

The Development of a Genetic
Programming Method for

Kinematic Robot Calibration

Jens- Uwe Dolinsky

Liverpool John Moores University
A thesis submitted in partial fulfilment of the requirements for the degree of Doctor

of Philosophy

March 2001

Abstract

Kinematic robot calibration is the key requirement for the successful application

of offline programming to industrial robotics. To compensate for inaccurate robot

tool positioning, offline generated poses need to be corrected using a calibrated

kinematic model, leading the robot to the desired poses. Conventional robot

calibration techniques are heavily reliant upon numerical optimisation methods for

model parameter estimation. However, the non-linearities of the kinematic equations,

inappropriate model parameterisations with possible parameter discontinuities or

redundancies, typically result in badly conditioned parameter identification. Research

in kinematic robot calibration has therefore mainly focused on finding robot models

and appropriate accommodated numerical methods to increase the accuracy of these

models.

This thesis presents an alternative approach to conventional kinematic robot

calibration and develops a new inverse static kinematic calibration method based on

the recent genetic programming paradigm. In this method the process of robot

calibration is fully automated by applying symbolic model regression to model

synthesis (structure and parameters) without involving iterative numerical methods

for parameter identification, thus avoiding their drawbacks such as local

convergence, numerical instability and parameter discontinuities. The approach

developed in this work is focused on the evolutionary design and implementation of

computer programs that model all error effects in particular non-geometric effects

such as gear transmission errors, which considerably affect the overall positional

accuracy of a robot. Genetic programming is employed to account for these effects

and to induce joint correction models used to compensate for positional errors. The

potential of this portable method is demonstrated in calibration experiments carried

out on an industrial robot.

Acknowledgements

I am not going to thank anybody - because I
did it all myself.

Milligan, Spike (1918)
British comic actor and author.
On receiving the British Comedy Award for
Lifetime Achievement in 1994

I would like to express my gratitude to my director of studies Dr. Gary. J.

Colquhoun at Liverpool John Moores University for his guidance, help and support

throughout the course of study within the last years. His wisdom, experience and

knowledge, especially of administrative mechanisms, burdens and resources within

the university proved extremely beneficial for my work.

My thank also goes to my supervisor Dr. Ian D. Jenkinson who, obviously being

one of the busiest members of staff at Liverpool John Moores University, has always

found some time for formal and informal discussions about my research. Amazingly,

it was often the (lingual) misunderstandings we had during those discussions, which

sparked new ideas and started me off exploring (and exploiting), quite analogously to

the genetic programming paradigm used in this thesis, new areas of research.

Also, I would like to thank the technicians of lab B.4 at JMU who provided tea,

interesting conversations and most importantly help when I was fighting with the

robot during my numerous measurement and calibration sessions in the laboratory.

I gratefully acknowledge the support given by users of the Internet discussion

groups comp.ai.genetic and comp.robotics.research.

Finally, I would like to thank for the support given by the School of Engineering

of Liverpool John Moores University.

Contents 4

Contents

Abstract 2

Acknowledgements 3

Contents 4

List of Figures 7

List of Tables 10

Introduction 12
1.1 Preamble .. 12

1.2 Contribution to knowledge .. 13

1.3 Contents of this thesis .. 14

Robot calibration 16
2.1 Context and terminology ... 16

2.1.1 Robot programming.. 17

2.1.2 Offline Programming Systems.. 19

2.1.3 The role of robot calibration ... 21

2.2 Kinematic modelling.. 23

2.2.1 Geometric modelling .. 25

2.2.2 Examples of non-geometric models ... 26

2.2.3 Alternative modelling techniques ... 28

2.2.4 Kinematic modelling in OLP context ... 28

2.3 Measurements .. 30

2.4 Parameter identification... 31

2.4.1 Problems of numerical identification in kinematic robot calibration 33

2.5 Implementation .. 34

2.6 Scope of this work ... 34

Contents 5

The principles of evolutionary computation 36

3.1 Introduction.. 36

3.1.1 Historical development ... 38

3.2 The evolutionary algorithm ... 39

3.2.1 Fitness evaluation ... 41

3.2.2 Selecting individuals... 42

3.2.3 Generating offspring ... 46

3.3 Genetic programming .. 48

3.3.1 Representation of individuals ... 48

3.3.2 Tree generation ... 50

3.3.3 Initialisation of the first population .. 52

3.3.4 Crossover and mutation .. 52

3.3.5 Symbolic regression.. 54

3.4 Summary.. 56

Static symbolic robot calibration based on genetic
programming 57

4.1 Evolutionary calibration concept ... 57

4.2 Pose correction principle ... 59

4.3 Calibration principle: Distal Supervised Learning .. 60

4.4 The evolutionary calibration system.. 63

4.4.1 The symbolic co-evolutionary calibration algorithm................................ 64

4.4.2 Joint selection ... 69

4.5 Direct learning of joint correction models ... 72

4.6 Summary.. 73

Implementation of the evolutionary calibration system 75
5.1 GP implementation issues.. 75

