.1264239631336405))))%(((SIN(theta)*th
eta*0.1264239631336405)%(0.391308328501236%SIN(theta))+theta+(0.3767509994
811853*0.3541520584734641)%(0.1264239631336405%SIN(theta)-(theta-
0.271553697317423)))*0.1264239631336405))%(SIN(0.6908403881954406)*(SIN(SI
N(0.5986205633716849)%SIN(theta)-theta)+SIN(SIN(0.6535240180669576))+ SIN( 
theta)+theta+SIN(theta)%0.3541520584734641)) 

Table 6-2: Evolved symbolic expressions of joint correction models for joint 1-3 
established using distal supervised learning 

In Table 6-2 the joint correction models represented as symbolic expressions 

generated by the calibration system using distal supervised learning are listed. The 

results from the calibration procedure (the performance index reduction of the 

calibration model during the evolution) and the actual positional measurements taken 

from the robot tool prior and after calibration are summarised in Table 6-3. 

 
 Prior to calibration After calibration 

 
Performance index (on calibration 
data) 

106.203676 21.185473 

Mean positional tool end point error on 
calibration data set (mm) 

1.730961 0.776642 

Mean positional tool end point error on 
validation data set (mm) 

1.850646 0.770033 

Table 6-3: Calibration results using the correction models (Table 6-2) evolved 
by distal supervised learning 

Figure 6-14 shows the graphs of the evolved correction models Table 6-2 across 

the calibration range (limited by the calibration area) of their respective joints. It 

illustrates the quality of the symbolic expressions in modelling the targeted 

correction values for the sets of calibration and validation data. The reader may recall 

that these target values of the calibration data set were not explicitly provided in this 

method. Instead the distal performance of the kinematic model including all three 

correction models has driven the evolution (see section 4.3). Particularly interesting 

is the graph of the correction model evolved for joint three. The joint values 
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computed by VAL II from the nominal (used for the calibration) and corrected end-

effector positions are expressed as positive numbers for quadrant 1-2 and as negative 

numbers 3-4. As the joint values of the calibration data set are located on both sides 

of the transition point from the second to the third quadrant, the calibration was 

performed for two separate intervals [à ù . . .a]  and [b. . .ù] . In the interval [a. . .b] , 

which was not included in the calibration, the correction model evolved in this 

particular experiment shows undesired behaviour by starting to oscillate and to 

produce large potentially inappropriate corrections. 

Figure 6-14: Evolved correction models for joint 1-3 plotted across the 
respective joint range along with calibrated joint angles (implicit targets) of the 
calibration set (boxes) and validation set (diamonds) 

6.3 Experimental direct learning of joint correction 
models 

As outlined in section 4.5 the second symbolic calibration method evolves the 

correction models for each joint independently based on the local error between 

nominal and calibrated joint configurations (see equation 4.12 on page 73). To 

implement this fitness measure the fitness evaluation (method evaluate(…) of class 

gp_robot_chromosome described in Table 5-6) has been appropriately adjusted. The 
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evolution of correction models for each joint within the corresponding GP system 

was controlled by the same parameters as in the experiments using distal supervised 

learning (see Table 6-1). However, the number of generations was limited to 200. 

The evolutionary model induction process was carried out sequentially44 for each of 

the six joints. The reduction of the summed absolute joint error (see equation 4.12 on 

page 73) during a typical run of the calibration is illustrated in Figure 6-15. 

Figure 6-15: Summed absolute joint error being the fitness during the evolution 
of each individual correction model 

The correction models evolved for each joint are listed in Table 6-4. Table 6-5 

shows the results of the local joint error reduction for each joint and the resulting 

improvement of the absolute positional error of the robot tool. 

                                                 
44 The evolution of the joint correction models could have been performed in parallel as indicated in 
section 4.5. The implementation of this concept however is beyond the scope of this research. 
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Joint 
 

Evolved symbolic expression 

1 SIN(0.8284485152745139*0.5474638508255257%theta*SIGN(0.2529984435560167)
*(theta*theta*theta%SIGN(theta)-SIGN(COS(theta))*SIGN(theta))*(0.17336198 
00408948*0.01056904812768944)%theta-SIN(SIN(SIN(( 0.1751177251503037* 0.010 
74251533555101)%SIGN(0.4726706747642445))))*SIGN(0.9204992828150274)) 

2 (0.0490704367198706*COS((theta*theta*theta)%0.3623189642017884))%(SIN(SIN(th
eta))*COS(theta)*SIN(0.545290505691702+theta)*(0.6641098513748589+theta)+0.26
94361857966857*0.03566191595202491%(0.6644795068208869+theta)+0.00489925
8400219733*0.84789574877163+SIN(theta))*0.3054859920041505*0.049348200933
8664*COS(theta%(COS(theta)*SQRTp(theta)*SQRTp(0.2692107150486771))*(SIN(0.
545290505691702+theta)*0.6639894253364665*0.6657387768181402)%(theta*theta
*theta+SIN(0.6641098513748589+theta))) 

3 SQRTp(SQRTp(0.543200460829493%(0.135572740867336%0.1914965361491745))
)*0.135572740867336%(0.7125958891567735-SIGN(SIN(theta%0.48246711 63060 
396 )))* 0.1370563524277474*(0.7133252052369761-0.6703979155858028) 
%((SIN(SIN(0.7124685659352397-0.6691388286996063))-(0.7131533402508621-
SIN(0.4481232490005188%0.7135958891567735)))%(theta*SIN(0.448103274636066
8%0.1914965361491745)*SIN(theta))-SIGN(SIN(theta%0.4824671163060396))) 

4 (theta-(theta-0.03497595141453291)*(theta-0.03397595141453291)-SIN(theta)*theta-
0.03318218024231696*COS((SIN(0.1224331492049928)+theta)* (0.0635253 
1510361034%theta)%theta)-((0.03292576372569964*0.06352531510361034%theta-
0.03440845973082675)%(0.2691939909054842-0.03497595141453291)-COS(COS 
(0.03424846644489883-theta)*0.7089775688955351%theta))* (0.1209600665303507 
+theta)*COS(0.06152531510361034%theta*(0.06252531510361034%theta)%theta))*(
theta-(theta-theta-0.03440845973082675)*SIGN(0.5189672536393323)-(SIN(0.122 
0226142155217)+SIN(SIN(theta)))*COS(0.06152531510361034%theta*(0.062525315
10361034%theta)%theta))*theta 

5 0.02016710409863582*(SQRTp(theta%(theta-theta)-theta*theta*theta) 
*0.8962777184362316*SIGN(theta)*0.3594566179387799-SQRTp(SQRTp( 
0.9496652729880674*theta-COS(theta))))*0.08997350993377484 

6 SIN((theta+theta)*COS(0.3231803338724936-(theta-theta)))*COS(SQRTp(theta 
%0.6247010254219184-SIN(0.3126316110721152)))*((theta-(theta-theta)-0.306131 
1685537279+0.3032620319223609-theta)%theta)%(COS(SIN(( SIN(theta)+theta) 
*theta %0.6246228064821314*(0.3038389690847499-theta)))+SQRTp(SIN((theta-
theta+SIN(theta))*SIN(COS(0.8384830011902219))))) 

Table 6-4: Evolved symbolic expressions of joint correction models for joint 1-3 
established using direct learning 

 Prior to calibration After calibration 
 

Joint 1 1.54578E-03 5.81827E-04 
Joint 2 1.06465E-03 4.58385E-04 
Joint 3 1.73486E-03 8.22065E-04 
Joint 4 2.10844E-04 1.00212E-04 
Joint 5 1.09374E-03 5.38923E-04 

Absolute mean 
joint error (rad) 

Joint 6 1.60570E-03 6.38020E-04 
Mean positional tool end point error on 
calibration data set (mm) 

1.730961 0.939094 

Mean positional tool end point error on 
validation data set (mm) 

1.850646 0.891515 

Table 6-5: Calibration results using the correction models evolved by direct 
learning 
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Figure 6-16 and Figure 6-17 illustrate the improvement of the absolute positional 

error of the robot tool using the six joint correction models in Table 6-4 on poses 

from the calibration and validation data set respectively. 

Figure 6-16: Comparison of the absolute positional error of the robot tool end 
point on the calibration data set prior and after calibration (direct learning) 

Figure 6-17: Comparison of the absolute positional error of the robot tool end 
point on the validation data set prior and after calibration (direct learning 

The graphs of the six evolved correction models in Table 6-4 plotted across the 

range of their respective joints are shown in Figure 6-18. It is particularly worth 

noting that the plots of the symbolic expressions evolved for Joint 2 and 4 show a 

very close match between targeted and modelled corrections over a wide range. 

However, as with the results using distal supervised learning described in the 
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previous section, the GP algorithm evolved correction terms introducing 

discontinuities, which need to be evaluated in order to avoid undesired corrections. 

Since the same calibration data set was used as for the distal supervised learning 

experiment, the correction model for joint 3 was evolved based on data from two 

separate intervals as described in section 6.2.2. 

 

Figure 6-18: Evolved correction models (Table 6-4) for all six joint plotted 
across the respective joint range along with calibrated joint angles (explicit 
targets) of the calibration set (boxes) and validation set (diamonds) 
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6.4 Discussion 

The results of the symbolic calibration of a PUMA 761 robot using both distal 

supervised learning and direct learning of correction models were taken from typical 

average runs of the calibration system developed in this research. That is, by using 

the GP parameters adopted for the experiments (Table 6-1) described in this chapter, 

similar reductions of the positional error of the robot tool may be produced, despite 

the stochastic search characteristic of genetic programming. From a set of terminals 

and primitive functions both methods generated complex correction models, which 

significantly reduced the absolute mean positional tool error by about 50% (see 

Table 6-3 and Table 6-5). Based on the calibration data used, the distal supervised 

learning method achieved this error reduction by inducing correction models for the 

joints 1-3 only. The direct joint error learning method enabled the induction of 

individual corrections for each of the 6 joints. 

The quality of the evolved correction models depends among others on the chosen 

terminal and function set and the restrictions imposed by the GP parameters (Table 

5-8). Many degrees of freedom are left to the experimentator to determine these GP 

parameters. The terminal and function set have both been chosen to contain 

components generally occurring in models capturing non-geometric effects (see 

section 2.2.2 for examples of non-geometric models). By introducing different, 

perhaps more complex functions to the function set than those used, the evolution 

could be accelerated or the accuracy of the corrections improved further. The GP 

parameters used for the experiments (see Table 6-1) have been accommodated to 

compromise structural complexity of the correction models, computation time 

required for calibration and evolutionary progress. Structural complexity is in this 

context related to the number of nodes in a symbolic expression and is limited by tree 

depth- related parameters. With a maximum tree depth of 9 (which yields maximal 

29+1 à 1 nodes to be evaluated for a balanced tree) and using the terminal/function 

sets shown in section 6.2 it is possible to generate symbolic expressions of any non-

geometric model introduced in section 2.2.2 (except infinite Fourier series). 

Allowing more structural complexity by increasing the tree-depth parameter to 12 

and 13 extremely degraded the evaluation performance but could not produce any 

better results in trials conducted. The size of a population of symbolic expressions 
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was in the experiments with both methods set to 300 as this number offers a large 

diversity of individuals and a reasonably efficient computation. Increasing the 

population size further to 500 and 1000 in evolutionary trials did not lead to better 

correction models but to significant losses of the calibration performance. The 

number of generations was limited to 1000 for distal supervised learning and to 200 

for each of the 6 GP system instances in the calibration system when evolving 

correction models by direct learning. These numbers were chosen since average runs 

of a calibration conducted in the experiments using either method did not produce 

significant reduction of performance index (using distal supervised learning) 

respectively joint error (using direct joint error learning) beyond these generation 

limits. This finding however does not exclude the general potential of the calibration 

method to generate better performing correction models since the convergence speed 

in genetic programming as with all evolutionary computation methods is entirely 

unpredictable. An example for this unpredictability of the convergence speed is a 

calibration experiment conducted in this research using distal supervised learning in 

which the evolution was set to run over 10000 generations only to produce 

eventually a performance index of 49.39002. A reason for the little progress during a 

comparatively long evolutionary period in this particular example could have been 

code bloat (see e.g. [53]). This is a serious problem in GP and occurs particularly in 

later generation hampering the evolutionary progress by impairing the applicability 

of the evolutionary operators particularly subtree crossover but also subtree mutation. 

As illustrated in Figure 6-7 and Figure 6-15 genetic programming usually 

progresses quickly in initial populations and slows down the convergence speed in 

the later course of evolution. This suggests that it is relatively easy for genetic 

programming to rapidly establish new populations that produce better performing 

individuals after a new fitness measure is applied (This is the case at initialisation 

where a ‘new’ fitness measure is applied assigning different values to randomly 

generated individuals). This suggestion is particularly supported by Figure 6-7, 

Figure 6-8 and Figure 6-9 documenting the evolutionary progress in the distal 

supervised learning approach. The progress in generating fitter individuals is much 

quicker after the calibration algorithm (Figure 4-6) switched to another joint (see 

Figure 6-9) to evolve its correction model. Due to the interdependence of the 

correction models in this co-evolutionary calibration scenario the fitnesses of the 
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models in the suspended populations change whenever a better performing correction 

model occurs in the active population. When the calibration algorithm switches to 

another joint (due to the higher potential of correcting the remaining error; see 

equation 4.11) its population becomes active. The fitness values of the correction 

models in this population will have changed compared to the time before this 

population has been suspended. Hence by evolving the calibration model in the 

active population the fitness measure for the suspended populations is implicitly 

redefined. For example at generation 336 the calibration algorithm switches from 

joint 1 to joint 3 (Figure 6-9). The last generation in which the population of joint 3 

was active is generation 108. By evolving the correction model for joint 1 until 

generation 336 the fitness of the correction models in the suspended populations 2-5 

is subject to change. When the algorithm switches to joint 1 at generation 336 the 

correction models in the population for joint 1 have different fitness values than in 

generation 108. Shortly after this “context switch” the GP system for this joint 

evolves a correction model that reduces the performance index. This behaviour of 

rapid performance index reductions after joint switches could be observed 

throughout the evolution (see Figure 6-7 and Figure 6-9). This property of the 

calibration could principally be exploited to increase the convergence speed of the 

performance index by introducing additional joint switches in periods with little 

evolutionary progress. However, this would mean to evolve correction models for 

joints with lower correction potential, which is generally possible as long as the 

measure (see equation 4.11) does not return a zero value for this particular joint (no 

correction of this joint would reduce the tool error). Eventually, the evolved joint 

correction models are more likely to cover errors that can be attributed to different 

joints. The potential of introducing additional joint switches and the effect it may 

have on the evolved correction models has not been investigated in the experiments 

carried out in this research and may be subject to further work. 

An important issue for the calibration method presented in this work is the 

subsequent analysis of the evolved symbolic expressions to prevent undesired 

corrections being performed. Since symbolic regression constructs the correction 

models from a limited number of calibration samples (snap shot view) the validity of 

these models needs to be evaluated throughout the joint range defined by the 

calibration area. Fortunately, due to the protected definition of hazardous functions 
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(see section 3.3.1) used for symbolic regression it is guaranteed that corrections will 

be well defined throughout, even though perhaps not continuously (discontinuities 

were introduced by e.g. the SIGN function, which is used to model effects such as 

gear backlash). Undesired effects such as local oscillatory behaviour of the 

correction model potentially producing large values (as shown in Figure 6-14) need 

to be accounted for by introducing local damping or scaling, for example. The same 

applies to large corrections produced by divisions involving small denominator 

values. 
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Chapter 7 

Conclusion and Outlook 

In this work a novel technique for generating a robot calibration model for use in 

off-line programming was developed: the symbolic calibration method. This method 

is based on genetic programming or more specifically symbolic regression, which 

evolves joint correction models. These joint correction models are then used to 

reduce the positional error of the robot tool. Thus positional calibration of the robot 

is performed in joint space by modelling the error of the nominal inverse kinematic 

model, which is implemented in the robot controller. 

The advantage of the developed method is the automatic generation of the 

correction models without presumptions about model structure or parameter values. 

In contrast, classical calibration methods (see [12][27][37][43][70]) require human 

involvement to establish a calibration model (model based or approximation), which 

is subsequently fitted to calibration data employing methods from numerical 

analysis. As outlined in Chapter 2 indirect numerical methods such as gradient search 

can cause problems if the calibration model has parameter redundancies, parameter 

discontinuities etc. Also, the convergence against a globally optimal solution is with 

these conventional methods not guaranteed. 

The symbolic calibration method developed in this work was implemented using 

both distal supervised learning (co-evolutionary approach), and direct joint error 

learning approaches. It combines the processes of automatically generating and 

evaluating correction models in a direct evolutionary search method based on 
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symbolic regression. By utilising the underlying concept of stochastic inference45, 

symbolic regression has the potential to solve the calibration problem by finding a 

suitable or even the true structure and parameter values of a calibration model. Since 

the method is not confined to fixed model structures the proposed calibration method 

is more flexible than classical numerical calibration techniques. 

The experimental implementation of the method developed in this work has 

demonstrated the potential genetic programming has to solve the static kinematic 

calibration problem. The results of calibration trials in Chapter 6 show that genetic 

programming in both developed methods described in Chapter 4 is capable of 

reducing the positional mean absolute error of the robot tool by about 50% (55% for 

distal supervised learning). These error reductions were obtained from average runs 

of the calibration system and are, despite the stochastic property of the method, 

reproducible (using the same GP parameter configuration), even though the evolved 

correction models in different calibrations may vary in structural complexity. 

However, the calibration method is currently limited by the intrinsic problems 

inherited from the genetic programming paradigm, which mainly are the 

consumption of computational resources particularly computation time due to the 

general tendency of GP to reduce the convergence speed in later generations, and the 

unpredictability of the evolutionary progress. Due to these limitations a wider range 

of values of parameters that control the GP run could not be exploited in the scope of 

this work and remains subject to further investigation. 

7.1 Suggestions for further work 

The symbolic calibration approach developed in this work offers many 

opportunities for further investigations. The following suggestions are given: 

 

(i) Enhancing speed of evolution by introducing parallel processing 

(ii) Implementation of advanced evolutionary principles 

(iii) Further mathematical analysis of the evolved correction models 

                                                 
45 As John Koza [49] puts it: “knowledge derived logically from known facts is not new and therefore 
not patentable”. Stochastic implies unpredictability, which is both, potential and limitation of 
evolutionary computation. 
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(iv) Enhancing GP parameter study 

(v) Subsequent numerical optimisation of the correction models 

 

(i) On the technical side performance issues need to be discussed further to enable 

a more comprehensive parameter study and include more data samples for 

calibration. For example the calibration system used in this work could be enhanced 

in future experiments by implementing parallel distributed evolution of correction 

models for each joint using the direct joint error learning method described in section 

4.5. 

(ii) Even though the distal supervised learning method does not directly permit 

parallel evolution of the correction models due to their interdependence (see section 

4.4.1), implicit parallel processing within a population could be performed (for one 

joint at the time) by introducing concepts of niching or demetic grouping (see e.g. 

[49]). This would split a population into demes (“islands”), which independently 

evolve their correction models (for the same joint!) based on a possible different GP 

parameterisation. An advantage of this isolation of individuals is that evolution can 

specialise in several areas in the search space. Unlike niching, demetic grouping 

introduces the migration concept, which allows fit individuals to move into other 

demes, where they might contribute useful genetic material. In fact, migration of 

correction models could also be introduced between the populations (between 

different joints) of the calibration system. This concept would enable population 

interaction by sharing genetic material from good performing correction models 

between otherwise isolated populations. For example non-geometric effects 

occurring in the joints may be described by similar correction terms (i.e. same 

structure using different coefficients). Therefore advanced GP concepts such as 

automatic defined functions (ADF) (see [50]) could be investigated in this context. 

(iii) Making genetic material of good performing individuals available for sharing 

between other individuals across the population also relates to the building block 

hypothesis, which is controversially discussed in the GP community (see e.g. 

[16][53]). Investigations could be carried out to find and examine expressions 

commonly used in good performing individuals. The foundation for those future 

experiments is laid by the shared GP tree implementation described in Chapter 5 (and 
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illustrated in Figure 5-1) as this representation of the symbolic expression enables the 

identification of commonly used sub expressions. 

(iv) The GP parameter study could be extended by including different, perhaps 

more complex functions in the non-terminal set. In addition the calibration could be 

performed using different values for GP parameters (e.g. population size, or 

permitting more structural complexity by increasing the GP tree depth) to further 

explore the potential of the calibration method. 

(v) Furthermore the evolution could be enhanced by numerically fitting the 

generated correction models (i.e. fine-tuning of the values of the constant nodes). 

During the evolution a number of selected models could be numerically fitted to the 

calibration data set in an attempt to increase their accuracy. Those fitted individuals 

could then be directly carried over to the following generation (Lamarckian learning 

[5][52]). Alternatively, the by numerical fitting reduced performance index 

respectively joint error could be used as the new fitness value for the original model 

(prior numerical fitting). In this way the learning capability (capability to 

numerically fit to calibration data) of that model would be propagated rather than the 

fitted expression (Baldwin effect [5]). Technically, the assumption for numerical 

optimisation would be that the nodes generated by the ephemeral constant are treated 

as parameter nodes with the node value being the start value for the optimisation. 

However, prior to numerical optimisation the evolved models may have to be 

algebraically simplified/normalised. This is in most cases necessary since genetic 

programming typically tends to generate over-specified correction models. These 

models may become structurally very complex and contain an unnecessary large 

number of constant nodes. When treated as parameter nodes there are likely to occur 

redundancies or dependencies between these nodes, which would make fine-tuning 

of their numerical values difficult or impossible. Therefore using symbolic algebra 

and compiler methods such as constant folding [3] (replacement of constant 

expression by their value), constant propagation or term collection the structural 

complexity of the evolved expressions may be significantly reduced enabling 

subsequent numerical fitting. However, numerical fitting is suggested to be 

performed using direct methods (such as the Nelder-Mead simplex method [2]) 

rather than indirect gradient based methods, as the evolved expressions will most 

likely contain discontinuities (as encountered in the experiments), which will cause 
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gradient methods to fail. As algebraic simplification and both, direct and indirect 

optimisation methods are, however, computationally very time consuming the 

examination of Baldwin effect and Lamarckian learning will either be confined to a 

limited number of correction models in a population, or remains to be carried out 

with more powerful computer hardware becoming available. 
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Appendix A 

A.1 The Robotrak measurement 
system 

Robotrak is a cable driven measurement system capable of recording robot end-

effector positions. It consists of three measurement units A, B and C arranged in a 

planar triangle as illustrated in Figure A-1. Each unit provides a cord one end of 

which is attached to the robot tool R the other wrapped around a drum within the 

unit. The length of each chord (distance from the respective measurement unit: ra, rb 

and rc to the robot tool) is measured by the respective measurement unit based on 

incremental encoders, which generate pulses on rotation changes of the drum. 

Figure A-1: Robotrak geometry 

 B 

 R 

 A 

 C 

 X  Y 

 Z 

rb rc 
ra 

lca 
lbc 

lab 
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The cord measurements from the tree units are transformed into a Cartesian frame 

using data from the geometry of the measurement system. The origin of the Robotrak 

co-ordinate system is chosen to be located at point A with the local X- Axis being 

aligned to lab and the local Z- Axis being perpendicular to the plane defined by the 

points A, B and C. The points A, B and C are thought to be centre points of spheres 

with the radii ra, rb and rc respectively, for which the following relations hold: 

 

 ra2 = x2 + y2 + z2 , (A.1)  
 rb2 = (lab à x)2 + y2 + z2 , (A.2) 
 rc2 = (x à g)2 + (h à y)2 + z2 . (A.3) 

 

Solving the trigonometric identity ra2 à x2 = rb2 à (lab à x)2  for x yields: 

x = 2lab

ra2àrb2+lab
2

. 
Similarly, for the triangle ABC  

 g = 2lab

lca
2à l bc

2+ lab
2

, 
 

 h = lca
2 à g2

q
. 

Eliminating z2  in (A.3) using (A.1) and solving the obtained equation for y gives: 

y = 2h
ra

2àr c
2à2gx+g2+h 2

, 
 

finally z = ra2 à x2 à y2
p

. 
 

The encoders of the three measurement units were connected to a MITC 12 

interface card plugged into a PC. The contents of the actual encoder count registers 

(measure for the cord length) on the card could then be read by computer 

applications. Initially, Workspace [82] was used to gather measurement data. The 

usage of Workspace however proved difficult particularly when recording large 

amounts of data in several sets since the module for automatic data collection 

appeared to have programming errors (in version 4.0 used). The manual recording of 

data was not an option due to the amount of measurements taken and potential errors 

that might have been introduced (waiting for the robot to settle and confirm 

measurement). Therefore an application has been developed (and made available) 
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that enables an easy set-up of Robotrak and permits a convenient automatic data 

collection (Figure A-2). This application implements the transformation algorithm 

described in this section and outputs measured poses (x, y, z) listed in a file to be 

processed by the calibration system.  

Figure A-2: Developed data collection application 

Figure A-3: Laboratory arrangements 

The set-up procedure for the Robotrak device is described as follows: First the 

cords need to be exercised in order to guarantee a good repeatability (cords must be 

tightly wrapped around the drums within the measurement units). This is performed 
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by repeatedly pulling out each cord for approximately two meters from the encoder 

base. The second step is the calibration of each encoder. A calibration bar is used to 

determine the number of encoder counts for a defined length. After this calibration 

the encoders are used to measure the distances between them: A for distance AB, B 

for distance BC, and C for distance CA. Then the lengths of the top cords (see Figure 

6-1) attached the tool are to be measured. The cords of the measurement units are 

attached to the corresponding top cord together constituting the effective length from 

the robot tool to the respective measurement unit (ra , rb and rc respectively). 

The accuracy of the particular Robotrak system used in this work was estimated in 

previous experiments at 0.27 ± 0.21 mm [45]. 

A.1.1 Local frames 

For the evaluation of accuracy both nominal robot poses and measured data 

delivered by the Robotrak measurement system must be expressed relative to the 

same co-ordinate frame. However, the transformation from Robotrak frame to robot 

base frame is usually not given exactly, in fact, it is generally identified 

simultaneously with the other kinematic parameters during calibration [12]. 

Alternatively this transformation may be accomplished by establishing a local frame 

that is used to transform data from the Robotrak system frame to the robot base 

frame. This method has been adopted in this work and in [45]. 

Figure A-4: Local frame transformations 

A local frame is defined within the robot workspace by 3 end-effector poses (L1, 

L2 and L3) the positional co-ordinates (x, y, z) of which are recorded relatively to 

the robot base frame and the Robotrak frame. 

Robot Base Frame Local Frame Robotrak Frame 

TRL TCL 
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Figure A-5: Local frame definition 

The local x-axis passes through L1, and L2. The local y- axis is defined by being 

perpendicular to the x-axis and passing through L3. The origin of the local frame lies 

in L1. This local co-ordinate frame is represented by a homogenous matrix 

R L1

0T 1

ô õ
 with R  being the rotation matrix the normalised column vectors of 

which represent the local frame axes (X,Y,Z). 

Having established the local frame matrix TRL  relative to robot base, robot poses 

PRF  can be represented in local frame co-ordinates by:  

 PLF := TRL
à1PRF . 

Analogously, measurement data PCF relative to the Robotrak frame can 

represented relatively to the local frame as PCLF  by: 

 PCLF := TCL
à1PCF  

where TCL  is the local frame matrix relative to the Robotrak frame. 

Hence measurement data relative to the Robotrak frame can be represented in 

terms of robot base frame co-ordinates by: 

 PRF := TRLTCL
à1PCF . 

L3 

L1 L2 x 

y 

z 
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A.2 Denavit- Hartenberg parameters 

The Denavit- Hartenberg parameterisation describes the relative displacement of 

two consecutive link frames using 4 parameters for the ith link. 

 
 

 

 

 

 

 

 

Figure A-6: Denavit-Hartenberg parameters 

The parameter ëi is the angle between joint axis zi-1 to zi about xi, òi the angle 

between xi-1 to xi about joint axis zi-1 (òi joint variable for rotary joints), ai is the 

distance from joint axis zi to zi-1 along xi and di the distance from xi to xi-1 along 

joint axis zi-1 (di is joint variable for prismatic joints). 

The displacement of the ith link frame to the previous link frame in terms of 

orientation and position is the product of consecutive elementary homogenous 

rotation and translation matrices resulting in the following homogenous matrix: 

 

Ai = Rotz(òi)Transz(di)Transx(ai)Rotx(ëi)

=

cos(òi) à sin(òi) á cos(ëi) sin(òi) á sin(ëi) ai á cos(òi)
sin(òi) cos(òi) á cos(ëi) à cos(òi) á sin(ëi) ai á sin(òi)

0 sin(ëi) cos(ëi) di

0 0 0 1


  

 

The co-ordinate frame of the tool of a 6-link manipulator relative to the robot base 

frame can then be expressed as: 

TA =
Q
i=1

6
Ai =

Tr Tp
0T 1

ô õ
 

xi-1 

 zi-1 ai 
di xi 

   zi  αi 

θ i 
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A.2 Denavit- Hartenberg parameters 

with Tr being the 3×3 rotation matrix expressing tool orientation and Tp  the 3×1 

position vector. In order to obtain the position of the tool tip the matrix TA  is 

multiplied with the tool transformation matrix I X
0T 1

ô õ
 where I is the 3×3 

identity matrix and X the 3×1 vector which expresses the translation from the origin 

of the tool frame to the tool tip. 

The Denavit-Hartenberg parameters of the PUMA 761 manipulator used in this 

work are given by [75] as: 

 

 

 

 

 

 

 

Table A-1: DH parameters of the PUMA 761 manipulator 

Link α α α α     a (mm) d (mm) 
1 à ù/2 0 0 
2 0 650 191 
3 ù/2 0 0 
4 à ù/2 0 600 
5 ù/2 0 0 
6 0 0 125 
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Abstract: Accurate robot modelling is of great importance to the application of enhanced robot programming 
tools such as Offline Programming systems. This paper describes a prototype of an automated kinematic 
modelling environment, which is primarily based on evolutionary computation. A genetic algorithm herein 
attempts to find an optimal model structure of the forward kinematic of an industrial robot based on 
measurements reflecting individual characteristics. Finally it will be reported on results obtained from simulation 
experiments. 

1 Introduction 

Modern robot programming methods such as Offline Programming require accurate robot models 
sufficiently capturing the robot kinematics. Since every robot, even within the same series, has 
individual deviations of kinematic properties which is due to e.g. manufacturing tolerances and tear, 
the controller model has to be updated e.g. by calibrating its kinematic parameters with measurement 
data taken from that specific robot. In Offline Programming robot programs are developed and 
validated within a simulated environment assuming an accurate match of robot and workcell models 
with their physical counterparts. 
 

Joint
angles

3D
positions

OLP Controller
Mathematical Model

Robot

 
Figure 1: Relations OLP  ↔↔↔↔ physical robot 

Since information about the robot controller model is usually not available (the black box in Figure 
1) and in order to create portable programs the common approach of an Offline Programming System 
(OLP) such as Workspace [5] to achieve higher absolute accuracy of a particular robot is to employ 
path error compensation. A calibrated kinematic model acts as a filter, which alters target positions in 
the robot program to direct the robot to the desired targets. 

Kinematic Calibration in robotics is a well-established field of research that has delivered several 
models and calibration methods addressing special types of robots and numerical stability issues of 
the parameter identification procedure [2]. Some approaches utilise black box models based on 
artificial neural networks (ANN) with little or no relation of the connection weights used to physical 
robot parameter. In general the approach has been to determine a fixed model structure and to 
subsequently fit its parameters using measurement data. 

This paper presents a new automated general hybrid modelling method to generate a forward 
kinematic robot model based primarily on evolutionary computation and gradient search. The genetic 
algorithm proposed has the task to create an appropriate model structure whose parameter will be 
numerically identified by subsequent gradient search. Unlike other hybrid search heuristics, e.g. 
genetic algorithms on artificial neural networks, the objective of this approach is not to derive a black 
box model. Instead knowledge of the nominal kinematic model, e.g. the serial links and their order, 
will be integrated and preserved. 

 



Appendix B 124 
 

 
B.1 Publications 

2 Genetic modelling of robot kinematics 

Genetic Algorithms (GA) are search procedures inspired by concepts of natural evolution. In 
principle a population of potential solutions (termed individuals) is searched or explored for the best 
performing or fittest individuals. To keep and exploit their characteristics those individuals will be 
selected for reproduction or recombination in further generations eventually undergoing mutational 
changes. In that way over a number of generations the algorithm attempts to gradually breed highly fit 
solutions to a problem. An introduction to GA’s can be found in [1]. Genetic Algorithms have been 
found to be useful for solving many different types of problems across different disciplines. This 
independence from the actual problem domain and the underlying concepts, which are relatively easy 
to implement in computer programs, has contributed to their success. 

2.1 Model representation 

Kinematic Modelling of robots can be divided into geometric and non-geometric modelling. Pure 
geometric models such as the Denavit-Hartenberg (DH) (see e.g. [3]) model, merely cover the 
geometric properties e.g. link lengths and angles between neighbouring axes. Non-geometric 
properties e.g. gear compliance and gear backlash however contribute considerably to the accuracy of 
a robot and need to be taken into account (see e.g. [4]). 

In this approach a genetic algorithm attempts to model the influence of non-geometric properties by 
inserting additional co-ordinate transformations into a DH model. The fact that forward kinematic 
models can be built from sequences of elementary homogenous transformations makes them an 
appealing representation for genetic algorithms permitting effective application of genetic operations 
such as crossover or mutation. The principle idea is to view the entire kinematic robot model as an 
ordered sequential concatenation of fundamental homogenous transformations (DH- transformations 
with nominal parameter values provided by the robot manufacturer) together with additional co-
ordinate transformations (such as translations along and rotations about the x, y and z-axis) inserted 
by the genetic algorithm. Those sequences make up the kinematic genome46 on which the genetic 
algorithm operates. Figure 2 shows the genome of the 6-link PUMA 762 robot used in our 
experiments.  

    Intermediate Transformations

Fundamental Transformations

  T1   T2   T3   T4   T5   T6

 
Figure 2: Kinematic Genome 

The initial population of genomes is seeded with each genome containing the fundamental 
transformations (T1 to T6) in the order according to the links of the robot. The genome of the 
kinematic model in Figure 2 consists of 12 gene sections, 6 of which (the fundamental 
transformations) must not be altered. This creates a primary schema, which expresses the initial 
knowledge (that of the provided serial link design and specifications) which is to be preserved. 
Random numbers of different additional transformations will be placed between these fundamental 
transformations by the genetic algorithm. The inserted transformations can be single translations, 
rotations or composed transformations (e.g. building blocks). 
 

                                                 
46 Genome or chromosome (string of genes) in this context means the entire information required to 
construct a kinematic model 
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Decoding

Population of individuals

Parameter identification

Fitness calculation

Selection, recombination  
Figure 3: Genetic Algorithm 

Thus the genetic algorithm explores the space of sequential homogenous transformations for the 
optimal kinematic design of a particular robot. It evaluates, selects and recombines the transformation 
strings (genomes) within a population of a given size. 

2.2 Decoding and evaluation 

In order to evaluate a population of models, all genomes have to be decoded and prepared for 
evaluation. For each genome the corresponding homogenous transformation matrix (phenotype) is 
created. Each gene in the section of intermediate transformations represents one single transformation 
for which a parameter needs to be generated. Finally all transformation matrices are multiplied 
symbolically to form the computational model represented by its homogenous transformation matrix 
(Figure 3). The internal representation of this transformation matrix is an array of symbolic 
expressions (binary trees) instantiating the equations for position and orientation. Note that since all 
transformations are homogenous the genetic algorithm, although performing drastic structure changes, 
cannot violate the orthonormality constraint of the rotation matrices. Also, the application of an 
analogous crossover technique prevents the genetic algorithm from changing the order of the 
fundamental transformations, which preserves the predefined serial link design. This means only 
genes within the same gene section can be exchanged. 

It is possible during the course of evolution that the algorithm creates gene sections with several 
consecutive equal transformations e.g. 2 translations along the x- axis. This would obviously cause a 
parameter redundancy, which is avoided immediately during decoding by ignoring those multiple 
equal transformations. However, those redundancies are kept in the genome in order to preserve a 
diversity of genetic material for further generations. 

2.3 Parameter identification 

Once the model has been instantiated, its parameters need to be identified using measurement data. 
The forward kinematic model can be written as: 
 y = f(ò, þ) , (2.1) 

where f  returns the position and orientation of the end-effector tool depending on the given joint 
angle set ò and parameter configuration þ . Identification is carried out by minimising: 
 P

i=1
n k yi à f(òi, þ) k2  (2.2) 

with subject to þ , where yi  is the ith measurement and n  is the number of measurements. Since the 
model equations are nonlinear in rotational parameters the identification has to be carried out 
iteratively e.g. by nonlinear least squares. For this the model equations have to linearised by first order 
Taylor expansion around the current parameter estimate. The functional (2.2) to be minimised can 
then be rewritten as: 

 k 4y à C4þ k2       with C =
C1...
Cn

" #
 and 4y =

4y1...
4yn

" #
 (2.3) 



Appendix B 126 
 

 
B.1 Publications 

subject to 4þ  and C being the Jacobian of f approximated by finite differences at the current 
parameter estimate. To solve this linear minimisation problem for the parameter update (Gauss-
Newton update) vector yields: 
 4þ = (CTC)à1CT4y (2.4) 

Hence the parameter values are iteratively obtained by: 
 þk+1 = þk + 4þk  (2.5) 

The Moore-Penrose generalised inverse (CTC)à1CT is not formed explicitly in order to avoid 
numerical instabilities e.g. due to round-off errors. Instead orthogonal decomposition is applied to C 
in (2.3) by Householder Transformations. However CTC  may become singular and hence not 
invertible. In that case the algorithm uses the Levenberg-Marquardt update 
4þ = (õI +CTC)à1CT4y  with õ being a positive scalar constant to be determined and I being 
the identity matrix. 

2.4 Fitness calculation 

The fitness value of an identified model is the residual error (2.2) computed on a second set of 
measurements. Thus the fitness is a function of the evolved kinematic structure and the identified 
parameters. The genetic algorithm exploits the Baldwin effect e.g. the learned information (identified 
parameter values) only affects the fitness function and is not backcoded or retained in the genetic 
description of an individual model. 

3 Experiment 

For our experiments we implemented a steady state GA47. Individuals (kinematic models) are 
selected from the population by Tournament Selection (see [1]). This type of selection was chosen 
because it is easy to implement, and by setting an appropriate tournament size it allows convenient 
adjustment of the selective pressure and thus the convergence property of the genetic algorithm. To 
create a new model, two tournaments were run and the best performing model of each was chosen to 
be parents for the new model. 

The initial population was seeded with genomes with each intermediate gene section containing up 
to 5 random elementary transformations. Fundamental transformations were initialised with the 
nominal DH parameters of the PUMA 762 robot. The parameters of elementary transformations in the 
intermediate gene sections were initialised with the value of 0.01 (translational and rotational 
parameter). The number of measurements used for identification and evaluation was 50. The 
probability of applying crossover was 0.8 and mutation 0.3. The evaluation of 50 generations 
(population size was 15) took about 20 min on a PC (with a 500 Mhz Intel Celeron processor) running 
Linux. The results of a typical run of the genetic algorithm are shown in Figure 4. 
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Figure 4: Results obtained from a GA run over 50 generations (population size: 15) 

As the evolution progresses, fitter individuals appear in the population, the fitness of individuals 
improved almost gradually. However, because of the limited population size of 15 individuals the GA 
settles relatively quickly. To keep the evolution going i.e. to explore other genome configurations 
additional mutation was applied to some individuals in generations, the spikes in the average fitness 
curve (Figure 4) illustrate this effect. This method proved useful because this perturbed genetic 
material contributed to slightly fitter individuals. 
                                                 
47 Offspring created by the GA replaces bad or worst performing individual in a population. 
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4 Conclusion 

The genetic algorithm presented appeared to be well capable of fitting a kinematic robot model 
(structure and parameter) to measured data. Despite compromises made with the choice of the genetic 
algorithm parameter (e.g. number of generations and population size) due to the high computational 
complexity, it performed robustly and delivered parametric models, which performed even better on 
our measured data than an ordinary DH model calibrated with these data. The algorithm works with 
simple mechanisms (e.g. estimation of parameter values), which need to be refined for further support 
of the results. Further work planned in this context is to reduce the number of parameters to be 
estimated by applying variable projection, which requires an initial estimate for nonlinear parameters 
only. 
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An industrial robot can be programmed in two ways either, by writing the program 
online using teach programming or by generating the program off-line with the aid of 
a CAD based Off- Line Programming system (OLP). 
An OLP uses simulation to imitate the robot activities. This simulation is based on a 
model (for computing a mathematical model) which sufficiently describes the robot 
kinematics, dynamics and the controller strategy. In general, analytic models are 
used. However, some investigators have proposed models based on neural networks. 
 
In this paper the advantages and disadvantages of neural network based models are 
explained and compared with general analytical modelling methods. 
Furthermore possibilities for the refinement and adaptation of the analytical model of 
the respective robot are discussed. This includes investigations regarding the 
applicability of automatic mechanisms for parameter identification etc. in order to 
automate model generation. 
 

1 Introduction 

Offline Programming Systems allow the development and test of robot programs 
without seizing the physical robot. With a CAD system a sequence of tasks is 
designed (3D data) and thereafter applied to a simulator, which bases on kinematic, 
dynamic as well as the controller model of the respective robot. 
 
In general the problem a controller of an industrial robot has to solve, may be 
simplified and expressed by the following formal notation: 
 

( )TargetStart XXfT ,=  
 
Between two given points StartX  and TargetX , which are vectors in the 3 dimensional 
cartesian space, a trajectory T  (a series of configurations Æ end effector positions or 
joint angle vectors) has to be found, which models the special kinematic and 
dynamic properties of a robot. Therefore the controller f  has to realise a mapping 
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between the 3D data of the end effector position and the joint angle configurations of 
the robot. Such a mapping lacks from accuracy due to manufacturing tolerances of 
the robot components and wear (like other mechanical systems). 
 
It is essential to identify the individual physical robot parameters as well as the 
strategy the controller uses for determining trajectories in order to build accurate 
controller models. It is obvious that both procedures are learning processes, which 
have the potential to be implemented e.g. using Artificial Neural Networks. 

2 Artificial Neural Networks 

In the recent years various types of artificial neural networks (ANN) have been 
developed, studied and thereafter applied to practical and theoretical research fields 
related to the computational learning of natural systems like pattern and speech 
recognition, machine learning etc.  
The success of ANN’s may be explained by the fact, that they can be simply 
implemented either in software or hardware. 
 
A neural network provides a method of mapping between high dimensional 
input/output spaces. The information held in the ANN (In this context knowledge 
about mapping joint angle- and Cartesian space) is stored in the form of weighted 
connections between artificial neurons, which are generally organised in layers [4]. 
Adjusting the values of the weights during what is known as the training process 
configures the ANN. 
 
During the training process the network is fed with example pairs of joint angle- and 
respective Cartesian end effector vectors. In order to provide a proper mapping, the 
weights of the net have to be adjusted using an appropriate learning rule. Learning 
rules vary according to the type of network and learning strategy examples are: 
i. The Hebbian rule is applied to unsupervised learning in for example single layer 

perceptrons;  
ii. The Backpropagation rule used in supervised learning of multi-layer 

perceptrons. 
 
After finishing the training process the ANN is be able to classify incoming patterns 
(joint angles vectors) and to provide the proper mapping. The ability of ANN to give 
reasonable output for inputs not contained in the training set is known as 
generalisation. 
This property makes an ANN in general a useful approximation tool [12] e.g. for 
learning the behaviour and modelling of highly non-linear mechanisms [5][8] such as 
robot arms [13]. 
 
Nevertheless, neural models are pure numerical computational models. To convert 
the information contained in the weight matrices of the net into a readable symbolic 
form, in order to extract information about the learning state of the network, is a 
difficult task [11]. 
However, the key problem a designer of an ANN has, is in selecting an appropriate 
net structure for the mechanism to be learned. This means the right choice of the 
network type (either a feed forward or a recurrent network), the number of the 
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neurons, layers, suitable activation functions e.g. hyperbolic tangent or sigmoidal 
within the neurons, all have to be determined empirically [15]. Another problem is 
the initialisation of the weight matrices of the ANN. Tests have shown that non-
optimal weight configurations lead to a considerable longer training time especially 
when applying backpropagation [10]. 
Furthermore during the training of the net with pairs of example patterns, which is an 
iterative optimisation process, the algorithm may run into a local minimum [9]. This 
means, that the weight values of the ANN have not been optimally adjusted to the 
new example. The example has then not been correctly learned by the ANN. In this 
context a point of concern is also the capacity of the ANN, which has to be analysed 
in order to avoid over-training errors [1]. 
Another well-known fact is, that ANN provide an undetermined mapping beyond the 
range they have been taught (locality). For the application it means, that a possible 
critical value that exceeds the admissible range of mapping has to be considered and 
the ANN to be taught with respective examples. 

3 Analytical Models 

The more traditional engineering approach is to build analytical models of the robot 
using system equations. The precondition therefore is the knowledge of the 
respective kinematic, dynamic and controller parameters. Whereas the kinematic 
(length and twist of links etc.) and dynamic (mass of links etc.) parameters are 
mostly supplied by the manufacturer of the robot, the controller algorithms are in 
general not documented. This makes it generally difficult to find a closed analytical 
description for the entire mechanism. 
 
However, using the kinematic parameters (pref. in Denavit- Hartenberg (DH) 
notation) a direct forward kinematic model (coarse geometric model) can normally 
be generated. To work towards more accuracy the manufacturing tolerances of the 
physical parameters of the individual robot have to be integrated into the model as 
parameters that have to be identified experimentally. Therefore new models or 
refinements of the DH model have been proposed [14][16]. To cover non-linearity's 
like joint boundaries etc. respective constraints have also to be added to the model. 
The growing number of parameters raises model complexity and may impair the 
solvability of the inverse transformations48 of the model to compute end effector 
positions into the joint angle vector space. 
 