5.2 Design and implementation of the main calibration system components 78

5.2.1 Tree implementation ... 79

5.2.2 Calibration system structures.. 81

5.3 Summary.. 90

Contents 6

Results from calibration experiments on a PUMA 761
manipulator 91

6.1 Calibration set-up... 91

6.1.1 Calibration data... 92

6.1.2 Validation data.. 94

6.2 Experimental symbolic calibration using Distal Supervised Learning............ 95

6.2.1 The calibration process ... 96

6.2.2 Calibration results ... 99

6.3 Experimental direct learning of joint correction models 101

6.4 Discussion.. 106

Conclusion and Outlook 110
7.1 Suggestions for further work ... 111

Appendix A 115
A.1 The Robotrak measurement system... 115

A.1.1 Local frames .. 118

A.2 Denavit- Hartenberg parameters .. 120

Appendix B 122
B.1 Publications.. 122

Appendix C 134

 C++ Source code 134

References 177

List of Figures 7

List of Figures

2-1: Robot programming methods..17

2-2: The OLP system IGRIP ..20

2-3: Positional calibration principles ..21

2-4: The scope of Robot Calibration in Offline Programming...................22

2-5: Task space compensation in OLP based on a calibrated inverse

kinematic model ..29

2-6: Task space compensation in OLP using a mapping that includes

a nominal inverse kinematic model...29

3-1: Generational evolutionary algorithm ..39

3-2: Binary tournament selection ...45

3-3: Genetic programming tree example for a mathematical

expression..49

3-4: The GROW algorithm...51

3-5: The FULL algorithm ...51

3-6: Subtree crossover example..53

3-7: Example of subtree mutation in GP ..54

4-1: Calibration model: Joint correction functions are evolved in

context of nominal inverse and nominal forward kinematic

models establishing a mapping between nominal and corrected

3D poses ..58

4-2: Illustration of the correction principle...59

4-3: Abstract data preparation algorithm..60

4-4: Distal supervised learning ...61

4-5: Overview of the evolutionary calibration system64

4-6: Co-evolutionary calibration algorithm..65

List of Figures 8

4-7: Dependence of joint corrections: The positional error between

target and tool endpoint was reduced by increasing joint angle

ò1 . In effect the correction that needs to be applied to joint ò3

compared to the previous state is now reduced...................................66

4-8: Necessity of joint selection: The desired pose cannot be reached

by altering joint angle ò1 ...67

5-1: Ways of dealing with equal subtrees in genetic programming76

5-2: Internal dual representation of a population: to support efficient

evaluation GP tree nodes are elements in a linear list arranged

corresponding to the order of their creation (last created node on

top) ..77

5-3: Combined dependency digraph of main C++ classes of the

evolutionary calibration system ..79

6-1: Robot tool used for experiments ...92

6-2: VAL II program used to obtain measurements and joint

configurations..93

6-3: Positional error of the robot tool end point in X, Y and Z on the

calibration data set prior to calibration..93

6-4: Absolute positional error of robot tool end point on the

calibration data set prior to calibration..94

6-5: Positional error of the robot tool end point in X, Y and Z on the

validation data set prior to calibration...94

6-6: Absolute positional error of robot tool end point on the

validation data set prior to calibration...95

6-7: Performance index of the kinematic model during the evolution

of the joint correction models ...96

6-8: Components of the performance index (summed squared error in

X, Y and Z between target pose and evolved pose over all 30

data samples) during the evolution of the joint correction models97

6-9: Joint selection performed by the calibration system during the

evolution..97

6-10: Error correction potential of joint 1-3 based on equation 4.11

during the evolution of correction models ..98

List of Figures 9

6-11: Error correction potential of joint 4-6 based on equation 4.11

during the evolution of correction models ..98

6-12: Comparison of the absolute positional error of the robot tool end

point on the calibration data set prior and after calibration.................99

6-13: Comparison of the absolute positional error of the robot tool end

point on the validation data set prior and after calibration..................99

6-14: Evolved correction models for joint 1-3 plotted across the

respective joint range along with calibrated joint angles (implicit

targets) of the calibration set (boxes) and validation set

(diamonds)...101

6-15: Summed absolute joint error being the fitness during the

evolution of each individual correction model..................................102