Nevertheless, a complete or partial analytical model (provided it exists) offers many 
advantages. The generation of the nominal kinematic models can be conveniently 
performed with the aid of computer algebra systems like Maple or Mathematica [17]. 
Using such tools the equations can be manipulated exclusively symbolically, which 
allows flexible modelling49 and guarantees maximal stability and minimises the 
overhead of a subsequent numerical computation. 
 
Several software toolboxes like robotica [7] provide predefined methods for 
calculating dynamics e.g. Euler- Lagrange equations of motion of the model. 

                                                 
48 mostly iterative solution of non-linear equations 
49 system equations can be dynamically expanded with parameter terms 
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However, in general these packages are straight- forward implementations (based on 
matrix algebra) of the standard robot modelling concepts without really taking 
advantage of the possibilities of dynamic structuring and programming combined 
with symbolic representation and computation provided by the computer algebra 
system. 

4 Conclusion  

In this paper the advantages and disadvantages of analytical and artificial neural 
robot model are discussed. The essential features of both approaches may be 
summarised in the following table: 
 

 Analytic Model Neural Model 

Limitations of 
modelling 
methodology 

- many non-linearities 
- high complexity in general 

- training examples must 
be provided 

- extrapolation 
Effort involved in 
Model generation 

- initially relative simple: 
generation of a nominal 
kinematic model with DH- 
parameters 

- a suitable architecture 
(numbers of neurons and 
layers) has to be chosen 
empirically  

- high training effort 
Task variability - covers all modelled 

(described with the 
equations) situations 

- models only trained 
tasks 

 
Complexity 
 

- mostly high: many kinds 
of model configurations 
like singularities have to 
be considered 

- complexity raises with 
complexity of the robot 
(non- linearities, Degrees 
of Freedom) and the 
number of parameters to 
be identified 

- only connectionist 
comp-lexity (between 
neurons) 

 

computer internal 
representation 

- symbolic descriptive  - numerical 

accuracy - depends on accuracy of 
the model 

- depends on number of 
training examples 

learning capacity - dynamic growing 
 

- in general restricted, 
except by referring an 
architecture like in [2] 

Table 1 : Summarise of analytic and neural models 

 
In general analytic modelling of robot mechanisms is more difficult because of the 
necessity of a mathematical description of complex non-linearities. The quality of a 
neural model depends on the choice of the network architecture and the number and 
quality of trained examples. 
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Although artificial neural nets have been widely studied and successfully applied to 
numerous specialised research projects, until now they have been in more empirical 
disciplines. 
But with better computing facilities and the aid of dynamic programming and 
computer algebra techniques it has become worthwhile to investigate in general 
analytical models rather then separated solutions of subtasks modelled by artificial 
neural nets. 
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C++ Source code 

Symbol definitions 
 
/************************************************************************** 
   toolunit.h 
   Jens- Uwe Dolinsky 
   07.03. 2001 
***************************************************************************/ 
#ifndef _TOOLUNIT 
#define _TOOLUNIT 
 
 
#define bool  unsigned short 
#define true  1 
#define false 0 
#define max_token_length 200  
 
 
 
typedef char symbolstringtyp[max_token_length];     // for Scanner 
 
 
 
enum Tsymbole {BEGINNING,       ENDTOKEN, 
               IDENTIFIER, 
               DOT, 
               INVALID,         OPEN_PARAN,          CLOSE_PARAN, 
               DOUBLECROSS, 
               FUNC_TOKEN,      VARIABLE,            STRING_CONST, 
               NUM_TOKEN,       FLOATNUMBER, 
               GP_DIVISION, 
               MULTIP_TOKEN,    DIV_TOKEN,            ADD_TOKEN, 
               SUB_TOKEN, 
             }; 
 
 
#define dash_operator(c) ((c==SUB_TOKEN)||(c==ADD_TOKEN)) 
#ifdef MATRIX_GA 
#define dot_operator(c)  ((c==MULTIP_TOKEN)||(c==DIV_TOKEN)||(c==GP_DIVISION)) 
#else 
#define dot_operator(c)  ((c==MULTIP_TOKEN)||(c==DIV_TOKEN)) 
#endif 
 
#endif 
 
 
 

GP tree implementation 
 
/********************************************************************** 
   knot_tab.h 
 
************************************************************************/ 
#include <string.h> 
 
 
#ifndef _KNOTTAB 
#define _KNOTTAB 
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#ifdef NO_STRING_CLASS 
#define STRING_TO_CHARPT get_local_string() 
class String 
{ private: 
    int mem_size,length; 
    char* ptr; 
    void append(const char *); 
    int my_strlen(const char*s) 
     { if (s==NULL) return 0; 
       return strlen(s); 
     } 
    void init(); 
 public: 
    const char* get_local_string() 
    { return ptr; } 
    String(String &); 
    String(const char*); 
    String(); 
 
    String& operator+=(const char*); 
    String& operator=(String&); 
    ~String(); 
}; 
 
 
typedef String string_class; 
#else 
#ifdef COMPILE_FOR_LINUX 
#include <string> 
typedef string string_class; 
#define STRING_TO_CHARPT c_str() 
 
#else //Watcom 
#include <string.hpp> 
typedef String string_class; 
#define STRING_TO_CHARPT operator char const*() 
#endif 
#endif 
 
 
 
#include <stdio.h> 
#include "toolunit.h" 
 
 
class referenztyp //smart pointer management 
{private: 
  signed long    references; 
 protected: 
  virtual       ~referenztyp(){} 
  referenztyp() { references = 0;} 
 public: 
   inline void create_reference()       {references++;} 
   static void remove_one_reference(referenztyp*); 
}; 
 
 
class Node; 
typedef Node *PNode; 
 
 
class klisttyp : public referenztyp 
{ friend class node_managertype; 
 protected: 
  void set_pred(klisttyp *p) {Predecessor=p;} 
  void set_succ(PNode s) {Successor=s;} 
 public: 
  klisttyp *linlist_predecessor; 
  PNode   linlist_successor; 
  klisttyp *Predecessor; 
  PNode  Successor; 
  inline klisttyp(klisttyp*); 
  inline klisttyp(); 
  virtual ~klisttyp(); 
}; 
 
 
 
class Node_page: public klisttyp 
{ public: 
    int        breite,hoehe; 
    PNode    lnext,rnext; 
    PNode    aequivalent; 
    double     double_value; 
    int number_of_nodes; 
    void            init_aequivalences(); 
    inline Node_page(PNode,PNode,klisttyp*); 
    virtual ~Node_page(); 
}; 
 
 
class node_managertype: public referenztyp 
{ private: klisttyp vars_,numbers_,stringconst_,floats_, 
           funcs_,mult_,div_,add_,sub_,else_; 
  public: 
  klisttyp linear_list; 
  klisttyp *linear_last_element; 
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  node_managertype() 
  { linear_last_element=&linear_list; 
  } 
  public: 
  virtual ~node_managertype(){} 
  PNode searchNode(const char*,const Tsymbole,const PNode,const PNode); 
  PNode getFunctionNode(const char*,const PNode); 
}; 
 
#ifdef COMPILE_FOR_LINUX 
#define STRING_COMPARE(a,b) strcasecmp(a,b) 
#else 
#define STRING_COMPARE(a,b) strcmpi(a,b) 
#endif 
 
 
class Node :public Node_page 
{ friend class node_managertype; 
  private: 
    char             *constant; 
    node_managertype *node_list; 
    Node(const Tsymbole,Node*,Node*,node_managertype*,klisttyp*); 
    Node(const char*,const Tsymbole,node_managertype*,klisttyp*); 
    Node(const char*,PNode,node_managertype*,klisttyp*); 
    virtual ~Node(); 
 
 public: 
   static PNode createNode(const char*,const Tsymbole,const PNode,const 
PNode);//constructs new nodes 
 
   PNode getFunctionNode(const char* name,const PNode args) 
   { return node_list->getFunctionNode(name,args); 
   } 
   PNode get_node(const PNode h) 
   { return get_node(h->wert(),h->symbol,h->lnext,h->rnext); 
   } 
   PNode get_node(const char*     symbolstring, 
                      const Tsymbole  scannersymbol, 
                      const PNode   next_left, 
                      const PNode   next_right) 
   { return node_list->searchNode(symbolstring,scannersymbol,next_left,next_right); 
   } 
 
    int         compare_identifiers(const char* s)              {return 
STRING_COMPARE(wert(),s);} 
    static int  compare_identifiers(const char*s1,const char*s2){return 
STRING_COMPARE(s1,s2);} 
    const char  *get_Nodevalue(); 
    const       Tsymbole  symbol; 
    const char   *wert() {return constant;} 
   static PNode get_float_node(PNode); 
   void output_infix__(string_class*,Tsymbole=ENDTOKEN,bool=false); 
   void output_infix(FILE*); 
   void calculate_list(); 
  };//Node 
 
 
 
typedef class Node_class    //aquisition control 
{ public: 
  PNode n; 
  Node_class(PNode h) 
  { n=h; 
    n->create_reference(); 
  } 
  Node_class(char *s,Tsymbole sym) 
  { n = Node::createNode(s,sym,NULL,NULL); 
  } 
  ~Node_class() 
  { Node::remove_one_reference(n); 
  } 
} Node_wrapper; 
 
#endif 
 
 
//knot_tab.cpp 
#include "knot_tab.h" 
 
klisttyp::klisttyp(klisttyp *liste) 
{  Predecessor=liste; 
   { Successor=liste->Successor; 
     if (liste->Successor != NULL) 
         liste->Successor->Predecessor=this; 
     liste->Successor=(PNode)this; 
   } 
} 
 
klisttyp::klisttyp() 
{ Predecessor=NULL; 
  Successor=NULL; 
  linlist_predecessor=NULL; 
  linlist_successor=NULL; 
} 
 
klisttyp::~klisttyp() 
{ 
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   if (Predecessor!=NULL) Predecessor->set_succ(Successor); 
   if (Successor!=NULL) Successor->set_pred(Predecessor); 
} 
 
 
Node_page::Node_page(PNode left,PNode right,klisttyp *liste) 
  :klisttyp(liste) 
{ lnext=left; 
  rnext=right; 
  aequivalent=NULL; 
  number_of_nodes=1; 
  if (lnext!=NULL) 
    number_of_nodes+=lnext->number_of_nodes; 
  if (rnext!=NULL) 
    number_of_nodes+=rnext->number_of_nodes; 
} 
 
Node_page::~Node_page() 
    {  remove_one_reference(lnext); 
       remove_one_reference(rnext); 
       remove_one_reference(aequivalent); 
    } 
 
void Node_page::init_aequivalences() 
{ 
    if (lnext!=NULL) lnext->init_aequivalences(); 
    if (rnext!=NULL) rnext->init_aequivalences(); 
    remove_one_reference(aequivalent); 
} 
 
 
 
 
void referenztyp::remove_one_reference(referenztyp* h) 
{ if (h!=NULL) 
  { 
    if (--h->references == 0) 
      delete h; 
  } 
} 
 
 
 
 
#include <stdlib.h>//fuer atof in matrix_ga mode 
 
//Constructor for Leaf node 
Node::Node(const char*      s, 
               const Tsymbole   sym, 
               node_managertype *node_liste, 
               klisttyp         *last_element) 
       :Node_page(NULL,NULL,last_element),symbol(sym) 
 
{ 
  constant = new char[strlen(s)+1]; 
  strcpy(constant,s); 
 
  node_list=node_liste; 
  node_list->create_reference(); 
  if ((sym==NUM_TOKEN)||(sym==FLOATNUMBER)) double_value=atof(s); 
  linlist_predecessor=NULL; 
  linlist_successor=NULL; 
} 
 
//constructor for function node 
Node::Node(const char*      s, 
               PNode          argument, 
               node_managertype *node_liste, 
               klisttyp         *last_element) 
       :Node_page(NULL,argument,last_element),symbol(FUNC_TOKEN) 
{ 
  constant = new char[strlen(s)+1]; 
  strcpy(constant,s); 
 
  node_list=node_liste; 
  node_list->create_reference(); 
  linlist_predecessor=node_list->linear_last_element; 
  linlist_predecessor->linlist_successor = this; 
  linlist_successor=NULL; 
  node_list->linear_last_element=this; 
}//constructor 
 
Node::Node(const Tsymbole sym,Node *links,Node *rechts, 
               node_managertype *node_liste,klisttyp *last_element) 
       :Node_page(links,rechts,last_element),symbol(sym) 
{ 
  constant=NULL; 
  node_list=node_liste; 
  node_list->create_reference(); 
  linlist_predecessor=node_list->linear_last_element; 
  linlist_predecessor->linlist_successor = this; 
  linlist_successor=NULL; 
  node_list->linear_last_element=this; 
} 
 
Node::~Node() 
{ 
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 if (constant!=NULL) delete[] constant; 
 
  if (node_list->linear_last_element==this) 
  {   if (linlist_predecessor==NULL) 
      { printf("\nAbnormal termination"); 
        throw int(200); 
      } 
      node_list->linear_last_element=linlist_predecessor; 
  } 
  if (linlist_predecessor!=NULL) 
        linlist_predecessor->linlist_successor = linlist_successor; 
  if (linlist_successor!=NULL) 
        linlist_successor->linlist_predecessor = linlist_predecessor;  
 referenztyp::remove_one_reference(node_list); 
} 
 
/**********************************************************************/ 
#include <math.h> 
#include <float.h> //for _fpreset 
 
#include <signal.h> 
 
#define MATH_NOT_EVALUABLE 9 
#define ACCESS_VIOLATION   10 
 
int matherr( struct _exception*/* er*/) 
{ 
#ifdef DEBUG_VALUES 
/*switch (er->type) 
{ case DOMAIN:  printf("\nA domain error has occurred , such as sqrt(-1e0)"); break; 
  case SING:    printf("\nA singularity will result, such as pow(0e0,-2)");break; 
  case OVERFLOW:printf("\nAn overflow will result, such as pow(10e0,100)");break; 
  case UNDERFLOW:printf("\nAn underflow will result, such as pow(10e0,-100)");break; 
  case TLOSS:   printf("\nTotal loss of significance will result, such as 
exp(1000)");break; 
  case PLOSS: printf("\nPartial loss of significance will result, such as 
sin(10e70)");break; 
  default :printf("\nunknown math exception"); 
}*/ 
#endif 
   _fpreset(); 
   throw int(MATH_NOT_EVALUABLE);  
} 
 
 
void matherr_(int) 
{ 
#ifndef COMPILE_FOR_LINUX 
   _fpreset();      
#endif 
   signal(SIGFPE,matherr_);//needs to be reinstalled, otherwise default handling is 
used 
   throw int(ACCESS_VIOLATION);  
} 
 
class error_treatment 
{public: 
  error_treatment() 
  { 
#ifndef COMPILE_FOR_LINUX 
   _fpreset();      
#endif 
    signal(SIGFPE,matherr_); 
 //   _set_matherr(&my_matherr); 
  }   
}; 
static error_treatment er; 
 
 
/* 
static int my_int() 
{ 
  _set_matherr( &matherr ); 
  return 0; 
} 
 
static int iopu=my_int(); 
*/ 
 
#ifdef MATRIX_GA 
void Node::calculate_list() 
{int l=0; 
 // PNode h; 
 //_fpreset();    
 /*try{*/    
 for (PNode h=node_list->linear_list.linlist_successor; 
       h!=NULL; 
       h=h->linlist_successor,l++) 
 { 
  switch(h->symbol) 
  { case ADD_TOKEN: h->double_value = h->lnext->double_value + h->rnext-
>double_value;continue; 
    case SUB_TOKEN:h->double_value = h->lnext->double_value - h->rnext-
>double_value;continue; 
    case MULTIP_TOKEN:h->double_value = h->lnext->double_value * h->rnext-
>double_value;continue; 
    case GP_DIVISION: if (h->rnext->double_value == 0) 
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                      { h->double_value = 1;//closure condition 
                        continue; 
                      }//else perform a normal division     
    case DIV_TOKEN:h->double_value = h->lnext->double_value / h->rnext-
>double_value;continue; 
    case FUNC_TOKEN: if (h->compare_identifiers("SIN")==0) 
                   { h->double_value = sin(h->rnext->double_value); 
                     continue; 
                   } 
                   if (h->compare_identifiers("COS")==0) 
                   { h->double_value = cos(h->rnext->double_value); 
                     continue; 
                   } 
                   if (h->compare_identifiers("SQRTp")==0) 
                   { if (h->rnext->double_value<0) 
                        h->double_value = sqrt(-h->rnext->double_value); 
                      else h->double_value = sqrt(h->rnext->double_value); 
                     continue;    
                   } 
                   if (h->compare_identifiers("SIGN")==0) 
                   { if (h->rnext->double_value>0) 
                       h->double_value = 1; 
                      else if (h->rnext->double_value<0) 
                               h->double_value = -1; 
                             else h->double_value = 0;    
                         
                     continue; 
                   }      
                   if (h->compare_identifiers("LOG")==0) 
                   { if (h->rnext->double_value==0) 
                        h->double_value = 1; 
                      else if (h->rnext->double_value<0) 
                              h->double_value = log(-h->rnext->double_value); 
                             else h->double_value = log(h->rnext->double_value); 
                     continue;    
                   } 
      
                   printf("\nFunction <%s> not implemented",h->wert()); 
    default:    printf("\nnot implemented math function"); 
                throw int(MATH_NOT_EVALUABLE); 
  } 
 } 
}             
#endif 
 
 
 
 
 
 
 
 
PNode node_managertype::getFunctionNode(const char* name,const PNode args) 
{  klisttyp *h=&funcs_; 
   int k;  
   while (h->Successor!=NULL) 
   {   k=h->Successor->compare_identifiers(name); 
       if (k==0) //descriptor must match 
       { if (h->Successor->rnext > args) 
            break; 
           else if (h->Successor->rnext == args) //and the argument as well 
                  return h->Successor; 
       }  
       if (k>0) //weitersuchen nicht mehr notwendig 
          break;//while 
       h=h->Successor; 
   } 
   args->create_reference(); 
   return new Node(name,args,this,h); 
} 
 
 
PNode node_managertype::searchNode(const char* s,const Tsymbole sym,const PNode 
l,const PNode r) 
{ klisttyp *h;     
  int k; 
  if (sym==VARIABLE)        h=&vars_;           else 
  if (sym==NUM_TOKEN)            h=&numbers_;        else 
  if (sym==FLOATNUMBER)       h=&floats_;         else 
  if (sym==STRING_CONST) h=&stringconst_;    else 
  if (sym==FUNC_TOKEN) 
  {  return getFunctionNode(s,r); 
  } else //binary operations 
      { switch(sym) 
        {case MULTIP_TOKEN: h=&mult_; break; 
         case DIV_TOKEN: h=&div_;  break; 
         case ADD_TOKEN:  h=&add_;  break; 
         case SUB_TOKEN: h=&sub_;  break; 
         default:    h=&else_; //all other operations 
                     while (h->Successor!=NULL) 
                     { if (h->Successor->symbol == sym)  
                        if (h->Successor->lnext == l) 
                         if (h->Successor->rnext == r) 
                           return h->Successor; 
                       h=h->Successor; 
                     } 
                     l->create_reference(); 
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                     r->create_reference(); 
                     return new Node(sym,l,r,this,h); 
        } 
        while (h->Successor!=NULL)//+-/* operations 
        { if (h->Successor->lnext > l) 
             break; else 
          if (h->Successor->lnext == l) 
            if (h->Successor->rnext == r) 
              return h->Successor; 
          h=h->Successor; 
        } 
        r->create_reference(); 
        l->create_reference(); 
        return new Node(sym,l,r,this,h); 
      }//else  
  while (h->Successor!=NULL) 
  { k=h->Successor->compare_identifiers(s); 
    if (k==0) return h->Successor; 
    if (k>0)  
       return new Node(s,sym,this,h); 
    h=h->Successor; 
  } 
  return new Node(s,sym,this,h); 
 
 
 
} 
 
PNode Node::createNode(const char* s,const Tsymbole sym,const PNode l,const PNode r) 
//constructs new nodes 
{  node_managertype* node_list_= new node_managertype(); 
   PNode h=node_list_->searchNode(s,sym,l,r); 
   h->create_reference(); 
   return h;       
} 
 
const char *Node::get_Nodevalue() 
{ switch (symbol) 
  { case MULTIP_TOKEN          : return "*"; 
    case DIV_TOKEN          : return "/"; 
    case ADD_TOKEN           : return "+"; 
    case SUB_TOKEN          : return "-"; 
#ifdef MATRIX_GA 
    case GP_DIVISION    : return "%"; 
#endif     
    default    : return wert(); 
  } 
} 
 
 
void Node::output_infix(FILE *stream) 
{ string_class s=""; 
  output_infix__(&s); 
  fprintf(stream, 
#ifdef GP_SYSTEM 
  "%s" 
#else 
  "\n%s" 
#endif 
  ,s.STRING_TO_CHARPT); 
} 
 
 
 
void Node::output_infix__(string_class* str,Tsymbole op_vater,bool right_branch) 
{ bool with_brackets=false; 
  switch(symbol) 
  { case NUM_TOKEN: 
    case STRING_CONST: 
          if ((compare_identifiers("0")==0)&&(dash_operator(op_vater))) 
              return; 
    case VARIABLE:  *str+=get_Nodevalue();return; 
    case FUNC_TOKEN:  *str+=get_Nodevalue(); 
                    *str+="("; 
                    rnext->output_infix__(str); 
                    *str+=")"; 
                    return; 
    case MULTIP_TOKEN: 
                if ((lnext->symbol==GP_DIVISION)||(rnext->symbol==GP_DIVISION)) 
                   { with_brackets=true; break;} 
    case GP_DIVISION: 
    case DIV_TOKEN: if (op_vater==DIV_TOKEN) { with_brackets=true; break;} 
                if (op_vater==GP_DIVISION) { with_brackets=true; break;} 
                break; 
    case SUB_TOKEN: 
    case ADD_TOKEN:  if (dot_operator(op_vater)) with_brackets=true; 
                if ((op_vater==SUB_TOKEN)&&(right_branch)) with_brackets=true; 
  } 
  if (with_brackets) *str+="("; 
  if (lnext!=NULL) lnext->output_infix__(str,symbol); 
  *str+=get_Nodevalue(); 
  if (rnext!=NULL) rnext->output_infix__(str,symbol,true); 
  if (with_brackets) *str+=")"; 
} 
 
 
#ifdef NO_STRING_CLASS 
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    void String::append(const char*s) 
    { if (s==NULL) return; 
      int  l=my_strlen(s); 
      if (l!=0) //string contains something 
      { char *ch_ptr; 
        if ((length+l)>mem_size) 
        { do mem_size+=1000; 
          while ((length+l) > mem_size); 
          ch_ptr=new char[mem_size]; 
          if (ptr==NULL)  //if current string empty 
              ch_ptr[0]=0; 
           else { strcpy(ch_ptr,ptr);//copy old string 
                  delete []ptr;}     //delete old memory 
          ptr=ch_ptr; 
        } 
        strcat(ptr,s);          //concatenate string 
        length+=l; 
      } 
    } 
 
    void String::init() 
    { ptr=NULL; 
      mem_size=length=0; 
    } 
//3 constructors 
    String::String(const char*s) 
    { init(); 
      append(s); 
    } 
    String::String(String &h) 
    { init(); 
      append(h.get_local_string()); 
    } 
    String::String() 
    { init(); 
    } 
//operators 
    String& String::operator+=(const char* s) 
    { append(s); 
      return *this; 
    } 
    String& String::operator=(String& h) 
    { if (ptr!=NULL) 
         delete []ptr; 
      init(); 
      append(h.get_local_string()); 
      return *this; 
    } 
    String::~String() 
    { if (ptr!=NULL) 
         delete[] ptr; 
    } 
#endif 
 
 
 

GP type definitions 
 
 
#ifndef GA_TYPES__ 
#define GA_TYPES__ 
#include "matrix.h" 
 
enum  var_type {NONLINEAR,LINEAR}; 
typedef struct { char*    name; 
                 double   value; 
                 var_type type; 
               } variable_type;   
 
 
class parameter_generator_type 
//generates a new parameter (string) for further processing 
{  char  prefix[30];  //all parameter names starts with <prefix> 
 public: 
   int   parameter_number; //number of parameters generated 
   char  actual_parameter[10];           
      
  parameter_generator_type(char* name_prefix) 
  { parameter_number=0; 
    strcpy(prefix,name_prefix);   
  } 
  const char *generate_parameter() 
  { sprintf(actual_parameter,"%s%i",prefix,++parameter_number); 
    return actual_parameter;    
  }  
}; 
 
#include "my_templates.h" 
#include <math.h> 
class double_vector: public m_vector<double> 
{public: 
  double_vector(int d):m_vector<double>(d){} 
  double sum_of_squares() 
  { double z=0; 
    for (int l=0; l<dimension; l++) 
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      z+=(data[l]*data[l]); 
    return z;   
  } 
  double norm() 
  { return sqrt(sum_of_squares());   
  } 
  void dump(char*); 
}; 
 
 
class nodelist_type 
{ 
  protected: 
   PNode node_db; 
  public : 
   PNode *list; 
   int     count; 
 
   void list_add(const char*name,double value) 
   { list[count]=node_db->get_node(name,VARIABLE,NULL,NULL); 
     list[count]->create_reference(); 
     list[count]->double_value=value; 
     count++;    
   } 
   void add(const double_vector& v) 
   { 
     for (int l=0; l<count; l++) 
       list[l]->double_value += v.data[l]; 
   } 
   void backup_in(double_vector &v) 
   { for (int l=0;l<count; l++) 
        v.data[l]=list[l]->double_value; 
   } 
   void assign(const double v[]) 
   { for (int l=0; l<count; l++) 
        list[l]->double_value=v[l]; 
   } 
   void assign(const double_vector &v) 
   { for (int l=0; l<count; l++) 
        list[l]->double_value=v.data[l]; 
   } 
   void print(FILE *ostr) 
   { for (int l=0; l<count; l++) 
       fprintf(ostr,"\n%s   ,%lf",list[l]->wert(),list[l]->double_value); 
     fflush(ostr);   
   }  
   nodelist_type(int size__,PNode node_base) 
   { list=new PNode[size__]; 
     count=0;    
     node_db=node_base; 
   }    
   ~nodelist_type() 
   { while (count--) 
       referenztyp::remove_one_reference(list[count]); 
     delete []list;     
   } 
}; 
 
class parameterlist_type :public nodelist_type 
{ 
 public: 
  nodelist_type linear,nonlinear;    
  parameterlist_type(int size__,PNode node_base): 
      nodelist_type(size__,node_base), 
      linear(size__,node_base),nonlinear(size__,node_base) 
   {}    
  void add_to_list(const char*name,var_type type,double value) 
   { list_add(name,value); 
     if (type==LINEAR)  
        linear.list_add(name,value); 
      else nonlinear.list_add(name,value); 
      
   } 
  void initialise(const variable_type vars[],int count_) 
  { for (int l=0; l<count_; l++) 
      add_to_list(vars[l].name,vars[l].type,vars[l].value); 
  } 
}; 
 
 
class chromosome_type 
{ 
 public: 
  static double random();       
  static int random(int); 
};// *p_chromosome_type; 
 
 
 
enum F_status {EVALUATED,NOT_EVALUATED}; 
 
class abstract_chromosome 
{ 
public: 
  F_status status; 
  double   fitness; 
  abstract_chromosome() 
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  { status=NOT_EVALUATED; 
  }     
}; 
 
 
 
typedef struct dataset_type//data format for calibration 
{ double             theta[6]; //set of joint angles 
  double             p[6];    //position measured by robotrak 
} *p_dataset_type; 
 
#endif 
 
 
#include "ga_types.h" 
#include <stdlib.h> 
 
 
double chromosome_type::random() 
{ double z= rand(); 
  z/=RAND_MAX; 
  return z; 
}       
 
 
int chromosome_type::random(int range) 
{ double z=range*rand(); 
  z/=RAND_MAX; 
  z+=0.5; 
  return (int)z; 
} 
 
 
 

GP resources  
 
 
#ifndef __GP_RESOURCE__ 
#define __GP_RESOURCE__ 
static const MAX_SET_ELEMENTS=50;  
enum gp_symbols {ADDITION, 
                 MULTIPLICATION, 
                 DIVISION, 
                 SUBTRACTION, 
                 VARIABLE_, 
                 EPHEMERAL, 
                 FUNCTION}; 
 
#include "ga_types.h" 
class gp_i_set //parameters for GP system 
{ public: 
 struct 
 { gp_symbols symbol; 
   char       *s; 
 } elements[MAX_SET_ELEMENTS]; 
 int number; 
 gp_i_set() 
 { number=0;} 
 void add(gp_symbols sym,char *str) 
 { elements[number].symbol=sym; 
   elements[number].s=str; 
   number++;    
 } 
 int get_element_randomly(/*PNode db*/) 
 {  return chromosome_type::random(number-1); 
 } 
}; 
 
class gp_resource 
{  Node_wrapper node_db; 
  public: 
   PNode create_random_terminal(); 
   gp_i_set terminals, 
            functions; 
   //gp_resource(PNode node_):node_db(node_) 
   //{} 
   double get_value() {return node_db.n->double_value;} 
   void set_theta_value_and_compute_models(double v) const 
   { node_db.n->double_value = v; 
     node_db.n->calculate_list(); 
   } 
   gp_resource(): node_db("theta",VARIABLE) 
   {} 
   const PNode get_nodeset() {return node_db.n;} 
   PNode     create_tree(int,const bool=false); 
   static bool valid_tree(const PNode); 
   static int  tree_depth(const PNode); 
   static PNode create_floatconst(PNode,double); 
 
}; 
 
class gp_robot_chromosome_functions  
{ 
 public: 
  static int     get_number_of_next_const_node(const PNode,const int); 
 protected: 
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  static bool    crossover(const PNode,const PNode,PNode[]); 
  static PNode swap(const PNode,int,PNode); 
  static PNode get_node(const PNode,int); 
  static PNode create_tree(gp_resource&,int,bool); 
    
}; 
 
 
class joint_section : private gp_robot_chromosome_functions 
{ gp_resource    *sys; 
  PNode        tree; 
  PNode replace_random_leaf(const PNode); 
 
 public: 
  joint_section(gp_resource &s,int max_depth,bool full_depth) 
  { tree = create_tree(s,max_depth,full_depth); 
    sys=&s;   
  } 
  joint_section(gp_resource &s) 
  { sys = &s; 
    const PNode h = s.get_nodeset(); 
    tree = h->get_node(NULL,SUB_TOKEN,h->get_node("theta",VARIABLE,NULL,NULL), 
                                    h->get_node("theta",VARIABLE,NULL,NULL)); 
    tree->create_reference(); 
  } 
  joint_section(joint_section &s)//copy constructor; only used by GP  
  { tree = s.tree; 
    sys  = s.sys;   
    tree->create_reference(); 
  } 
  ~joint_section() 
  { Node::remove_one_reference(tree); 
  } 
  const gp_resource* get_resource() const {return sys;} 
  const PNode get_tree() const {return tree;} 
  double tree_value() const {return tree->double_value+sys->get_value();} 
  bool crossover(joint_section*); 
  bool mutation(); 
  joint_section* create_copy() 
  { return new joint_section(*this); 
  } 
  void print(FILE *f) 
  { tree->output_infix(f); 
  } 
  bool equals(const joint_section *h) 
  { return (h->tree==tree); 
  } 
  void mutate_constant(int,double); 
  int number_of_next_const_node(const int number) const 
  {  return get_number_of_next_const_node(tree,number);    
  }    
}; 
 
#endif 
 
 
#include "gp_resource.h" 
#include "gp_parameter.h" 
 
 
PNode gp_robot_chromosome_functions::create_tree(gp_resource &gp_sets,int 
max_depth,bool full_depth) 
{ PNode temp; 
  for(;;)    
  {  temp=gp_sets.create_tree(max_depth,full_depth); 
     temp->create_reference(); 
     if (gp_resource::tree_depth(temp)>=MIN_TREE_DEPTH)  
        if (gp_resource::valid_tree(temp)) 
           return temp; 
     Node::remove_one_reference(temp); 
  }   
} 
 
 
int gp_robot_chromosome_functions::get_number_of_next_const_node 
                (const PNode tree,const int from_node) 
{ for (int l=from_node; l<=tree->number_of_nodes; l++) 
    if (get_node(tree,l)->symbol==FLOATNUMBER)//very inefficient 
      return l;   
  return 0;   
} 
 
 
PNode gp_robot_chromosome_functions::get_node(const PNode node,int node_number) 
{ if (--node_number ==0) 
      return node;  
  if (node->lnext!=NULL) 
  { if (node->lnext->number_of_nodes >= node_number) 
       return get_node(node->lnext,node_number); 
    node_number -=node->lnext->number_of_nodes;                            
  } 
  return get_node(node->rnext,node_number); 
} 
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PNode gp_robot_chromosome_functions::swap(const PNode node,int node_number,PNode 
new_node) 
{ if (--node_number ==0) 
      return new_node;  
  if (node->lnext!=NULL) 
  { if (node->lnext->number_of_nodes >= node_number) 
       return node->get_node(node->wert(), 
                               node->symbol, 
                               swap(node->lnext,node_number,new_node), 
                               node->rnext); 
    node_number -=node->lnext->number_of_nodes;                            
  } 
    return node->get_node(node->wert(), 
                            node->symbol, 
                            node->lnext, 
                            swap(node->rnext,node_number,new_node)); 
}  
 
static inline bool leafnode(const PNode h) 
{ return ((h->lnext==NULL) && (h->rnext==NULL)); 
} 
 
bool gp_robot_chromosome_functions::crossover(const PNode el_1,const PNode el_2,PNode 
new_nodes[]) 
{ int c1,c2; 
  if (chromosome_type::random()< POINT_CROSSOVER_RATE)   
    for(int l=0;l<INVALID_ATTEMPTS;l++) 
    {  c2=chromosome_type::random(el_2->number_of_nodes-1)+1; 
       c1=chromosome_type::random(el_1->number_of_nodes-1)+1; 
       new_nodes[0]=swap(el_1,c1,get_node(el_2,c2)); new_nodes[0]-
>create_reference(); 
       new_nodes[1]=swap(el_2,c2,get_node(el_1,c1)); new_nodes[1]-
>create_reference(); 
       if 
(gp_resource::valid_tree(new_nodes[0])&&gp_resource::valid_tree(new_nodes[1]))  
           return true;      
       Node::remove_one_reference(new_nodes[0]); 
       Node::remove_one_reference(new_nodes[1]); 
    } 
   else //no point mutation permitted 
    {PNode k1,k2; 
     for(int l=0;l<INVALID_ATTEMPTS;l++) 
     {  c2=chromosome_type::random(el_2->number_of_nodes-1)+1; 
        c1=chromosome_type::random(el_1->number_of_nodes-1)+1; 
        k1 = get_node(el_1,c1); 
        k2 = get_node(el_2,c2); 
        if (leafnode(k1) && (leafnode(k2))) continue; 
        new_nodes[0]=swap(el_1,c1,k2); new_nodes[0]->create_reference(); 
        new_nodes[1]=swap(el_2,c2,k1); new_nodes[1]->create_reference(); 
        if 
(gp_resource::valid_tree(new_nodes[0])&&gp_resource::valid_tree(new_nodes[1]))  
           return true;      
        Node::remove_one_reference(new_nodes[0]); 
        Node::remove_one_reference(new_nodes[1]); 
     } 
    } 
  fputchar('C'); 
  return false; 
} 
 
 
PNode gp_resource::create_floatconst(PNode node_db,double val) 
{ char   buffer[30]; 
  sprintf(buffer,"%0.16G",val); 
  PNode h = node_db->get_node(buffer,FLOATNUMBER,NULL,NULL); 
  h->double_value = val; 
  return h; 
} 
 
 
PNode gp_resource::create_random_terminal() 
{ int l = terminals.get_element_randomly(); 
  switch(terminals.elements[l].symbol) 
  { case  VARIABLE_: return node_db.n-
>get_node(terminals.elements[l].s,VARIABLE,NULL,NULL); 
    //case  NUMBER   : return node_db.n-
>get_node(terminals.elements[l].s,NUM_TOKEN,NULL,NULL); 
    case  EPHEMERAL: return create_floatconst(node_db.n,chromosome_type::random()); 
  } 
  throw int(0);   
} 
 
PNode gp_resource::create_tree(int depth,const bool full_depth_required) 
{ if (--depth == 0) 
    return create_random_terminal();    
  if (!full_depth_required) 
    if (chromosome_type::random(1)==1) 
      return create_random_terminal(); 
  int l = functions.get_element_randomly(); 
  switch(functions.elements[l].symbol) 
  { case ADDITION:      return node_db.n->get_node(NULL,ADD_TOKEN, 
create_tree(depth,full_depth_required),create_tree(depth,full_depth_required)); 
    case MULTIPLICATION:return node_db.n-
>get_node(NULL,MULTIP_TOKEN,create_tree(depth,full_depth_required),create_tree(depth,
full_depth_required)); 
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    case DIVISION:      return node_db.n-
>get_node(NULL,GP_DIVISION,create_tree(depth,full_depth_required),create_tree(depth,f
ull_depth_required)); 
    case SUBTRACTION:   return node_db.n-
>get_node(NULL,SUB_TOKEN,create_tree(depth,full_depth_required),create_tree(depth,ful
l_depth_required)); 
    case FUNCTION:      return node_db.n-
>get_node(functions.elements[l].s,FUNC_TOKEN,NULL,create_tree(depth,full_depth_requir
ed)); 
  } 
  printf("Illegal element called from create_tree"); 
  throw int(0); 
  //return NULL; 
} 
 
 
int gp_resource::tree_depth(const PNode h) 
{ if (h==NULL) return 0; 
  int l=tree_depth(h->lnext); 
  int r=tree_depth(h->rnext); 
  return 1+(r>l?r:l);   
} 
 
bool gp_resource::valid_tree(const PNode h) 
{ int depth=tree_depth(h); 
  if (depth > MAX_TREE_DEPTH) 
    return false; 
  if (depth < MIN_TREE_DEPTH) 
    return false; 
  if (h->symbol==FUNC_TOKEN) 
    if (h->rnext->wert()!=NULL) 
     if (strcmp(h->rnext->wert(),"SIGN")==0) 
      return false;     
  return true;    
} 
 
 
bool joint_section::crossover(joint_section *rc) 
{ PNode new_trees[2]; 
  if (gp_robot_chromosome_functions::crossover(rc->tree,tree,new_trees)==false) 
     return false; 
  Node::remove_one_reference(tree); //deleting old trees 
  Node::remove_one_reference(rc->tree); 
  tree     = new_trees[0]; 
  rc->tree = new_trees[1]; 
  return true; 
} 
 
PNode joint_section::replace_random_leaf(const PNode h) 
{ switch(h->symbol) 
   { case VARIABLE: 
     case FLOATNUMBER: 
     case NUM_TOKEN:     { PNode h2; 
                      for (int l=0;l<INVALID_ATTEMPTS;l++) 
                      {  h2 = sys->create_random_terminal(); 
                         if (h2!=h) 
                           return h2;                         
                      } 
                      return sys->create_random_terminal(); 
                    } 
     case FUNC_TOKEN:  return h->get_node(h-
>wert(),FUNC_TOKEN,NULL,replace_random_leaf(h->rnext)); 
   } 
  if (chromosome_type::random(1)==0) 
    return h->get_node(h->wert(),h->symbol,replace_random_leaf(h->lnext),h->rnext); 
  return h->get_node(h->wert(),h->symbol,h->lnext,replace_random_leaf(h->rnext)); 
} 
 
void joint_section::mutate_constant(int number,double step) 
{ 
   PNode h = get_node(tree,number); 
   double val = h->double_value + step; 
   h = swap(tree,number,gp_resource::create_floatconst(tree,val)); 
   h->create_reference(); 
   Node::remove_one_reference(tree); 
   tree = h; 
} 
 
bool joint_section::mutation()//point or subtree mutation (Macro mutation)) 
{ int co_point; 
  PNode h; 
  double mut=chromosome_type::random(); 
  if (mut < POINT_MUTATION_RATE) 
  { for (int l=0;l<INVALID_ATTEMPTS;l++) 
    {   
       co_point=chromosome_type::random(tree->number_of_nodes-1)+1; 
       h = swap(tree,co_point,replace_random_leaf(get_node(tree,co_point))); 
       h->create_reference(); 
       if (sys->valid_tree(h)) 
       {  Node::remove_one_reference(tree); 
          tree = h; 
          //status=NOT_EVALUATED; 
          return true;//successful mutation 
       } 
       Node::remove_one_reference(h); 
    }                      
  } 
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    else if (mut < POINT_MUTATION_RATE+SHRINK_MUTATION_RATE) 
    { co_point=chromosome_type::random(tree->number_of_nodes-1)+1; 
      int depth = gp_resource::tree_depth(get_node(tree,co_point));   
      if (depth==1) 
        for (int l=0;l<INVALID_ATTEMPTS;l++) 
        { h = swap(tree,co_point,sys->create_random_terminal()); 
          h->create_reference(); 
          if (h!=tree) 
          { Node::remove_one_reference(tree); 
            tree = h; 
            return true;//successful mutation 
          } 
          Node::remove_one_reference(h); 
        } 
          else 
           { h = swap(tree,co_point,sys->create_tree(chromosome_type::random(depth-
2)+1,false)); 
             h->create_reference(); 
             Node::remove_one_reference(tree); 
             tree = h; 
             return true;            
           }     
    } 
    else  for (int l=0;l<INVALID_ATTEMPTS;l++) //ordinary crossover 
          { co_point=chromosome_type::random(tree->number_of_nodes-1)+1; 
            h = swap(tree,co_point,sys->create_tree(INITIAL_MAX_TREE_DEPTH1,false)); 
            h->create_reference(); 
            if (sys->valid_tree(h)) 
            {  Node::remove_one_reference(tree); 
               tree = h; 
               //status=NOT_EVALUATED; 
               return true;//successful mutation 
            } 
            Node::remove_one_reference(h); 
          } 
  fputchar('M'); 
  return false; 
} 
 
 

GP chromosome 
 
 
#ifndef __GP_CHROMOSOME__ 
#define __GP_CHROMOSOME__ 
 
#include "gp_resource.h" 
#include "individual.h" 
 
enum S_STAT_TYPE {MARKED,MODIFIED,UNMODIFIED}; 
 
class univariate_searcher:public abstract_chromosome 
{ int            const_number; 
  double         rate; 
  double         fitness_before_change; 
  S_STAT_TYPE    s_status;        
  virtual void   mutate_constant(int,double)=0; 
  virtual int    number_of_next_const_node(int) const =0; 
  void           modify_rate(); 
 protected: 
  void init__() 
  { status=NOT_EVALUATED; 
    s_status=UNMODIFIED; 
  }  
 public: 
  int  number_of_constants() const; 
  void change(int,double); 
  univariate_searcher() 
  { init__(); 
    rate=0.0; 
    modify_rate();   
  } 
  virtual ~univariate_searcher(){} 
  void mark(); 
}; 
 
 
class gp_robot_chromosome: public univariate_searcher 
                          // public abstract_chromosome 
{       //instance properties 
  dataset_type   data[35]; 
  joint_section  joint; 
  const int      theta_index_; 
 
 
  void   assign_theta(int l,int j)  { data[l].theta[j]=joint.tree_value();} 
 
 public: 
  void add_joint_error(const double,const long); 
  gp_robot_chromosome(gp_resource &s,int max_depth,bool full_depth,int _ind): 
        joint(s,max_depth,full_depth), 
        theta_index_(_ind) 
  {} 
  gp_robot_chromosome(gp_resource &s,int _ind)://creates one nominal instance 1*theta 
        joint(s), 
        theta_index_(_ind) 
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  {} 
  virtual ~gp_robot_chromosome(){} 
  const joint_section * get_joint() const {return &joint;} 
  const dataset_type* get_local_data() const {return data;}  
  double evaluate(long,kinematic_type*);  
  void assign_points(const dataset_type[],const long); 
  void replicate_thetavalues(const dataset_type[],const long,const int);  
  double evaluate_m(const dataset_type[],long,kinematic_type*); 
  static void evaluate_population(gp_robot_chromosome*population[],int 
population_size, 
                                  const dataset_type ds[],const long samples, 
                                  kinematic_type* ind); 
  void   apply_corrections(dataset_type[],const int/*,const int*/) const; 
 
  void   crossover(gp_robot_chromosome *); 
  void   mutation(); 
  gp_robot_chromosome* create_copy() 
  { return new gp_robot_chromosome(*this); 
  } 
  void print(FILE *f) 
  { joint.print(f); } 
  bool equals(const gp_robot_chromosome *); 
private: 
  virtual void mutate_constant(int number,double step) 
  { joint.mutate_constant(number,step); 
  } 
public: 
  virtual int number_of_next_const_node(int n) const 
  { return joint.number_of_next_const_node(n); 
  } 
//next constant must be called 
 
}; 
#endif 
 
 
#include "gp_chromosome.h" 
#include "gp_parameter.h" 
 