6-16: Comparison of the absolute positional error of the robot tool end

point on the calibration data set prior and after calibration (direct

learning) ..104

6-17: Comparison of the absolute positional error of the robot tool end

point on the validation data set prior and after calibration (direct

learning..104

6-18: Evolved correction models (Table 6-4) for all six joint plotted

across the respective joint range along with calibrated joint

angles (explicit targets) of the calibration set (boxes) and

validation set (diamonds) ..105

A-1: Robotrak geometry..115

A-2: Developed data collection application ..117

A-3: Laboratory arrangements ..117

A-4: Local frame transformations ...118

A-5: Local frame definition...119

A-6: Denavit-Hartenberg parameters ..120

List of Tables 10

List of Tables

2-1: Physical properties to be considered by an accurate kinematic

model...24

4-1: Symbolic expressions of the correction models generated during

a typical run of the symbolic calibration algorithm beginning

with a performance index of 106.203676 (uncalibrated model

without joint corrections) ..68

5-1: Structure of class Node..80

5-2: Structure of class gp_resource ..81

5-3: Structure of class h_matrix..82

5-4: An example of a string matrix: DH matrix for the first link of the

PUMA 761 ..83

5-5: Structure of class kinematic_type ..83

5-6: Structure of class gp_robot_chromosome ...84

5-7: Structure of class gp_system ...85

5-8 : GP parameters used by the calibration system....................................86

5-9: Structure of class kinematic_type_with_derivative87

5-10: Structure of class calibration_system..88

5-11: C++ implementation of the calibration procedure89

6-1: GP parameters used in the calibration experiment using distal

supervised learning..95

6-2: Evolved symbolic expressions of joint correction models for

joint 1-3 established using distal supervised learning.......................100

6-3: Calibration results using the correction models (Table 6-2)

evolved by distal supervised learning ...100

6-4: Evolved symbolic expressions of joint correction models for

joint 1-3 established using direct learning ..103

List of Tables 11

6-5: Calibration results using the correction models evolved by direct

learning..103

A-1: DH parameters of the PUMA 761 manipulator121

Chapter 1. Introduction 12

1.1 Preamble

Chapter 1

Introduction

1.1 Preamble

In the development of a new technology one often underestimates the complexity

of the task and the direction, duration and scope of the research effort involved. An

example in computer science context is the attempt to create artificial intelligence,

which has been pursued ever since the first electronic computers became available in

the mid 1940's. After the initial euphoria in recognising the potential of computing,

the development of computational concepts corresponding to human intelligence

based on cognition, intuition, experiences, mentality, emotions and feelings proved

difficult. The high complexity of processes attributed to human intelligence, the

limited understanding of them, the lack or insufficiency of abstract mathematical

formalisms to describe them, and limited computational resources permit only highly

simplified modelling.

Similarly, whereas the development of computer hard- and software has boomed

in the last two decades, the predictions made in the 1970’s to have reliably accurate

programmable industrial robots by the 1990’s however turned out to be too

optimistic. Again, a reason for failed expectations is the complexity of the problem,

namely the complex mechanical structure of the robot whose physical properties are

only insufficiently captured in the controller model to enable the robot to perform

offline programmed operations accurately. This compromise of using a simplified

model, in fact only kinematic properties are generally covered, is made due to

Chapter 1. Introduction 13

1.2 Contribution to knowledge

economic and computational efficiency considerations. On one hand the robot model

must be kept simple1 in order to enable efficient computation by the controller in the

presence of real time constraints. On the other hand due to economic constraints in

manufacturing robots the model parameters in the controller are initialised per

default with nominal parameter values (A one-size-fits-all strategy). However, these

nominal parameter values have been determined in the design phase of the robot, and

only incompletely reflect the real state of the individual mechanical system. In fact,

due to manufacturing tolerances the mechanical structure of each robot has its

individual set of parameters (also referred to as its signature), which varies between

robots of the same model type. Over time wear and tear also cause parameter drift. In

addition the still limited, noisy information delivered by sensors on the performance

of the robot within its working environment contributes to the complexity of robot

control. With the robot controller having imprecise information about the workcell

and robot hardware it is operating, the result is inaccurate positioning of the robot

tool, which strongly limits the applicability of offline programming. To overcome

this problem is the objective of robot calibration, which is essentially concerned with

the identification of more accurate robot models enhancing the controller software

and thus increasing the positional accuracy of a manipulator.