#ifdef PARALLEL_MODELLING 
#define FROM_VALUE    0 
#define TARGET_VALUE  1 
#define CURRENT_VALUE 2 
#endif 
 
double gp_robot_chromosome::evaluate(long                rf_count, 
                                     kinematic_type     *ptr_kinematic_model) 
{   status  = EVALUATED; 
    try 
    { 
#ifdef PARALLEL_MODELLING 
         fitness = 0.0; 
         for (int l=0; l<rf_count; l++) 
           fitness+= fabs(data[l].theta[TARGET_VALUE]-data[l].theta[CURRENT_VALUE]); 
#else 
         fitness = ptr_kinematic_model->compute_position_error(data,rf_count); 
#endif 
    } 
    catch(...) 
    { printf(" FP ERROR"); 
      fitness= 100000000;//penalty   
    }   
  putchar('#');fflush(stdout);          
  return fitness;          
} 
 
void gp_robot_chromosome::add_joint_error(const double delta_theta,const long 
samples) 
{ for (int l=0; l<samples; l++) 
    data[l].theta[theta_index_]+=delta_theta; 
} 
 
 
void gp_robot_chromosome::evaluate_population(gp_robot_chromosome *population[], 
                                                     int                  
population_size, 
                                                     const dataset_type   ds[], 
                                                     const long           samples, 
                                                     kinematic_type     *ind) 
  { const gp_resource *gpr = population[0]->joint.get_resource(); 
#ifdef ID_ONE_FITS_ALL 
    for (int l=0; l<samples; l++) 
      for (int j=ID_FROM_JOINT-1; j<ID_UP_TO_JOINT; j++) 
      { gpr->set_theta_value_and_compute_models(ds[l].theta[j]); 
 
        for (int p=0; p<population_size; p++) 
          population[p]->assign_theta(l,j);  
      } 
#else 
    const int _t_index = population[0]->theta_index_; 
    for (int l=0; l<samples; l++) 
#ifdef PARALLEL_MODELLING 
      { gpr->set_theta_value_and_compute_models(ds[l].theta[_t_index]); 
        for (int p=0; p<population_size; p++) 
          population[p]->assign_theta(l,CURRENT_VALUE);   
      } 
#else 
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      { gpr->set_theta_value_and_compute_models(ds[l].theta[_t_index]); 
        for (int p=0; p<population_size; p++) 
          population[p]->assign_theta(l,_t_index);   
      } 
#endif 
#endif       
    for (int p=0; p<population_size; p++) 
       population[p]->evaluate(samples,ind); 
  } 
 
void  gp_robot_chromosome::apply_corrections(dataset_type       data_samples[], 
                                             const int          samples/*, 
                                             const int          __theta_index*/) 
const 
{ const gp_resource *gpr = joint.get_resource(); 
          
  for (int l=0; l<samples; l++) 
  {  gpr->set_theta_value_and_compute_models(data_samples[l].theta[theta_index_]);// 
theta.list[0]->double_value = data[l].theta[j]; 
     data_samples[l].theta[theta_index_] = joint.tree_value();//tree[0]-
>double_value; 
  } 
}     
 
 
void gp_robot_chromosome::replicate_thetavalues(const dataset_type data_samples[], 
                                                const long samples, 
                                                const int theta_index) 
{ for (int l=0; l<samples; l++) 
    data[l].theta[theta_index] = data_samples[l].theta[theta_index]; 
} 
 
 
void gp_robot_chromosome::crossover(gp_robot_chromosome *rc) 
{ 
  if (joint.crossover(&rc->joint)==true) 
  { rc->init__(); 
    init__(); 
  } 
} 
 
void gp_robot_chromosome::mutation()//point or subtree mutation (Macro mutation)) 
{ 
  if (joint.mutation()==true) 
     init__(); 
} 
 
void univariate_searcher::modify_rate() 
{ 
  rate = (.5-chromosome_type::random())*.001;  
} 
 
int univariate_searcher::number_of_constants() const 
{ int counter = 0; 
  for (int l=number_of_next_const_node(1);l!=0;l=number_of_next_const_node(l+1)) 
      counter++; 
  return counter;     
} 
 
void univariate_searcher::mark() 
{ if (s_status==UNMODIFIED) 
    {  s_status = MARKED; 
       rate=0.0; 
    } 
} 
 
 
void univariate_searcher::change(int number,double val) 
{ 
  switch(s_status) 
  { case MARKED:     fitness_before_change=fitness; 
                     const_number = number; 
                     modify_rate(); 
                     mutate_constant(const_number,rate); 
                     s_status=MODIFIED; 
                     return;                                              
    case UNMODIFIED: fitness_before_change=fitness;      
                     rate = val; 
                     const_number = number;     
                     mutate_constant(number,val); 
                     s_status=MODIFIED; 
                     return;                             
    case MODIFIED: if (fitness_before_change >= fitness)//carry on if  
                   { if (number!=const_number)      
                     { const_number = number; 
                       modify_rate();   
                     }    
                     fitness_before_change=fitness;  
                     mutate_constant(const_number,rate); 
                     return; 
                   } 
                   modify_rate();   
                   mutate_constant(const_number,rate); 
  }   
} 
 
 



Appendix C 150 
 

 
C++ Sources: GP parameter 

void gp_robot_chromosome::assign_points(const dataset_type ds[],const long samples) 
{ 
#ifdef PARALLEL_MODELLING     
  for (int l=0; l<samples; l++) 
  {  data[l].theta[TARGET_VALUE] = ds[l+samples].theta[theta_index_]; 
     data[l].theta[FROM_VALUE]   = ds[l].theta[theta_index_];       
  } 
#else 
  for (int l=0; l<samples; l++) 
  { for (int p=0; p<3; p++) 
      data[l].p[p] = ds[l].p[p]; 
    for (int j=0; j<6; j++) 
      data[l].theta[j] = ds[l].theta[j];     
  } 
#endif   
} 
 
bool gp_robot_chromosome::equals(const gp_robot_chromosome *h) 
{ 
   return joint.equals(&h->joint); 
} 
 
 
 
 

GP parameter 
 
#ifndef __GP_PARAMETER 
#define __GP_PARAMETER 
 
#define INITIAL_MAX_TREE_DEPTH1 3 //initialisation of initial population :  beginning 
of ramp 
#define INITIAL_MAX_TREE_DEPTH2 6 //depth at end of ramp 
#define MAX_TREE_DEPTH          9 
#define MIN_TREE_DEPTH          2 
#define INVALID_ATTEMPTS        19 //how many attempts to create a offspring before 
giving up 
                                   //for crossover and mutation 
#define POPULATION_SIZE         200 //GA 
#define NUMBER_GENERATIONS      30 
#define TOURNAMENT_SIZE         5 
#define CROSSOVER_RATE          0.7 //0.8 
#define MUTATION_RATE           0.3 //0.2 
 
#define POINT_CROSSOVER_RATE    0.2 
 
#define POINT_MUTATION_RATE     0.3 
#define SHRINK_MUTATION_RATE    0.2 
 
#define ELITIST__ 
#define PARALLEL_MODELLING 
 
/******************************************** 
  End of parameter declaration 
   
*********************************************/ 
 
 
#ifdef ID_ONE_FITS_ALL 
#define WITH_FITTING 
#define ID_FROM_JOINT 1 
#define ID_UP_TO_JOINT LAST_JOINT 
#endif 
 
#endif 
 

GP system and calibration system 
 
 
#ifndef __GP_SYSTEM 
#define __GP_SYSTEM 
 
#include "dataset.h" 
#include "gp_chromosome.h" 
#include "gp_parameter.h" 
 
class abstract_gp_system 
{ 
  public: 
 virtual void correct(dataset_type[],const long)=0; 
 virtual void ga(const dataset_type[],const long,FILE*)=0;   
}; 
 
 
class gp_system:public abstract_gp_system 
{ gp_resource         gp_set;   
  kinematic_type     &kinematic_model; 
  double              nominal_fitness;              
  gp_robot_chromosome *population[POPULATION_SIZE]; 
  gp_robot_chromosome *new_population[POPULATION_SIZE]; 
  const int           theta_index; 
#ifdef WITH_FITTING 
  PNode             joint_models[6]; 
#endif                
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  void           init(int,int,int,bool); 
  void           init_half_and_half(); 
  bool           already_in_population(const gp_robot_chromosome*,const int); 
  void           copy_populations(double); 
  void           breed_population(double); 
  void           apply_mutation_to_elements_having_fitness(double); 
  void           mutate_population(); 
  void           reinitialise();     
 public: 
  int            get_index_of_fittest(); 
  int            breed_until_improvement(const dataset_type[],const 
long,FILE*,int&,int); 
  void           replicate_thetavalues(const int,const long,const int); 
  void           replicate_thetavalues(const dataset_type[],const long,const int); 
 public: 
 
  void print(FILE*); 
  gp_system(const dataset_type[],const long,kinematic_type&,int); 
  ~gp_system(); 
         
 virtual  void ga(const dataset_type[],const long,FILE*); //main function 
  const gp_robot_chromosome* get_individual(int l) const {return population[l];} 
 virtual  void correct(dataset_type[],const long); 
 void write_statistic(FILE *f); 
}; 
 
class calibration_system :public abstract_gp_system 
{ gp_system                        gp1,gp2,gp3,gp4,gp5; 
#if LAST_JOINT==6 
  gp_system                        gp6;      
#endif     
  gp_system                        *gp_systems[LAST_JOINT]; 
  int                              best_index[LAST_JOINT];             
  Node_wrapper                     node_db; 
  kinematic_type_with_derivative  der; 
  //double                           fitness; 
 public: 
  calibration_system(const dataset_type[],const long,kinematic_type&); 
  virtual void ga(const dataset_type[],const long,FILE*); //main function 
  virtual void correct(dataset_type[],const long); 
  void write_statistic(FILE *f); 
}; 
#endif 
 
 
#include "gp_system.h" 
 
calibration_system::calibration_system(const dataset_type ds[],const long 
n,kinematic_type& i_) 
    :gp1(ds,n,i_,0), 
     gp2(ds,n,i_,1), 
     gp3(ds,n,i_,2), 
     gp4(ds,n,i_,3), 
     gp5(ds,n,i_,4), 
#if LAST_JOINT==6 
     gp6(ds,n,i_,5), 
#endif           
     node_db("theta",VARIABLE), 
     der(node_db.n,PUMA_parametric,6,tool) 
  { gp_systems[0]=&gp1; 
    gp_systems[1]=&gp2; 
    gp_systems[2]=&gp3; 
    gp_systems[3]=&gp4; 
    gp_systems[4]=&gp5; 
#if LAST_JOINT==6 
    gp_systems[5]=&gp6;     
#endif     
    for (int l=0; l<LAST_JOINT; l++) 
      best_index[l]=-1;   
  } 
 
 
#ifdef PARALLEL_MODELLING 
 #define SEQUENTIAL_ 
#endif 
 
 
void calibration_system::ga(const dataset_type poses[],const long samples,FILE* 
logfile) 
{ 
#ifdef SEQUENTIAL_ 
  int joint = 0; 
#else 
  int joint = der.select_joint(poses,samples,logfile); 
#endif 
  int number_of_generations=NUMBER_GENERATIONS; 
  int i=-1; 
  int hjoint;       
  for (int g=0;; g++) 
  { 
    if (g>=number_of_generations) 
    { 
#ifdef SEQUENTIAL_ 
      if ((joint+1)<LAST_JOINT) 
      { joint++; 
        g=0; 
        continue;   
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      }    
#endif 
      int gh = kinematic_type::get_integer_from_stdin("\nHow many generations: "); 
      if (gh>0) number_of_generations+=gh; 
         else break; 
#ifdef SEQUENTIAL_ 
      hjoint = kinematic_type::get_integer_from_stdin("\nWhich joint 0-5: "); 
      if (hjoint!=joint)    
      { i = gp_systems[joint]->get_index_of_fittest(); //i is the index of the best 
individual 
#ifndef PARALLEL_MODELLING 
        if (i!=-1) 
        {  const dataset_type *ds=gp_systems[joint]->get_individual(i)-
>get_local_data();             
           for (int p=0; p<LAST_JOINT; p++) 
             if (p==joint) gp_systems[p]->replicate_thetavalues(i,samples,joint); 
               else gp_systems[p]->replicate_thetavalues(ds,samples,joint); 
        } 
#endif 
        joint=hjoint; 
        printf("\nSwitch to joint %i",joint); 
      } 
    } 
    i = gp_systems[joint]-
>breed_until_improvement(poses,samples,logfile,g,number_of_generations); 
    if (i != -1) best_index[joint] = i; //i is the index of the best individual  
#else    
    }     
    i = gp_systems[joint]-
>breed_until_improvement(poses,samples,logfile,g,number_of_generations); 
    if (i != -1) 
    { best_index[joint] = i; //i is the index of the best individual 
      const dataset_type *ds=gp_systems[joint]->get_individual(i)->get_local_data(); 
      hjoint = der.select_joint(ds,samples,logfile); 
       // hjoint = kinematic_type::get_integer_from_stdin("\nWhich joint 0-5: "); 
 
      if (hjoint!=joint)    
      { for (int p=0; p<LAST_JOINT; p++) 
         if (p==joint) gp_systems[p]->replicate_thetavalues(i,samples,joint); 
           else gp_systems[p]->replicate_thetavalues(ds,samples,joint); 
        joint=hjoint; 
        //fprintf(logfile,"\nSwitch to joint %i",joint); 
        printf("\nSwitch to joint %i",joint); 
      }    
    } 
#endif 
  } 
} //main function 
 
 
int gp_system::get_index_of_fittest() 
{ int index=0; 
  for (int l=1; l<POPULATION_SIZE; l++) 
    if (population[l]->fitness < population[index]->fitness) 
      index = l; 
  return index;   
} 
 
 
void gp_system::correct(dataset_type ds[],const long samples) //one model fits all 
{ 
  const gp_robot_chromosome *best =population[get_index_of_fittest()]; 
 // for (int j=0; j<LAST_JOINT; j++) 
  best->apply_corrections(ds,samples/*,j*/); 
 // double fitness=kinematic_model.compute_position_error(ds,samples); 
} 
 
void calibration_system::correct(dataset_type ds[],const long samples)//individual 
models 
{ 
  for (int j=0; j<LAST_JOINT; j++) 
    if (best_index[j]!=-1) 
      gp_systems[j]->correct(ds,samples); 
} 
 
 
gp_system::gp_system(const dataset_type teachpoints[], 
                     const long REF_SAMPLES,kinematic_type& m, 
                     int _index ) 
          :kinematic_model(m) 
          ,theta_index(_index)       
{ 
    gp_set.terminals.add(EPHEMERAL,NULL); 
    gp_set.terminals.add(VARIABLE_,"theta"); 
    
    gp_set.functions.add(ADDITION,NULL); 
    gp_set.functions.add(SUBTRACTION,NULL); 
    gp_set.functions.add(MULTIPLICATION,NULL); 
    gp_set.functions.add(DIVISION,NULL); 
 
    gp_set.functions.add(FUNCTION,"SIN"); 
    gp_set.functions.add(FUNCTION,"COS"); 
    gp_set.functions.add(FUNCTION,"SIGN"); 
    gp_set.functions.add(FUNCTION,"SQRTp"); 
 
        
    init_half_and_half(); 
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    for (int p=0; (p<POPULATION_SIZE); p++) 
      population[p]->assign_points(teachpoints,REF_SAMPLES); 
    gp_robot_chromosome::evaluate_population(population,POPULATION_SIZE, 
                                  teachpoints,REF_SAMPLES,&kinematic_model);   
    nominal_fitness = 
kinematic_model.compute_position_error(teachpoints,REF_SAMPLES); 
    printf("\nnominal fitness: %0.16G, best fitness %0.16G" 
                ,nominal_fitness,population[get_index_of_fittest()]->fitness); 
  
} 
 
gp_system::~gp_system() 
  { for (int l=0; l<POPULATION_SIZE; l++) 
       delete population[l]; 
  } 
 
 
void gp_system::print(FILE*f) 
  { for (int l=0; l<POPULATION_SIZE; l++) 
     population[l]->print(f); 
  } 
 
void gp_system::replicate_thetavalues(const dataset_type ds[], 
                                      const long samples, 
                                      const int theta_index) 
{ for (int l=0; l<POPULATION_SIZE; l++) 
    population[l]->replicate_thetavalues(ds,samples,theta_index); 
} 
 
 
void gp_system::replicate_thetavalues(const int index, 
                                      const long samples, 
                                      const int theta_index) 
{ const dataset_type *ds = population[index]->get_local_data(); 
  for (int l=0; l<POPULATION_SIZE; l++) 
    if (l!=index) 
      population[l]->replicate_thetavalues(ds,samples,theta_index); 
} 
 
 
bool gp_system::already_in_population(const gp_robot_chromosome *h,const int index) 
{ 
  for (int l=0; l<index; l++) 
    if (population[l]->equals(h)) 
      return true; 
  return false; 
}     
 
 
void gp_system::init(int i1,int i2,int max_depth,bool full_depth) 
{ gp_robot_chromosome *temp; 
  for (int l=i1; l<i2; l++) //creating individuals in the intervall i1-i2 
  {  for(;;)    
     {  temp=new gp_robot_chromosome(gp_set,max_depth,full_depth,theta_index); 
        if (already_in_population(temp,l)) 
        { delete temp; 
          continue; 
        } 
        break; 
     }         
     population[l]= temp; 
  }   
} 
 
#ifndef ID_ONE_FITS_ALL 
#define WITH_ONE_NONRANDOM 
#endif 
 
void gp_system::init_half_and_half() 
{ int interval_size = (POPULATION_SIZE 
#ifdef WITH_ONE_NONRANDOM 
  -1 
#endif 
    )/(INITIAL_MAX_TREE_DEPTH2-INITIAL_MAX_TREE_DEPTH1+1); 
  int interval_half = interval_size/2; 
  //for (int li=0 
  int interval_start= 
#ifdef WITH_ONE_NONRANDOM 
  1; 
  population[0]=new gp_robot_chromosome(gp_set,theta_index); 
#else 
  0; 
#endif         
  int interval_middle,interval_end; 
  for (int depth=INITIAL_MAX_TREE_DEPTH1; depth<=INITIAL_MAX_TREE_DEPTH2; depth++) 
  { interval_middle = interval_start + interval_half; 
    interval_end    = interval_start + interval_size; 
       
    init(interval_start ,interval_middle,depth,true);//full sized trees      
    init(interval_middle,interval_end   ,depth,false);//arbitrarily sized trees         
    interval_start +=interval_size;      
  } 
  init(interval_start,POPULATION_SIZE,INITIAL_MAX_TREE_DEPTH2,true);     
} 
 
void gp_system::copy_populations(double fittest) 
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{   int counter=0; 
    for (int l=0;l<POPULATION_SIZE; l++) 
    { delete population[l]; 
      population[l]=new_population[l]; 
      if (population[l]->fitness == fittest) 
        if (counter++ > 0) 
          population[l]->mutation();    
    } 
} 
 
 
void tournament_pick(gp_robot_chromosome   *population[], 
                     gp_robot_chromosome   *tournament[], 
                     const int          tournament_size, 
                     const int          population_size) 
{ long number; 
  for (int l=0; l<tournament_size; l++) 
  { number=chromosome_type::random(population_size-1); 
    for (int k=0; k<l; k++) //picking different individuals 
      if (tournament[k]==population[number]) 
      {  number=chromosome_type::random(population_size-1); 
         k=-1; 
      } 
    tournament[l] = population[number]; 
  }  
} 
 
static gp_robot_chromosome 
        *get_fittest(gp_robot_chromosome *tournament[],const int tournament_size) 
{ int index =0; 
  for (int l=1; l<tournament_size; l++) 
    if (tournament[l]->fitness < tournament[index]->fitness)  
       index = l; 
  return tournament[index];             
} 
 
 
 
#include <float.h> 
//static FILE *logfile; 
 
double print_fittest(FILE *stream,gp_robot_chromosome *population[], 
                    int  population_size, 
                    bool show_individual, 
                    const int theta_index) 
{ double z=population[0]->fitness; 
  double average=z;   
  int index=0; 
  _fpreset(); 
  for (int l=1; l<population_size; l++) 
  {if (population[l]->fitness < z) 
   {  z=population[l]->fitness; 
      index=l; 
   } 
   average+=population[l]->fitness; 
  } 
  average/=population_size; 
  fprintf(stdout,"\njoint %i Average: %0.16G  Best_performance: %0.16G 
",theta_index,average,z); 
  fprintf(stream,"\njoint %i Average: %0.16G  Best_performance: %0.16G 
",theta_index,average,z); 
  if (show_individual==true) 
      population[index]->print(stream);  
  population[index]->print(stdout); 
 
  fflush(stdout); 
  return z;   
} 
 
void calibration_system::write_statistic(FILE *f) 
{ 
  for (int l=0; l<LAST_JOINT; l++) 
  { fprintf(f,"\nJoint %i\n",l+1); 
    gp_systems[l]->write_statistic(f); 
  }   
} 
 
void gp_system::write_statistic(FILE *f) 
{ 
  print_fittest(f,population,POPULATION_SIZE,true,theta_index); 
} 
 
int get_index_of_worst(gp_robot_chromosome *population[],int population_size) 
{  int     worst_index=0; 
   for (int l=1;l<population_size;l++) //searching worst individual; function to be 
tuned 
       if (population[l]->fitness > population[worst_index]->fitness) 
         worst_index=l; 
   return worst_index; 
} 
 
gp_robot_chromosome* create_copy_of_fittest(gp_robot_chromosome *population[],int 
length) 
{ gp_robot_chromosome *fittest=population[0]; 
  for (int l=1; l<length; l++) 
    if (population[l]->fitness < fittest->fitness) 
      fittest = population[l]; 
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  return fittest->create_copy();      
} 
 
    
 
int evaluate_pick(          gp_robot_chromosome *parent1,//best individual from 
tournament 1 
                            gp_robot_chromosome *parent2,//best individual from 
tournament 1                
                            //dataset_type         training[], long tr_count, 
                          //  const dataset_type   reference[],long rf_count, 
                            //PNode              knode_db, 
                            gp_robot_chromosome *new_creations[]) 
{ 
   gp_robot_chromosome *p1= parent1->create_copy(); 
   gp_robot_chromosome *p2= parent2->create_copy(); //create local copies 
                                                               // of both parents  
   new_creations[0]=p1; 
   new_creations[1]=p2; 
   double rate_ = chromosome_type::random(); 
   if (rate_< CROSSOVER_RATE) 
   {   p1->crossover(p2); 
       return 2; 
   } 
   else if (rate_ < CROSSOVER_RATE+MUTATION_RATE) 
        {  p1->mutation(); 
           delete p2;        
           return 1;     
        } 
   delete p2;      
   return 1; 
}               
 
 
int comp_const_mutations(const gp_robot_chromosome *fittest,gp_robot_chromosome 
*new_population[]) 
{ int cnum = fittest->number_of_constants(); 
  if (cnum < (POPULATION_SIZE-10)) 
  { int cind = new_population[0]->number_of_next_const_node(1);          
    for (int l=1; l<=cnum; l++) 
    {  new_population[l]=new_population[0]->create_copy(); 
       new_population[l]->change(cind,0.001);  
       cind = new_population[0]->number_of_next_const_node(cind+1);      
    } 
    return cnum; 
  } 
  return 0;     
} 
 
void gp_system::breed_population(double fittest) 
{ gp_robot_chromosome *tournament1[TOURNAMENT_SIZE]; 
  gp_robot_chromosome *tournament2[TOURNAMENT_SIZE];   
  gp_robot_chromosome *new_creations[2]; 
  int creations; 
#ifdef ELITIST__ 
    new_population[0]=create_copy_of_fittest(population,POPULATION_SIZE); 
    int cnum = comp_const_mutations(new_population[0],new_population);     
    new_population[0]->mark(); 
    for (int p=1+cnum; (p<(POPULATION_SIZE)); p++) 
#else 
    for (int p=0; (p<(POPULATION_SIZE)); p++) 
#endif     
    {  
tournament_pick(population,tournament1,TOURNAMENT_SIZE,POPULATION_SIZE);//selection 
       
tournament_pick(population,tournament2,TOURNAMENT_SIZE,POPULATION_SIZE);//selection 
       creations = evaluate_pick(get_fittest(tournament1,TOURNAMENT_SIZE), 
                                 get_fittest(tournament2,TOURNAMENT_SIZE), 
                                      new_creations); 
       new_population[p]=new_creations[0]; 
       if (creations==2) 
       {  if (++p < (POPULATION_SIZE)) 
             new_population[p]=new_creations[1]; 
           else delete new_creations[1]; 
       }    
    } 
    copy_populations(fittest); 
} 
 
void gp_system::mutate_population() 
{ printf("mutate population"); 
  int i=get_index_of_fittest(); 
  for (int l=0; l<POPULATION_SIZE; l++) 
    if (l!=i) 
      if (chromosome_type::random(1)==0) 
         population[l]->mutation(); 
        
} 
 
void gp_system::reinitialise() 
{ printf("reinit population"); 
  gp_robot_chromosome *best=create_copy_of_fittest(population,POPULATION_SIZE); 
  for (int l=0; l<POPULATION_SIZE; l++) 
    delete population[l]; 
  init_half_and_half(); 
  delete population[0]; 
  population[0] = best; 
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} 
 
 
int gp_system::breed_until_improvement(const dataset_type teachpoints[], 
                                       const long         REF_SAMPLES, 
                                       FILE               *log_file_, 
                                       int&               generation, 
                                       int                number_of_generations) 
{ double fittest=population[get_index_of_fittest()]->fitness; 
  double tempf; 
  gp_robot_chromosome::evaluate_population(population,POPULATION_SIZE, 
                                  teachpoints,REF_SAMPLES,&kinematic_model); 
           
  for (int counter=0; generation<number_of_generations; generation++) 
  {  printf("\ngeneration %i",generation);fflush(stdout);      
     breed_population(fittest); 
     gp_robot_chromosome::evaluate_population(population,POPULATION_SIZE, 
                                  teachpoints,REF_SAMPLES,&kinematic_model); 
     tempf=print_fittest(log_file_,population,POPULATION_SIZE,false,theta_index); 
     if (fittest>tempf) 
     { int index = get_index_of_fittest(); 
       population[index]->print(log_file_);   
       return index; 
     }                                            
     if (++counter == 40)  //if no better individuals occurred within 40 generations 
     { //mutate_population(); 
         reinitialise();  //reinitialise the population to introduce new genetic 
material 
       counter=0; 
       gp_robot_chromosome::evaluate_population(population,POPULATION_SIZE, 
                                  teachpoints,REF_SAMPLES,&kinematic_model); 
       tempf=print_fittest(log_file_,population,POPULATION_SIZE,false,theta_index); 
     }                
  }       
  return -1;   
}       
   
 
 
void gp_system::ga(const dataset_type teachpoints[],const long REF_SAMPLES, 
                                   FILE *log_file_/*,const double minimum_fitness*/) 
{ double fittest=10000,tempf; 
  int number_of_generations=NUMBER_GENERATIONS; 
  printf("\nNumber of generations: %u\nPopulationsize: %u\nTournamentsize: 
%u\n",NUMBER_GENERATIONS,POPULATION_SIZE,TOURNAMENT_SIZE);       
#ifdef ELITIST__ 
  printf("Elitist mode\n"); 
#endif 
  for (int g=0;; g++) 
  { 
    if (g==number_of_generations) 
    { int gh = kinematic_type::get_integer_from_stdin("\nHow many generations: "); 
      if (gh>0) number_of_generations+=gh; 
         else break; 
    }     
    printf("\ngeneration %i",g);fflush(stdout);      
    breed_population(fittest); 
    gp_robot_chromosome::evaluate_population(population,POPULATION_SIZE, 
                                  teachpoints,REF_SAMPLES,&kinematic_model);   
    tempf=print_fittest(log_file_,population,POPULATION_SIZE,false,theta_index); 
    if (fittest!=tempf) 
      fittest=tempf; 
  } 
   
  tempf=print_fittest(log_file_,population,POPULATION_SIZE,true,theta_index); 
} 
 
 

Homogenous Node matrix used by kinematic model 
 
 
#ifndef MATRIX__ 
#define MATRIX__ 
#include "parser.h" 
 
typedef char    *string_matrix_type[3][4];  
typedef PNode node_matrix_type[3][4]; 
typedef double  double_matrix_struct[4][4]; 
typedef double  double_hmatrix[3][4]; 
    
/* 
                         xx, yx, zx, px; 
                         xy, yy, zy, py; 
                         xz, yz, zz, pz; 
                         0   0   0   1 
  PNode xx, yx, zx, px; 
  PNode xy, yy, zy, py; 
  PNode xz, yz, zz, pz; 
          0   0   0   1       
*/ 
typedef class parameter_type 
{public: 
  char* name; 
  Tsymbole  type; 
// parameter_type(){}  
 parameter_type(char *n,const Tsymbole t) 
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 { name=n; 
   type=t;   
 }  
} *p_parameter_type; 
 
class plain_nodelist_type 
{ public : 
   PNode *list; 
   int     count; 
 
   void list_add_element(PNode new_node) 
   { list[count]= new_node; 
     list[count]->create_reference(); 
     count++; 
   } 
   plain_nodelist_type(int size__) 
   { list=new PNode[size__]; 
     count=0; 
   } 
   ~plain_nodelist_type() 
   { while (count--) 
       referenztyp::remove_one_reference(list[count]); 
     delete []list; 
   } 
}; 
 
class h_matrix //homogenous matrix 
{ 
 private: 
  PNode zero,one; 
  void initialise(node_matrix_type,const string_matrix_type); 
  static void create_references(node_matrix_type); 
  static void delete_matrix(node_matrix_type); 
  PNode mult(PNode,PNode); 
  PNode add(PNode,PNode); 
  void translate(p_parameter_type,const int); 
  void multiplication(node_matrix_type,node_matrix_type,bool=false); 
  void r_multiplication(h_matrix&); 
  void multiplication(node_matrix_type,const node_matrix_type,const 
node_matrix_type,bool=false); 
  void translate_x(p_parameter_type); 
  void translate_y(p_parameter_type); 
  void translate_z(p_parameter_type); 
  void delete_rotation_matrix(); 
 public://for gp 
  node_matrix_type matrix; 
 public: 
  void _add_tool(const double[]); 
  const PNode node_set; 
  h_matrix(const string_matrix_type,PNode); 
  ~h_matrix(); 
  void r_multiplication(const string_matrix_type,bool=false); 
}; 
 
extern const string_matrix_type ROTX,ROTY,ROTZ,IDENTITY_M; 
 
#endif 
 
 
#include "matrix.h" 
 
void h_matrix::_add_tool(const double tool_[]) 
{ 
  char buffer[20]; 
  for (int l=0; l<3; l++) 
    if (tool_[l]!=0.0)  
     { parameter_type p(buffer,FLOATNUMBER); 
       sprintf(buffer,"%6.6f",tool_[l]); 
       switch (l) 
       { case 0: translate_x(&p); break; 
         case 1: translate_y(&p); break; 
         case 2: translate_z(&p); break; 
       }               
     }   
} 
   
 
void h_matrix::translate(p_parameter_type p,const int pos_component) 
{ PNode parameter=node_set->get_node(p->name,p->type,NULL,NULL); 
//  transl_derivatives.list_add_element(parameter);    //add parameter name   
  PNode h; 
  for (int l=0; l<3; l++) 
  { h=mult(matrix[l][pos_component],parameter); 
    h=add(matrix[l][3],h);   
    h->create_reference(); 
    referenztyp::remove_one_reference(matrix[l][3]); 
    matrix[l][3]=h;     
  } 
} 
 
void h_matrix::translate_x(p_parameter_type p) 
{ translate(p,0); 
} 
 
void h_matrix::translate_y(p_parameter_type p) 
{ translate(p,1); 
} 
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void h_matrix::translate_z(p_parameter_type p) 
{ translate(p,2); 
} 
 
 
void h_matrix::delete_matrix(node_matrix_type m) 
{ for (int row=0; row<3; row++) 
    for (int column=0; column<4; column++) 
      if (m[row][column]!=NULL)   
        referenztyp::remove_one_reference(m[row][column]); 
} 
 
void h_matrix::delete_rotation_matrix() 
{ for (int row=0; row<3; row++) 
    for (int column=0; column<3; column++) 
      if (matrix[row][column]!=NULL)   
      { 
          referenztyp::remove_one_reference(matrix[row][column]); 
          matrix[row][column]=NULL; 
      } 
} 
 
void h_matrix::create_references(node_matrix_type m) 
{ for (int row=0; row<3; row++) 
    for (int column=0; column<4; column++) 
      m[row][column]->create_reference(); 
} 
//*************************************** 
h_matrix::h_matrix(const string_matrix_type strings,PNode _node_set) 
                   :node_set(_node_set) 
{ //node_set=_node_set; //set of nodes making the matrix up 
  zero=node_set->get_node("0",NUM_TOKEN,NULL,NULL); 
  zero->create_reference(); 
  one=node_set->get_node("1",NUM_TOKEN,NULL,NULL); 
  one->create_reference(); 
  initialise(matrix,strings);//nodes are already referenced 
} 
 
h_matrix::~h_matrix() 
{ referenztyp::remove_one_reference(zero); 
  referenztyp::remove_one_reference(one); 
  delete_matrix(matrix); 
} 
 
void h_matrix::initialise(node_matrix_type         m, 
                          const string_matrix_type strings) 
{ Parsertyp parser; 
  for (int row=0; row<3; row++) 
    for (int column=0; column<4; column++) 
      m[row][column]= 
          parser.read_expression(strings[row][column],node_set); 
                //only one variable expected 
}  
//***************************************************** 
 
 
 
 
inline PNode h_matrix::mult(PNode left,PNode right) 
{ if ((left==zero)||(right==zero)) return zero; 
  if (left==one) return right; 
  if (right==one) return left; 
  return one->get_node(NULL,MULTIP_TOKEN,left,right); 
} 
 
inline PNode h_matrix::add(PNode left,PNode right) 
{ if (left==zero)  return right; 
  if (right==zero) return left; 
  return one->get_node(NULL,ADD_TOKEN,left,right); 
} 
 
 
void h_matrix::multiplication(node_matrix_type result, 
                              const node_matrix_type left, 
                              const node_matrix_type right, 
                              bool  zero_scaling) 
//main function performes mult. of homogenous matricies       
{ PNode set=left[1][1],h; //node set vom anderen Node 
  for (int r=0; r<3; r++) 
  { for (int c=0; c<4; c++) 
    { //element with first product 
      result[r][c]=mult(left[r][0],right[0][c]);   
      for (int l=1;l<3;l++)//adding all products 
      { h=mult(left[r][l],right[l][c]);   
        if (h==zero) continue; 
        result[r][c]=add(result[r][c],h);   
      } 
    } 
    if (!zero_scaling) //m[3][3]!=0 
      if (left[r][3]!=zero) 
        result[r][3]=add(result[r][3],left[r][3]); 
      //adding last element to column vector 
  } 
} 
 



Appendix C 159 
 

 
C++ Sources: Kinematic forward model 

void h_matrix::multiplication(node_matrix_type m1,node_matrix_type m2,bool 
zero_scaling) 
{ node_matrix_type res; 
  multiplication(res,m1,m2,zero_scaling);    //result <res> without references 
  create_references(res);  
  delete_matrix(matrix);  //delete old matrix 
  memcpy(matrix,res,sizeof(res)); //copy new matrix   
} 
 
void h_matrix::r_multiplication(h_matrix &ns) 
{ multiplication(matrix,ns.matrix); 
}       
 
void h_matrix::r_multiplication(const string_matrix_type s,bool zero_scaling) 
{ node_matrix_type h; 
  initialise(h,s); //konvert 
  multiplication(matrix,h,zero_scaling); 
  delete_matrix(h); 
} 
 
 
 
const string_matrix_type 
                         ROTX={{"1",       "0"       ,"0"       ,"0"}, 
                               {"0",       "COS(#1)" ,"-SIN(#1)","0"}, 
                               {"0",       "SIN(#1)" ,"COS(#1)" ,"0"}}, 
                         ROTY={{"COS(#1)", "0"       ,"SIN(#1)" ,"0"}, 
                               {"0",       "1"       ,"0"       ,"0"}, 
                               {"-SIN(#1)","0"       ,"COS(#1)" ,"0"}}, 
                         ROTZ={{"COS(#1)" ,"-SIN(#1)","0"       ,"0"}, 
                               {"SIN(#1)" ,"COS(#1)" ,"0"       ,"0"}, 
                               {"0"       ,"0"       ,"1"       ,"0"}}, 
                   IDENTITY_M={{"1"       ,"0"       ,"0"       ,"0"}, 
                               {"0"       ,"1"       ,"0"       ,"0"}, 
                               {"0"       ,"0"       ,"1"       ,"0"}}; 
 
 
 

Kinematic forward model 
 
 
#ifndef INDIVIDUAL__ 
#define INDIVIDUAL__ 
#include "ga_types.h" 
 
#include "my_templates.h" 
#include "robot_parameter.h" 
 
 
class kinematic_type    //represents a forward kinematic robot model 
{ 
public: 
  h_matrix           matrix; //matrix containing the symbolic expressions 
  parameterlist_type joints; //direct accessable knodes of joint variables 
private: 
  parameterlist_type parameter;//,linear,nonlinear;//list of free parameters 
  void joint_init(); 
     
public: 
  static int get_integer_from_stdin(char*);       
  void init_nominal_parameter(); 
  kinematic_type(PNode,const string_matrix_type[],int,const tool_type); 
  virtual ~kinematic_type();  
 
  double compute_position_error(const dataset_type[],long);      
  void   compute_forward_kinematic(dataset_type[],long); 
  void print() {parameter.print(stdout);} 
}; 
 
 
class kinematic_type_with_derivative: public kinematic_type 
{  h_matrix der1,der2,der3,der4,der5; 
#if LAST_JOINT==6 
   h_matrix der6; 
#endif     
   h_matrix *derivative[LAST_JOINT]; 
   int get_joint_with_most_error_m1(const dataset_type[],long,FILE*); 
  public: 
      
   kinematic_type_with_derivative(PNode,const string_matrix_type[],int,const 
tool_type); 
   virtual ~kinematic_type_with_derivative(){} 
   int select_joint(const dataset_type[],long,FILE*);      
}; 
#endif 
 
 
#include "individual.h" 
//#include "..\kernel.ok\darstell.h" 
 
//#define WITH_ORIENTATION 
 
#ifdef WITH_ORIENTATION 
#define MEASUREMENTS_PER_POSE 6 
#else 
#define MEASUREMENTS_PER_POSE 3 
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#endif 
 
//experimental constructor; 
kinematic_type::kinematic_type(PNode                  knode_db, 
                               const string_matrix_type robot_link[], 
                               int                      link_count, 
                               const tool_type          tool) 
     :matrix(IDENTITY_M,knode_db),//matrix is initialised with identity  
      parameter(100,knode_db), 
      joints(6,knode_db)   
{ joint_init(); 
  for (int l=/*1*/0; l<link_count ;l++) 
    matrix.r_multiplication(robot_link[l]); 
  init_nominal_parameter(); 
  matrix._add_tool(tool); 
} 
 
 
 
kinematic_type_with_derivative::kinematic_type_with_derivative(PNode node_db, 
                                  const string_matrix_type DH_links[], 
                                  int link_number,const tool_type tool_) 
       :kinematic_type(node_db,DH_links,link_number,tool_), 
        //gradient(MEASUREMENTS_PER_POSE*NUMBER_OF_SAMPLES,LAST_JOINT), 
        //error(MEASUREMENTS_PER_POSE*NUMBER_OF_SAMPLES), //vector of samples of 
x,y,z errors   
        //delta_theta(LAST_JOINT), 
        der1(IDENTITY_M,node_db), 
        der2(IDENTITY_M,node_db), 
        der3(IDENTITY_M,node_db), 
        der4(IDENTITY_M,node_db), 
        der5(IDENTITY_M,node_db) 
#if LAST_JOINT==6 
       ,der6(IDENTITY_M,node_db) 
#endif                
  { derivative[0]=&der1; 
    derivative[1]=&der2; 
    derivative[2]=&der3; 
    derivative[3]=&der4; 
    derivative[4]=&der5; 
#if LAST_JOINT==6 
    derivative[5]=&der6; 
#endif 
    for (int j=0; j<LAST_JOINT; j++)     
    { for (int l=0; l<6 ;l++) 
      { if (j==l) 
               derivative[j]->r_multiplication(DH_theta_derivative[j],true); 
         else  derivative[j]->r_multiplication(DH_links[l]); 
      }    
      derivative[j]->_add_tool(tool_); 
    } 
  } 
 
                                          
 
 
int kinematic_type_with_derivative::select_joint(const dataset_type data[], 
                                                               long length,FILE 
*logfile) 
{ 
 
  return get_joint_with_most_error_m1(data,length,logfile); 
}                                                               
 
 
 
 
int kinematic_type_with_derivative::get_joint_with_most_error_m1(const dataset_type 
data[], 
                                                                 long  length,FILE 
*logfile) 
{ 
    int    j;          
    double performance[6]={0.0,0.0,0.0,0.0,0.0,0.0}; 
    double squared_pose_error[3]={0.0,0.0,0.0}; 
    double error[3];     
    register double z; 
     
    for (int l=0; l<length ;l++) 
    { 
      joints.assign(data[l].theta); 
      matrix.node_set->calculate_list();//new computation of the whole model  
      for (int x=0; x<3; x++) 
      {  z = (data[l].p[x] - matrix.matrix[x][3]->double_value); 
         squared_pose_error[x] += z*z;//fabs(z);//(z*z); 
         error[x]=z; 
      } 
      for (j=0; j<LAST_JOINT; j++) 
      { z = 0.0; 
        for (int x=0; x<3; x++) 
          z+= (error[x] * derivative[j]->matrix[x][3]->double_value); 
        performance[j] += fabs(z);   
      } 
    } 
    fprintf(logfile," x: %0.16G  y: %0.16G  z: %0.16G",squared_pose_error[0], 
                                                       squared_pose_error[1], 
                                                       squared_pose_error[2]); 



Appendix C 161 
 

 
C++ Sources: Kinematic parameters 

    int joint_index=0;      
    fprintf(logfile,"  %0.16G",performance[0]);           
    for (int x=1; x<LAST_JOINT; x++) 
    { fprintf(logfile," %0.16G",performance[x]); 
      if (performance[x] > performance[joint_index]) 
        joint_index = x; 
    }     
    fprintf(logfile," %i",joint_index); 
    return joint_index;     
}                        
 
 
#include <float.h> 
#define NUMBER_OF_ITERATIONS 10 
 
  kinematic_type::~kinematic_type() 
  {} 
 
 
void kinematic_type::init_nominal_parameter() 
{ 
   for (int l=0; l<18 ;l++) 
       parameter.add_to_list(DH_NOMINAL_PARAMETER_[l].name, 
                             DH_NOMINAL_PARAMETER_[l].type,      
                             DH_NOMINAL_PARAMETER_[l].value);     
} 
 
void kinematic_type::joint_init() 
{ 
  char jn[10]="theta1"; 
  for (int l1=0; l1<6; l1++,jn[5]++) //extracting the joint variable nodes 
     joints.add_to_list(jn,NONLINEAR,0); 
} 
 
 
 
 
void kinematic_type::compute_forward_kinematic(dataset_type data[],long count)   
{ 
#ifdef WITH_ORIENTATION 
  double rot[3]; 
#endif 
  for (int l=0; l<count; l++) 
  { joints.assign(data[l].theta); 
    matrix.node_set->calculate_list();//new computation of the whole model  
#ifdef WITH_ORIENTATION 
    euler_angles(matrix.matrix,rot); 
#endif 
    for (int x=0; x<3; x++) 
    {  data[l].p[x]=matrix.matrix[x][3]->double_value; 
#ifdef WITH_ORIENTATION 
       data[l].p[x+3]=rot[x];  
#endif 
    } 
  } 
} 
 
double kinematic_type::compute_position_error(const dataset_type data[],long length) 
//distal performance 
{ double z=0; 
  double z2; 
  for (int l=0; l<length ;l++) 
  { joints.assign(data[l].theta); 
    matrix.node_set->calculate_list();//new computation of the whole model  
    for (int x=0; x<3; x++) 
    { z2 = data[l].p[x] - matrix.matrix[x][3]->double_value; 
      z +=(z2*z2); 
    } 
  } 
  return z; 
} 
 
#include <stdlib.h> 
 
int kinematic_type::get_integer_from_stdin(char* s) 
{ 
  printf(s); fflush(stdout); 
  char g_buffer[100];   
  return atoi(gets(g_buffer));   
} 
 
 
 
 

Kinematic parameters 
 
 
#ifndef __ROBOT_PARAMETER 
#define __ROBOT_PARAMETER 
const double PI = 3.1415926535897932385; 
typedef double tool_type[3]; 
extern const tool_type tool; 
 
struct DH_link_parameter 
{ double alpha 
        ,a 
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        ,d; 
};  
 
extern const DH_link_parameter PUMA720_parameter[6]; 
 
#define LAST_JOINT 6 
#define NUMBER_OF_SAMPLES 30  
                     
#include "ga_types.h" 
 
extern const variable_type DH_NOMINAL_PARAMETER_[]; 
extern const string_matrix_type DH_theta_derivative[]; 
extern const string_matrix_type PUMA_parametric[];//contains the Puma Model to be 
calibrated 
                                           //for experimental reasons      
enum transf_type {ROT_X    , 
                  ROT_Y    , 
                  ROT_Z    , 
                  TRANSL_X , 
                  TRANSL_Y , 
                  TRANSL_Z , 
                  NO_TRANS }; 
 
struct elementary_transformation_type 
{ char        *name; 
  double      Value;   
  transf_type type; 
}; 
 
//for test constructor 
//extern const elementary_transformation_type PUMA_parameteric_2[]; 
 
#endif 
 
 
 
#include "robot_parameter.h" 
 
//main model parameter structure 
//all other constant structures further below are defined from them 
const DH_link_parameter PUMA720_parameter[6] = 
          //  alpha    ,a      ,d  
             {{-PI/2   ,0      ,0}, 
              {0       ,650    ,191}, 
              {PI/2    ,0      ,0}, 
              {-PI/2   ,0      ,600}, 
              {PI/2    ,0      ,0}, 
              {0       ,0      ,125}}; 
 
/* black tool: length  150.25   thickness 20.0025 
   aluminium tool      143.536 (hole to hole) 12.93 thickness 
                       142.067  hole to top centre (48.617: including tool)  
         
*/ 
const tool_type tool = 
 {150.25,  1.63,    55.69};//measured 
 
#define LINK_PARAMETER(nr,link)\ 
        {"alpha"#nr,link.alpha,NONLINEAR},\ 
        {"a"#nr,    link.a,    LINEAR},\ 
        {"d"#nr,    link.d,    LINEAR} 
 
const variable_type DH_NOMINAL_PARAMETER_[] 
  ={LINK_PARAMETER(1, PUMA720_parameter[0]), 
    LINK_PARAMETER(2, PUMA720_parameter[1]), 
    LINK_PARAMETER(3, PUMA720_parameter[2]), 
    LINK_PARAMETER(4, PUMA720_parameter[3]), 
    LINK_PARAMETER(5, PUMA720_parameter[4]), 
    LINK_PARAMETER(6, PUMA720_parameter[5])}; 
 
#define DH_STRING_M(theta,alpha,a,d)\ 
 {{"cos("theta")", "-cos("alpha")*sin("theta")", "sin("alpha")*sin("theta")" , 
a"*cos("theta")"},\ 
  {"sin("theta")", "cos("alpha")*cos("theta")" , "-sin("alpha")*cos("theta")", 
a"*sin("theta")"},\ 
  {"0",            "sin("alpha")"              , "cos("alpha")",               d}} 
 
#define DH_THETA_DERIVATIVE_STRING_M(theta,alpha,a,d)\ 
 {{"-sin("theta")","-cos("alpha")*cos("theta")", "sin("alpha")*cos("theta")", a"*-
sin("theta")"},\ 
  {"cos("theta")" ,"-cos("alpha")*sin("theta")", "sin("alpha")*sin("theta")", 
a"*cos("theta")"},\ 
  {"0"            ,"0"                         , "0"                        ,"0" }} 
 
 
const string_matrix_type PUMA_parametric[] //contains the Puma Model to be calibrated 
                                           //for experimental reasons      
    ={DH_STRING_M("theta1","alpha1","a1" ,"d1"), 
      DH_STRING_M("theta2","alpha2","a2" ,"d2"), 
      DH_STRING_M("theta3","alpha3","a3" ,"d3"), 
      DH_STRING_M("theta4","alpha4","a4" ,"d4"), 
      DH_STRING_M("theta5","alpha5","a5" ,"d5"), 
      DH_STRING_M("theta6","alpha6","a6" ,"d6")}; 
 
const string_matrix_type DH_theta_derivative[]       
    ={DH_THETA_DERIVATIVE_STRING_M("theta1","alpha1","a1" ,"d1"), 
      DH_THETA_DERIVATIVE_STRING_M("theta2","alpha2","a2" ,"d2"), 
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      DH_THETA_DERIVATIVE_STRING_M("theta3","alpha3","a3" ,"d3"), 
      DH_THETA_DERIVATIVE_STRING_M("theta4","alpha4","a4" ,"d4"), 
      DH_THETA_DERIVATIVE_STRING_M("theta5","alpha5","a5" ,"d5"), 
      DH_THETA_DERIVATIVE_STRING_M("theta6","alpha6","a6" ,"d6")}; 
       
 
 
#define DH_ENT_TRANSFORMATION__(nr,link)\ 
        {"theta"#nr ,0              ,ROT_Z},\ 
        {"d"#nr     ,link[nr].d     ,TRANSL_Z},\ 
        {"a"#nr     ,link[nr].a     ,TRANSL_X},\ 
        {"alpha"#nr ,link[nr].alpha ,ROT_X}         
 
//for test constructor 
const elementary_transformation_type PUMA_parameteric_2[]= 
   {DH_ENT_TRANSFORMATION__(1,PUMA720_parameter), 
    DH_ENT_TRANSFORMATION__(2,PUMA720_parameter), 
    DH_ENT_TRANSFORMATION__(3,PUMA720_parameter), 
    DH_ENT_TRANSFORMATION__(4,PUMA720_parameter), 
    DH_ENT_TRANSFORMATION__(5,PUMA720_parameter), 
    DH_ENT_TRANSFORMATION__(6,PUMA720_parameter)}; 
 
 
 

Expression parsing (lexical and syntactic analysis) 
 
/************************************************************************* 
   scanner.h 
 
***************************************************************************/ 
#ifndef _scanner 
#define _scanner 
 
 
#include <ctype.h> 
#include <string.h> 
#include <stdio.h> 
#include "toolunit.h" 
 
#define in_alphabet(ch)      ((toupper(ch)>='A')&&(toupper(ch)<='Z')) 
#define in_digits(ch)        (((ch)>='0')&&((ch)<='9')) 
#define DefSymbol(sym)       if (strcmp(s,"sym")==0) return sym; else 
 
typedef class generic_scannertyp  
{ private: 
    int              symbol_length;        
    virtual int      next_char()=0;  
    static Tsymbole  get_symbol(char); 
  protected: 
    int              ch; 
    const int        EOF_character;        
  public : 
    symbolstringtyp  symbolstr; 
    Tsymbole         symbol; 
    bool             read_until_character(char c); 
    Tsymbole         read_next_symbol(); 
    generic_scannertyp(int EOF_char):EOF_character(EOF_char) 
    {} 
    ~generic_scannertyp(){} 
} *PScannertyp; 
 
 
class Scannertyp: public generic_scannertyp 
{ const char       *expression; 
  unsigned         expression_index; 
  virtual          int next_char(); 
 public: 
  void             take_expression(const char *); 
  Scannertyp():generic_scannertyp(0){} 
}; 
 
#endif 
 
 
#include "scanner.h" 
 
 
Tsymbole  generic_scannertyp::get_symbol(char arg) 
{ 
 switch (arg) 
   { case   '*':  return MULTIP_TOKEN; 
     case   '.':  return DOT; 
     case   '(':  return OPEN_PARAN; 
     case   ')':  return CLOSE_PARAN; 
     case   '+':  return ADD_TOKEN; 
     case   '-':  return SUB_TOKEN; 
     case   '/':  return DIV_TOKEN; 
     case   '#':  return DOUBLECROSS; 
     case  '%':   return GP_DIVISION;  
   } 
   return INVALID; 
} 
 
 
 
void Scannertyp::take_expression(const char *s) 
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{ 
  expression = s; 
  expression_index = 0; 
  ch = next_char(); 
} 
 
 
int Scannertyp::next_char() 
{ 
  if (expression[expression_index]==0) 
      return 0; 
  return tolower(expression[expression_index++]); 
} 
 
 
 
bool generic_scannertyp::read_until_character(char c) 
{ symbol_length=0; 
  while ( ch != EOF_character) 
    if (ch==c) 
      { ch=next_char(); 
        symbolstr[symbol_length]=0;   
        return true; 
      }   
      else 
        { if (symbol_length < max_token_length) 
             symbolstr[symbol_length++]=ch; 
          ch = next_char(); 
        } 
  symbol=ENDTOKEN; 
  return false;  
} 
 
Tsymbole generic_scannertyp::read_next_symbol() 
{ symbol_length = 0; 
  while ((ch==' ')) 
      ch = next_char();  
  if (ch == EOF_character) { symbol=ENDTOKEN;return ENDTOKEN;} 
  if (in_alphabet(ch)) 
  { symbol=IDENTIFIER; 
    do   { if (symbol_length < max_token_length) 
              symbolstr[symbol_length++] = ch ; 
            ch = next_char(); 
         } while (in_alphabet(ch)||(in_digits(ch))); 
  } 
    else if (in_digits(ch)) 
         { if (symbol_length==0) symbol=NUM_TOKEN; 
             do 
             { if (symbol_length < max_token_length) 
               symbolstr[symbol_length++] = ch; 
               ch = next_char(); 
             } while (in_digits(ch)); 
         } 
  if (symbol_length==0)  // special character 
  {   symbolstr[symbol_length++]=ch; 
      ch=next_char(); 
      symbol= get_symbol(symbolstr[0]); 
      return symbol; 
  } 
  symbolstr[symbol_length]=0;       //termination 
  return symbol; 
} 
 
#ifndef _expr_parser 
#define _expr_parser 
/************************************************************************* 
   parser.h 
   Jens- Uwe Dolinsky 
 
   Simple expression parser used for establishing kinematic equations 
************************************************************************* 
 
EBNF  
  CHARACTER      := 'a'..'z' | 'A'..'Z'.                               
  DIGIT          := '0'..'9'. 
  IDENT          := CHARACTER {CHARACTER|DIGIT}. 
  NUMBER         := DIGIT {DIGIT}.              
  NUM            := '.' NUMBER  
                    | NUMBER ['.' NUMBER] [factor]. 
  operand        := NUM 
                    | IDENT ['(' sum ')']. 
  factor         := ('(' sum ')') 
                    | operand. 
  signed_factor  := {'-'|'+'} (factor). 
  term           := signed_factor { ('*'|'/') signed_factor}. 
  sum            := term { {'+'|'-'} term }. 
   
  start_symbol   := sum.  
*/ 
 
#include "knot_tab.h" 
#include "scanner.h" 
 
 
typedef class Parsertyp : private Scannertyp 
         { 
          private: 
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            PNode Kdb; //Node set 
            PNode get_node(const char*,Tsymbole,PNode,PNode); 
          virtual PNode read_operand()        ;//throw(String); 
                  PNode read_signed_factor()  ;//throw(String); 
                  PNode read_factor()         ;//throw(String); 
                  PNode read_term()  ;//throw(String); 
                  PNode read_sum() ;//throw(String); 
                  void    throw_error(char*)         ;//throw(String); 
          public: 
            PNode read_expression(char*,PNode);//throw(String); 
        } *PParsertyp; 
 
#endif 
 
#include "parser.h" 
#include <stdlib.h>  
 
 
 
PNode Parsertyp::get_node(const char* name,Tsymbole sym,PNode left,PNode right) 
{ PNode h = Kdb->get_node(name,sym,left,right); 
  h->create_reference(); 
  referenztyp::remove_one_reference(h->lnext); 
  referenztyp::remove_one_reference(h->rnext); 
  return h; 
} 
 
 
PNode Parsertyp::read_operand() 
{ PNode          h=NULL; 
    symbolstringtyp  sym; 
    sym[0]=0;   
    switch(symbol) 
    { case NUM_TOKEN:      h= get_node(symbolstr,NUM_TOKEN,NULL,NULL); 
                      read_next_symbol(); 
                      return h;   
      case IDENTIFIER: 
                       strcat(sym,symbolstr);  
                       read_next_symbol(); 
                       if (symbol==OPEN_PARAN) 
                       { h = read_sum(); 
                         if (symbol!=CLOSE_PARAN) 
                               throw_error(") expected"); 
                            else h = get_node(sym,FUNC_TOKEN,NULL,h); 
                         read_next_symbol(); 
                       } else 
                          if (Node::compare_identifiers(sym,"pi")==0) 
                             h = get_node(sym,STRING_CONST,NULL,NULL); 
                           else h = get_node(sym,VARIABLE,NULL,NULL);      
                       return h; 
    } 
    throw_error("need identifier or number"); 
    return h; 
} 
 
 
void Parsertyp::throw_error(char* s)  
{   throw string_class(s);   
} 
 
 
PNode Parsertyp::read_factor() 
{PNode h=NULL,h1; 
 switch(symbol) 
    { case OPEN_PARAN: h = read_sum(); 
                       if (symbol!=CLOSE_PARAN) throw_error(") expected"); 
                       read_next_symbol(); 
                       break; 
      default: h = read_operand(); 
    } 
 return h; 
} 
 
 
PNode Parsertyp::read_signed_factor() 
{ PNode h=NULL; 
  Tsymbole operation = ADD_TOKEN;  
  while (dash_operator(symbol)) 
  { operation = (operation==symbol)?ADD_TOKEN:SUB_TOKEN; 
    read_next_symbol(); 
  } 
  h=read_factor();    
  if (operation==SUB_TOKEN)   //negative sign 
     {                        
       PNode h1 = get_node("0",NUM_TOKEN,NULL,NULL); 
       h = get_node(NULL,SUB_TOKEN,h1,h); 
     } 
 return h; 
} 
 
 
PNode Parsertyp::read_term() 
{  PNode  h=NULL,h1; 
   Tsymbole hsymbol; 
     h = read_signed_factor(); 
     while (dot_operator(symbol)) 
     {  hsymbol=symbol; 
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        read_next_symbol(); 
        h1 = read_signed_factor(); 
        h =  get_node(NULL,hsymbol,h,h1); 
     } 
   return h; 
} 
 
PNode Parsertyp::read_sum() 
{ PNode h=NULL,h1; 
  Tsymbole operation ; 
  read_next_symbol(); 
    h = read_term(); 
    while (dash_operator(symbol)) 
    { operation = ADD_TOKEN; 
      do { operation = (operation == symbol)?ADD_TOKEN:SUB_TOKEN; 
           read_next_symbol(); 
         } while (dash_operator(symbol)); 
      h1 = read_term(); 
      h = get_node(NULL,operation,h,h1); 
    } 
  return h; 
} 
 
 
 
PNode Parsertyp::read_expression(char *s,PNode menge) 
{ 
  PNode h=NULL; 
  take_expression(s); 
  Kdb=menge; 
  h = read_sum(); 
  if (symbol!=ENDTOKEN) 
       throw_error("end of expr. expected, but found more"); 
  return h; 
} 
 
 
 

Templates for matrices and vectors 
 
 
#ifndef _MY_TEMPLATES 
#define _MY_TEMPLATES 
 
template <class type__> class m_vector 
    //    :public raw_vector<type__> 
{ public: 
    const  int dimension; 
    type__ *data; 
    m_vector(int d):dimension(d) 
    { 
        data=new type__[d]; 
    } 
    ~m_vector() 
    { 
        delete[]data; 
    } 
    void assign(m_vector<type__> &v) 
    { for (int l=0; l<dimension; l++) 
        data[l]=v.data[l]; 
    } 
          
}; 
 
 
template <class type__> class matrix_template 
{public: 
  type__ **data; 
  const int rows,columns,size_; 
 
  matrix_template(int r,int c) 
    :rows(r),columns(c),size_(r*c) 
  { data= (type__**)new type__[r]; 
    for (int l=0; l<rows; l++) 
       data[l]= new type__[c]; 
  } 
  ~matrix_template() 
  { for (int l=0; l<rows; l++) 
        delete []data[l]; 
    delete []data; 
  } 
  void assign(int r,int c,type__ value) 
  { //if ((r>=rows) || (c>=columns)) 
      // printf("matrixdimension exceeded"); 
    data[r][c]=value; 
  } 
  type__ value(int r, int c) 
  { //if ((r>=rows) || (c>=columns)) 
      // printf("matrixdimension exceeded"); 
    return data[r][c]; 
  } 
  void swap_rows(const int r1,const int r2) 
  { type__ z; 
    for (register int l=0; l<columns; l++) 
    { z= data[r1][l]; 
      data[r1][l]=data[r2][l]; 
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      data[r2][l]=z; 
    } 
  } 
 
}; 
 
#endif 
 
 

Local frames  
 
 
#ifndef __LOCAL_FRAME 
#define __LOCAL_FRAME 
 
 
typedef double vector3D[3]; 
typedef vector3D HG_matrix_type[4]; 
#include <stdio.h> 
int get_measured_data(const char *robotrak_local_frame_file, 
                      const char *robot_local_frame_file, 
                      const char *robotrak_datafile, 
                      const char *robot_datafile, 
                      const char *error_diff_file, 
                      vector3D  robotrak_measurements[], 
                      vector3D  robot_measurements[], 
                      const char* taskspace_file); 
#include "ga_types.h" 
 
void create_program_file(const char * name,const dataset_type config[],const int 
number); 
 
void create_lc_program_file(const char          *name, 
                            const dataset_type  config[], 
                            const int           number, 
                            class kinematic_type*ptr_kinematic_model, 
                            const char          *location_filename); 
 
 
typedef double jointangle_set[6]; 
int get_joint_angles(const char *filename,jointangle_set j[]); 
 
 
void puma_forward(const dataset_type[],const int,const char*,const vector3D); 
void puma_inverse(const double         config[], 
                  const HG_matrix_type data, 
                  const int            lockwrist, 
                  double               theta[], 
                  const vector3D       tool); 
 
const HG_matrix_type HG_IDENTITY_M = {{1,0,0},{0,1,0},{0,0,1},{0,0,0}}; 
 
#endif 
 

 
Transformation routines and parsing of VALII files 
 
 
#ifndef __FILE_SCANNER 
#define __FILE_SCANNER 
#include "scanner.h" 
 
class FileScannertyp: public generic_scannertyp //string scanner 
{ FILE *stream; 
  virtual int next_char() 
  { int ch= fgetc(stream); 
    while ((ch==10)||(ch==13)) 
      ch= fgetc(stream); 
    return ch;    
  } 
 public: 
  FileScannertyp(const char *f):generic_scannertyp(EOF/*EOF character*/) 
  { stream=fopen(f,"rb"); 
    if (stream==NULL) 
      throw int(1);   
  } 
  ~FileScannertyp() 
  { if (stream!=NULL) 
       fclose(stream); 
  } 
}; 
#endif 
 
 
 
#ifndef __data_set__ 
#define __data_set__ 
 
#include "individual.h" 
 
extern dataset_type teachpoints__[]; 
void convert_to_rad(dataset_type &); 
void prepare_datasets(kinematic_type&,dataset_type[],int); 
void generate_datasets(dataset_type[],const long,const long,const tool_type); 
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#endif 
 
 
 
 
 
#include "dataset.h" 
 
 
void convert_to_rad(dataset_type &joints) 
{ for (int l=0; l<6; l++) 
    joints.theta[l]=(joints.theta[l]*PI)/180; 
} 
 
 
#include "local_frame.h" 
 
 
 
#define SCALING_FACTOR 16 
 
static void vector_assign(const vector3D &a,vector3D &r) 
{   r[0]=a[0]; 
    r[1]=a[1]; 
    r[2]=a[2]; 
} 
 
static void vector_product(const vector3D &a,const vector3D &b,vector3D &ab) 
{   //VECTOR([a1*b2-a2*b1, a2*b0-a0*b2, a0*b1-a1*b0]) 
    ab[0]=a[1]*b[2]-a[2]*b[1]; 
    ab[1]=a[2]*b[0]-a[0]*b[2]; 
    ab[2]=a[0]*b[1]-a[1]*b[0]; 
} 
 
static void vector_sub(const vector3D &a,const vector3D &b,vector3D &ab) 
{   ab[0]=a[0]-b[0]; 
    ab[1]=a[1]-b[1]; 
    ab[2]=a[2]-b[2]; 
} 
 
static double scalar_product(const vector3D &a,const vector3D &b) 
{ return a[0]*b[0]+ 
         a[1]*b[1]+ 
         a[2]*b[2];  
} 
 
#include <math.h>  
static void norm_vector(const vector3D &a,vector3D &na) 
{   double n=sqrt(scalar_product(a,a)); 
    na[0]=a[0]/n;//x axis is normalised ab 
    na[1]=a[1]/n;          
    na[2]=a[2]/n; 
} 
 
static void frame_multiplication(const HG_matrix_type &left, 
                                 const HG_matrix_type &right, 
                                       HG_matrix_type &result) 
{ 
  for (int r=0; r<3; r++) 
  { for (int c=0; c<4; c++) 
    { //element with first product 
      result[c][r] = 0;//left[0][r]*right[c][0];   
      for (int l=0;l<3;l++)//adding all products 
        result[c][r]+= left[l][r]*right[c][l];   
    } 
    result[3][r]+=left[3][r]; 
  } 
} 
 
static void transform_lf(const HG_matrix_type lf,const vector3D pose, vector3D 
&result) 
{  for (int r=0; r<3; r++) 
   { result[r]=0.0; 
     for (int c=0; c<3; c++) 
       result[r]+=(lf[c][r]*pose[c]); 
     result[r]+=lf[3][r];//homogenous coordinates     
   }     
} 
 
static void inverse(const HG_matrix_type& m,HG_matrix_type& res) 
{ for (int c=0; c<3; c++) 
    for (int r=0; r<3; r++) 
      res[c][r] = m[r][c]; 
 
  vector3D ori; 
  for (int r=0; r<3; r++) 
  { ori[r]=0; 
    for (int c=0; c<3; c++) 
      ori[r]+=(res[c][r]*m[3][c]); 
    ori[r]=-ori[r];   
  } 
  vector_assign(ori,res[3]);   
} 
 
 
void create_local_frame(const vector3D &a, 
                        const vector3D &b, 
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                        const vector3D &c, 
                        const vector3D &org, 
                        HG_matrix_type &local_frame) 
{   // -> 
    // ab = a- b 
    vector3D ab; 
    vector_sub(b,a,ab); 
    vector3D normed_ab; 
    norm_vector(ab,normed_ab); //x axis is normalised ab 
 
    vector3D ac; 
    vector_sub(c,a,ac); 
    double lambda =scalar_product(ac,normed_ab); 
    vector3D aE; 
      aE[0]=lambda*normed_ab[0]; 
      aE[1]=lambda*normed_ab[1]; 
      aE[2]=lambda*normed_ab[2]; 
    vector3D Ec; 
    vector_sub(ac,aE,Ec); 
    vector3D normed_Ec; 
    norm_vector(Ec,normed_Ec); // y axis 
 
    vector_assign(normed_ab,local_frame[0]); 
    vector_assign(normed_Ec,local_frame[1]);         
    vector_product(normed_ab,normed_Ec,local_frame[2]); //z axis 
    vector_assign(org,local_frame[3]);    
} 
 
 
 
static void create_inv_local_frame( 
                        const vector3D &a, 
                        const vector3D &b, 
                        const vector3D &c, 
                        const vector3D &org, 
                        HG_matrix_type &inv_transformation) 
{   HG_matrix_type local_frame; 
    create_local_frame(a,b,c,org,local_frame); 
    inverse(local_frame,inv_transformation);     
} 
 
 
 
 
#include <stdio.h> 
#include <stdlib.h> 
#include "file_scanner.h" 
 
static double read_double(FILE *f) 
{ char buffer[200]; 
  int ch;       
  for(;;) 
  { switch(ch=fgetc(f)) 
    { case EOF: throw int(0); 
      case ' ': 
      case '\n': continue; 
      default: break; 
    } 
    break; 
  } 
  int l=0; 
  for (;;) 
  { buffer[l++]=ch; 
    switch(ch=fgetc(f)) 
    { case EOF:  
      case ' ': 
      case '\n': break;   
      default:  continue;         
    } 
    break; 
  } 
  buffer[l]=0; 
  return atof(buffer); 
} 
 
static void read_robotrak_local_frame_data(const char* file,HG_matrix_type &m) 
{ FILE *f=fopen(file,"r"); 
  if (f==NULL) 
  {   printf("Cannot open file %s",file); 
      throw int(0); 
  } 
  for (int c=0; c<4; c++) 
    for (int r=0; r<3; r++) 
      (m[c])[r]=0.0; 
  for(int counter=0;;counter++) 
  {  for (int c=0; c<4; c++) 
       for (int r=0; r<3; r++) 
         try { double p=read_double(f); 
               m[c][r] += p; 
             } 
         catch(...) 
         { if ((c!=0)||(r!=0)||(counter==0)) 
           {  printf("problems reading local framepoints"); 
              fclose(f);  
              throw int(0);  
           } 
            else  
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              for (int c=0; c<4; c++) 
                for (int r=0; r<3; r++) 
                  m[c][r]/=counter; 
            fclose(f); 
            return;      
         } 
  } 
} 
 
static void get_robotrak_inv_local_frame(const char *name, HG_matrix_type &lf) 
{ HG_matrix_type m; 
  read_robotrak_local_frame_data(name,m); 
  create_inv_local_frame(m[0],m[1],m[2],m[3],lf); 
} 
 
static int read_integer(FileScannertyp &sc) 
{ bool minus; 
  if (sc.read_next_symbol()==SUB_TOKEN) 
  {  minus=true; 
     sc.read_next_symbol(); 
  } else minus=false; 
  if (sc.symbol!=NUM_TOKEN) 
  { printf("\nFile format error: expecting number"); 
    throw int(0);   
  } 
  return (minus==true)?-atoi(sc.symbolstr):atoi(sc.symbolstr);   
} 
 
static double read_double(FileScannertyp &sc) 
{ auto char buffer[80]=""; 
  if (sc.read_next_symbol()==SUB_TOKEN) 
  {  sc.read_next_symbol(); 
     strcpy(buffer,"-"); 
  } 
  if (sc.symbol!=NUM_TOKEN) 
  { printf("\nFile format error: expecting number"); 
    throw int(0); 
  } 
  strcat(buffer,sc.symbolstr); 
  if (sc.read_next_symbol()!=DOT) 
  { printf("\nFile format error: expecting ."); 
    throw int(0); 
  } 
  strcat(buffer,"."); 
  if (sc.read_next_symbol()!=NUM_TOKEN) 
  { printf("\nFile format error: expecting number"); 
    throw int(0); 
  } 
  strcat(buffer,sc.symbolstr); 
  return atof(buffer); 
} 
 
 
typedef int pose_type[3]; 
 
static bool read_next_pose(FileScannertyp &sc,pose_type &p, int *tr_m) 
{ int l; 
  while (sc.symbol==DOUBLECROSS) 
  { sc.read_until_character(' '); 
    for (l=0;l<6;l++) 
      read_double(sc); 
    sc.read_next_symbol(); 
  } 
  if (sc.symbol!=IDENTIFIER) 
    return false;        
  sc.read_until_character(' '); 
  for (l=0; l<9; l++) 
    if (tr_m==NULL) read_integer(sc);//overread first 9 numbers 
      else tr_m[l] = read_integer(sc); 
  for (l=0; l<3; l++) 
    p[l]=read_integer(sc); 
  return true;       
} 
 
 
static void read_until_location_points(FileScannertyp &scanner) 
{ while (scanner.read_next_symbol()!=ENDTOKEN) 
    if (scanner.symbol==DOT) 
      if (scanner.read_next_symbol()==IDENTIFIER) 
        if (strcmp(scanner.symbolstr,"LOCATIONS")==0) 
          return; 
  printf("\n No locations found");         
  throw int(0); 
} 
 
 
static void read_robot_local_frame(const char *filename,HG_matrix_type &lf) 
{ FileScannertyp sc(filename); 
  read_until_location_points(sc);   
  int  f[3][4]; 
  for (int l=0;l<3;l++) 
    for (int k=0;k<4;k++) 
      f[l][k]=0;   
  for (int counter=0;;counter++) 
  { for(int k=0;k<4;k++) 
    { if (sc.read_next_symbol()!=IDENTIFIER) 
      { if (counter==0) 
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        { printf("\n<robot local frame> file format error: expect location point 
name"); 
          throw int(0); 
        } 
        for (int l=0;l<3;l++) 
          for (int k1=0;k1<4;k1++) 
            lf[k1][l] = (double)f[l][k1]/(SCALING_FACTOR*counter); 
        return;      
      } 
      pose_type p; 
      if (read_next_pose(sc,p,NULL)==false) 
      { printf("\nCannot read location point"); 
        throw int(0);   
      } 
      for (int l=0; l<3; l++)   
         f[l][k] += p[l]; 
    } 
  } 
} 
 
//static void get_robot_local_frame(const char *filename,HG_matrix_type &lf) 
 
static void get_robot_local_frame(const char *filename,HG_matrix_type &lf) 
{ HG_matrix_type local;  
  read_robot_local_frame(filename,local); 
  create_local_frame(local[0],local[1],local[2],local[3],lf); 
} 
/* 
static void get_robot_inv_local_frame(const char *filename,HG_matrix_type &lf) 
{ HG_matrix_type local;  
  read_robot_local_frame(filename,local); 
  create_inv_local_frame(local[0],local[1],local[2],local[3],lf); 
}*/ 
 
 
int get_joint_angles(const char *filename,jointangle_set j[]) 
{ int counter=0; 
  FileScannertyp scanner(filename); 
  read_until_location_points(scanner);   
        for(;;) 
            switch (scanner.read_next_symbol()) 
            { case ENDTOKEN:  return counter; 
              case DOUBLECROSS:{ scanner.read_until_character(' '); 
                           for (int l=0; l<6; l++) 
                            j[counter][l]=read_double(scanner); 
                           counter++; 
                           continue; 
                         } 
              default:continue;                
            } 
} 
 
static int round(double v) 
{ 
  v+=0.5; 
  return (int)v; 
} 
 
int convert_locations(const char *filename,const char *outp, 
                      const vector3D robot[],const vector3D rtrack[]) 
{ 
  FileScannertyp sc(filename); 
  read_until_location_points(sc);   
  pose_type p; 
  int tr[9]; 
  FILE *f=fopen(outp,"w+"); 
  if (f==NULL) return -1; 
  fprintf(f,".PROGRAM correct\n" 
            "FOR l = 1 TO %u\n" 
            "MOVE mcp[l]\n" 
            "DELAY 4\n" 
            "HERE #cp[l]\n" 
            "END\n" 
            ".END\n" 
            ".LOCATIONS\n",30); 
  for(int counter=0;;counter++)       
  { sc.read_next_symbol(); 
    if (read_next_pose(sc,p,tr)==false) 
    {   fprintf(f,".END\n"); 
        fclose(f); 
        return counter; 
    } 
    fprintf(f,"mcp[%u]  ",counter+1); 
    for (int pc=0; pc<9; pc++) 
      fprintf(f,"%i ",tr[pc]);    
    for (int l=0; l<3; l++)//data[l].p[j] -= ( robotrak[l][j]-robot_poses[l][j] ); 
      fprintf(f,"%i ",p[l]-round((rtrack[counter][l]-
robot[counter][l])*SCALING_FACTOR)); 
    fprintf(f,"\n");   
  }   
}  
 
 
static int read_and_transform_robotlocations( 
                                      const char           *filename, 
                                      const HG_matrix_type &lf, 
                                      vector3D             poses[]) 
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{ FileScannertyp sc(filename); 
  read_until_location_points(sc);   
  pose_type p; 
  vector3D  double_pose; 
  for(int counter=0;;counter++)       
  { sc.read_next_symbol(); 
    if (read_next_pose(sc,p,NULL)==false) 
      return counter; 
    for (int l=0; l<3; l++) 
    {  double_pose[l] = p[l]; 
       double_pose[l]/=SCALING_FACTOR; 
    } 
    /*if (lf==NULL) 
     for (int p=0; p<3; p++) 
        poses[counter][p]=double_pose[p];  
      else*/ transform_lf(lf,double_pose,poses[counter]);     
  } 
} 
 
static int read_and_transform_robotrack_locations( 
                                           const char           *filename, 
                                           const HG_matrix_type &lf, 
                                           vector3D             poses[]) 
{ 
  FILE *f=fopen(filename,"r"); 
  if (f==NULL) 
  {   printf("Cannot open file %s",filename); 
      throw int(0); 
  } 
  vector3D  double_pose; 
  for(int counter=0;;counter++)       
  { for (int c=0; c<3; c++) 
    { try { double_pose[c]=read_double(f); } 
      catch(...) 
      { if (c!=0) 
        { printf("format error in file %s",filename); 
          fclose(f);   
          throw int(0); 
        } 
        fclose(f); 
        return counter; 
      } 
    } 
    transform_lf(lf,double_pose,poses[counter]);     
  }  
} 
 
 
double write_error_file( 
                        const vector3D    robotrak_measurements[], 
                        const vector3D    robot_measurements[], 
                        int         number, 
                        const char* filename) 
{ FILE *f=fopen(filename,"w+"); 
  if (f==NULL) 
  {  printf("\nCould not write error statistic file"); 
     return -1; 
  } 
  double total=0.0; 
  double m_error,difference;       
  for (int l=0; l<number; l++) 
  { m_error=0.0; 
    for (int k=0; k<3; k++) 
    { difference = robotrak_measurements[l][k] - robot_measurements[l][k];  
      m_error+= (difference*difference);//fabs(difference); 
      fprintf(f,"%lf ",difference); 
    } 
    fprintf(f," %lf\n",sqrt(m_error)); 
    total+=m_error; 
//    fprintf(f,"%lf\n",m_error); 
  } 
  fprintf(f,"total squared :%lf\n",total);  
  fclose(f); 
  return total; 
} 
 
 
int get_measured_data(const char *robotrak_local_frame_file, 
                      const char *robot_local_frame_file, 
                      const char *robotrak_datafile, 
                      const char *robot_datafile, 
                      const char *error_diff_file, 
                      vector3D  robotrak_measurements[], 
                      vector3D  robot_measurements[], 
                      const char* taskspace_file)//, 
                      
{ 
   try 
   {   
      HG_matrix_type rm; 
        get_robot_local_frame(robot_local_frame_file,rm); 
      HG_matrix_type rt_m; 
        get_robotrak_inv_local_frame(robotrak_local_frame_file,rt_m); 
      HG_matrix_type transf; 
      frame_multiplication(rm,rt_m,transf); 
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      int l 
=read_and_transform_robotrack_locations(robotrak_datafile,transf,robotrak_measurement
s);      
      for (int r=0; r<3; r++) 
      {  transf[3][r]=0; 
         for (int c=0; c<3; c++) 
           transf[c][r]=(c==r)?1:0; 
      } 
      if 
(l!=read_and_transform_robotlocations(robot_datafile,transf,robot_measurements)) 
      { printf("nonequal number of measurements"); 
        return -1;   
      } 
      if (error_diff_file!=NULL) 
          
write_error_file(robotrak_measurements,robot_measurements,l,error_diff_file); 
      
      
//write_error_file(transf_robotrak_measurements,exact_robot_poses,l,error_diff_file); 
       // 
write_error_file(robotrak_measurements,robot_measurements,l,"c:\\data\\cmp1.txt"); 
       // 
write_error_file(transf_robotrak_measurements,exact_robot_poses,l,"c:\\data\\cmp2.txt
"); 
      
convert_locations(robot_datafile,taskspace_file,robot_measurements,robotrak_measureme
nts); 
 
      return l;   
   } 
   catch(...) 
   { return -1; 
   }  
} 
       
 
/* 
int get_measured_data(const char *robotrak_local_frame_file, 
                      const char *robot_local_frame_file, 
                      const char *robotrak_datafile, 
                      vector3D  robotrak_measurements[]) 
{ 
   try 
   {  HG_matrix_type inv_rt; 
      get_robotrak_inv_local_frame(robotrak_local_frame_file,inv_rt); 
      HG_matrix_type robotm; 
      get_robot_local_frame(robot_local_frame_file,robotm); 
      HG_matrix_type transf; 
      frame_multiplication(robotm,inv_rt,transf);      
      return read_and_transform_robotrack_locations(robotrak_datafile, 
                                                    transf,robotrak_measurements); 
   } 
   catch(...) 
   { return -1; 
   }  
}*/ 
 
#include "ga_types.h" 
#include "robot_parameter.h" 
 
void create_program_file(const char * name,const dataset_type config[],const int 
number) 
{ FILE *f=fopen(name,"w+"); 
  if (f==NULL) 
  { printf("cannot open file %s for writing",name); 
    return;   
  } 
  fprintf(f,".PROGRAM correct\n" 
            "FOR l = 1 TO %u\n" 
            "MOVE #cp[l]\n" 
            "DELAY 2\n" 
            "TYPE \"stop \", l\n" 
            "DELAY 3\n" 
            "END\n" 
            ".END\n" 
            ".LOCATIONS\n",number); 
  for (int l=0; l<number; l++) 
  { fprintf(f,"#cp[%u]",l+1); 
    for (int j=0; j<6; j++) 
      fprintf(f," %5.6lf",(config[l].theta[j]*180/PI));   
    fprintf(f,"\n");      
  } 
  fprintf(f,".END\n");      
  fclose(f); 
} 
 
 
 
#include "individual.h" 
 
void create_lc_program_file(const char          *name, 
                            const dataset_type  config[], 
                            const int           number, 
                            kinematic_type     *ptr_kinematic_model, 
                            const char          *location_filename) 
{ FILE *f=fopen(name,"w+"); 
  if (f==NULL) 
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  { printf("cannot open file %s for writing",name); 
    return;   
  } 
  fprintf(f,".PROGRAM correct\n" 
            "FOR l = 1 TO %u\n" 
            "MOVE mcp[l]\n" 
            "DELAY 2\n" 
            "TYPE \"stop \", l\n" 
            "DELAY 3\n" 
            "END\n" 
            ".END\n" 
            ".LOCATIONS\n",number); 
  FileScannertyp sc(location_filename); 
  read_until_location_points(sc);   
  pose_type p; 
  int tr_m[9]; 
//  vector3D  double_pose; 
  sc.read_next_symbol(); 
  if (read_next_pose(sc,p,tr_m)==false) 
  { printf("\n no locations"); 
    throw int(0);   
  }; 
  dataset_type ds; 
  for (int l=0; l<number; l++) 
  { for (int j=0; j<6; j++) 
       ds.theta[j] = config[l].theta[j]; 
    ptr_kinematic_model->compute_forward_kinematic(&ds,1); 
    fprintf(f,"mcp[%u]",l+1); 
    for (int t=0; t<9; t++) 
      fprintf(f," %i",tr_m[t]);  
    for (int k=0; k<3; k++) 
      fprintf(f," %i",round(ds.p[k]*16));     
    fprintf(f,"\n");      
  } 
  fprintf(f,".END\n");      
  fclose(f); 
} 
 
 
void generate_matrix(const double theta[], 
                     const double aa[], 
                     const double a[], 
                     const double d[], 
                     const int i, 
                     HG_matrix_type &A) 
{ A[0][0]= cos(theta[i]); 
  A[1][0]=-sin(theta[i])*cos(aa[i]); 
  A[2][0]= sin(theta[i])*sin(aa[i]); 
  A[3][0]= a[i]*cos(theta[i]); 
 
  A[0][1]= sin(theta[i]); 
  A[1][1]= cos(theta[i])*cos(aa[i]); 
  A[2][1]=-cos(theta[i])*sin(aa[i]); 
  A[3][1]=a[i]*sin(theta[i]); 
 
  A[0][2]=0; 
  A[1][2]=sin(aa[i]); 
  A[2][2]=cos(aa[i]); 
  A[3][2]=d[i]; 
} 
 
 
 
 

Main program routines 
 
 
#include "gp_system.h" 
 
#define DATA_DIR_ "f:\\workdir\\" 
 
 
 
class file_manager //just for controlling the resource (file) aquisition 
{ public: 
  FILE *file; 
  file_manager(const char*name,const char* attr) 
  { file=fopen(name,attr); 
    if (file==NULL) 
     printf("cannot open file: %s",name); 
  } 
  ~file_manager() 
  { if (file!=NULL) fclose(file); 
  } 
}; 
 
 
 
#include "local_frame.h" 
 
int get_and_convert_joint_angles(const char         *teachpoint_file, 
                                 dataset_type        data[], 
                                 jointangle_set      joint_values[]) 
{ int n2=get_joint_angles(teachpoint_file,joint_values); 
  if (n2<1) 
  {  printf("\nCannot find %s to read joint angles",teachpoint_file); 
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     return -1;   
  } 
  for (int l=0; l<n2; l++) 
  { for (int x=0; x<6; x++) 
        data[l].theta[x] = joint_values[l][x]; 
    convert_to_rad(data[l]);   
  } 
  return n2;   
}   
 
 
int initialise_teachpoints(dataset_type data[],kinematic_type *ptr_kinematic_model) 
{ jointangle_set joint_values[160]; 
  vector3D       robotrak[160],robot_poses[160];//,tr_robotrak[100],ex_robposes[100]; 
 // test_transformations();       
  try 
  { //write corrected differences if available 
     get_measured_data(DATA_DIR_"Lfs.ext",//robotrak_local_frame_file, 
                      DATA_DIR_"lfs.v2",//const char *robot_local_frame_file, 
                      DATA_DIR_"correctt1.ext",//const char *robotrak_datafile, 
                      DATA_DIR_"t1.v2",//const char *robot_datafile, 
                      DATA_DIR_"corrected_differences_t1.txt",     
                      robotrak,robot_poses/*,tr_robotrak,ex_robposes*/, 
                      DATA_DIR_"tko.v2"); 
     get_measured_data(DATA_DIR_"Lfs.ext",//robotrak_local_frame_file, 
                      DATA_DIR_"lfs.v2",//const char *robot_local_frame_file, 
                      DATA_DIR_"correctt2.ext",//const char *robotrak_datafile, 
                      DATA_DIR_"t2.v2",//const char *robot_datafile, 
                      DATA_DIR_"corrected_differences_t2.txt",     
                      robotrak,robot_poses/*,tr_robotrak,ex_robposes*/, 
                      DATA_DIR_"tko.v2"); 
    get_measured_data(DATA_DIR_"Lfs.ext",//robotrak_local_frame_file, 
                      DATA_DIR_"lfs.v2",//const char *robot_local_frame_file, 
                      DATA_DIR_"t2.ext",//const char *robotrak_datafile, 
                      DATA_DIR_"t2.v2",//const char *robot_datafile, 
                      DATA_DIR_"t2_differences.txt",     
                      robotrak,robot_poses/*,tr_robotrak,ex_robposes*/, 
                      DATA_DIR_"t2_ts_sp_correct.v2"); 
    int n=get_measured_data(DATA_DIR_"Lfs.ext",//robotrak_local_frame_file, 
                            DATA_DIR_"lfs.v2",//const char *robot_local_frame_file, 
                            DATA_DIR_"t1.ext",//const char *robotrak_datafile, 
                            DATA_DIR_"t1.v2",//const char *robot_datafile, 
                            DATA_DIR_"differences.txt",     
                            robotrak,robot_poses/*,tr_robotrak,ex_robposes*/, 
                            DATA_DIR_"t1_ts_sp_correct.v2"); 
 
    int n2=get_joint_angles(DATA_DIR_"t1.v2",joint_values); 
    if ((n==-1)||(n2==-1)) return -1; 
    if (n!=n2) 
    { printf("mismatch: number of poses and jointangles"); 
      return -1; 
    } 
    int j; 
    for (int l=0;l<n;l++) 
    { for (j=0; j<6; j++) 
         data[l].theta[j] = joint_values[l][j]; 
      convert_to_rad(data[l]); 
      ptr_kinematic_model->compute_forward_kinematic(&data[l],1); 
      for (j=0; j<3; j++) 
      {  //data[l].p[j] = tr_robotrak[l][j]; 
         data[l].p[j] -= ( robotrak[l][j]-robot_poses[l][j] ); 
      } 
    } 
    return n; 
 } 
  catch(...) 
  {} 
  return -1; 
} 
 
 
void alter_joint_angles(const char* source_file, 
                        const char* dest_file, 
                        abstract_gp_system *msystem) 
{ jointangle_set joint_values[160]; 
  dataset_type   data[160];       
  try 
  {  int n2=get_joint_angles(source_file,joint_values); 
     if (n2<1) 
     {  printf("\nCannot alter file: %s",source_file); 
        return;   
     }    
     for (int l=0; l<n2; l++) 
     {  for (int j=0; j<6; j++) 
          data[l].theta[j] = joint_values[l][j]; 
        convert_to_rad(data[l]); 
     } 
    msystem->correct(data,n2); 
    create_program_file(dest_file,data,n2);      
  } 
  catch(...) 
  { printf("\n Unknown error while altering joint values of: %s",source_file); 
  }   
} 
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C++ Sources: Main program routines 

 
#include <time.h> 
#include <stdlib.h> 
 
void gp_direct_joint_error_learning(PNode node_db) //direct joint error learning 
{ 
  node_db->create_reference(); 
  try 
  { kinematic_type kinematic_model(node_db,PUMA_parametric,6,tool);     
    dataset_type data[100]; 
    int data_samples=initialise_teachpoints(data,&kinematic_model); 
    if (data_samples==-1) return; 
    srand(time(0)); //initialising the random number generator 
    file_manager logfile(DATA_DIR_"gp_logfile.txt","w+"); 
    jointangle_set joint_values[160]; 
    int df = 
get_and_convert_joint_angles(DATA_DIR_"t1correct.v2",&data[data_samples],joint_values
);      
    if (df!=data_samples) return;     
    calibration_system 
robotgp_system(data,data_samples,kinematic_model);//instantiate system  
    robotgp_system.ga(data,data_samples,logfile.file);//start evolution 
    alter_joint_angles(DATA_DIR_"t1.v2",DATA_DIR_"updated_t1.v2",&robotgp_system);      
    alter_joint_angles(DATA_DIR_"t2.v2",DATA_DIR_"updated_t2.v2",&robotgp_system);      
    robotgp_system.write_statistic(logfile.file); 
  } 
  catch(int l) 
  { printf("\n%u ",l); 
    switch(l) 
    {case  9: printf("MATH_NOT_EVALUABLE ");break; 
     case 10: printf("ACCESS_VIOLATION");break; 
     default:printf("Unknown Error"); 
    }   
  } 
  catch(...) 
  { printf("Unexpected Exception\n"); 
  } 
  Node::remove_one_reference(node_db); 
  
     
} 
 
void distal_supervised_learning(PNode node_db) 
{ 
  node_db->create_reference(); 
  try 
  { kinematic_type kinematic_model(node_db,PUMA_parametric,6,tool);     
    dataset_type data[100]; 
    int data_samples=initialise_teachpoints(data,&kinematic_model);    
    if (data_samples==-1) return; 
    srand(time(0)); //initialising the random number generator 
    file_manager logfile(DATA_DIR_"gp_logfile.txt","w+"); 
    calibration_system robotgp_system(data,data_samples,kinematic_model); 
    robotgp_system.ga(data,data_samples,logfile.file); 
    alter_joint_angles(DATA_DIR_"t1.v2",DATA_DIR_"updated_t1.v2",&robotgp_system);      
    alter_joint_angles(DATA_DIR_"t2.v2",DATA_DIR_"updated_t2.v2",&robotgp_system);      
    robotgp_system.write_statistic(logfile.file); 
  } 
  catch(int l) 
  { printf("\n%u ",l); 
    switch(l) 
    {case  9: printf("MATH_NOT_EVALUABLE ");break; 
     case 10: printf("ACCESS_VIOLATION");break; 
     default:printf("Unknown Error"); 
    }   
  } 
  catch(...) 
  { printf("Unexpected Exception\n"); 
  } 
  Node::remove_one_reference(node_db); 
} 
 
 
void main_gp2(PNode node_db) 
{  
#ifdef PARALLEL_MODELLING 
  gp_direct_joint_error_learning(node_db); 
#else 
  distal_supervised_learning(node_db); 
#endif 
} 
 
 
 
void main() 
{ PNode k = Node::createNode("pi",STRING_CONST,NULL,NULL); 
  main_gp2(k); 
  Node::remove_one_reference(k); 
} 
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