1.2 Contribution to knowledge

This thesis contributes a novel portable static kinematic calibration technique for

industrial robots, which is based on the recently developed genetic programming

(GP) paradigm. The contribution and the advantages of this approach compared to

conventional traditional calibration methods are summarised as follows:

� The design and synthesis process of the joint correction models is fully

automated. The genetic programming algorithm establishes structure and

parameter values of joint correction models based on measured data.

� Calibration is carried out by symbolic rather that numeric regression. The final

solution is a symbolic mathematical representation of the correction models.

1 time-invariant parameters only; ignoring dynamical effects and noise

Chapter 1. Introduction 14

1.3 Contents of this thesis

Thus, unlike with other numerical approaches utilising artificial neural networks

for example, not only is the required error compensation obtained but also a

symbolic description of the complex joint related effects, which enables further

mathematical analysis.

� Genetic programming, as it is used in this work, does not require numerical

parameter identification e.g. gradient search, which would be bound to fail since

the evolved equations are highly non-linear and discontinuous in their

parameters.

� Due to the nature of genetic programming as being a stochastic search technique

the proposed method has the potential to establish a globally optimal calibration

model.

� The new calibration method has been experimentally examined in laboratory

trials on a Unimation PUMA robot. The results of these successful experiments

show the potential of this new method.

1.3 Contents of this thesis

After a general introduction to robot calibration and its terminology in Chapter 2

conventional kinematic robot modelling and calibration methods are reviewed and

their limitations, which motivated this research, are outlined. Concluding the chapter,

the scope of this work is defined and the ideas underlying the developed calibration

method are presented. Chapter 3 describes evolutionary computation principles

implemented by the developed calibration method. In particular genetic

programming is introduced as an effective technique for automatically generating

computer programs that solve a variety of tasks. Chapter 4 brings genetic

programming into robot calibration context as being the fundament of a new static

kinematic calibration method, in which it is applied to evolve joint correction models

as components of the overall kinematic model of an industrial robot to improve its

static positional accuracy. This new evolutionary calibration technique is developed

in this chapter and the mathematical underpinnings and algorithms are described in

detail. Also the principle design of the calibration system implementing the

developed calibration algorithms is outlined. The implementation of this calibration

system design in software is described in Chapter 5. The potential of this new

Chapter 1. Introduction 15

1.3 Contents of this thesis

calibration method is demonstrated in Chapter 6, which includes experimental results

from the calibration trials on a laboratory PUMA 761 robot. Chapter 6 also contains

a critical discussion of the research. The thesis concludes in Chapter 7 with an

outlook and suggestions for further work.

Chapter 2. Robot calibration 16

2.1 Context and terminology

Chapter 2

Robot calibration

This chapter reviews robot calibration and its requirement in context of offline

programming. Firstly, a general introduction to the calibration terminology is

provided followed by a description of the general phases involved in the calibration

process. Kinematic modelling as the basis of robot calibration is then reviewed and

the limitations of current calibration approaches are outlined. Concluding the chapter

the scope of this research is defined.

2.1 Context and terminology

An industrial robot (IR) is defined by the Robotics Industries Association (RIA) to

be "a re-programmable, multifunctional manipulator designed to move material,

parts, tools, or specialised devices through various programmed motions for the

performance of a variety of tasks". The mechanical structure of an industrial robot,

also referred to as the manipulator, is made up of a sequence of rigid links that are

interconnected by prismatic or revolute joints enabling relative motion (driven by

actuators) of neighbouring links. This composite sequence forms an open kinematic

chain for most manipulator types (including the Unimation PUMA 761 used for

experiments reported in this work). If the ends of this chain interconnect, the

manipulator is said to form a closed kinematic loop.

Important quality and performance characteristics of an industrial robot are its

repeatability and accuracy. Repeatability in this context is defined as the precision

Chapter 2. Robot calibration 17

2.1 Context and terminology

with which the manipulator is capable to return to a reference point in the

workspace2. Accuracy is the measure of deviation in terms of position and

orientation of the robot tool (also termed end- effector) between programmed path

and actual achieved path. While nowadays robots have a very high repeatability their

positional accuracy is relatively poor. In fact, the accuracy is up to 10 times of the

typical repeatability of industrial robots, which is about ±(0.1 – 1.0) mm [12][82].

Both accuracy and repeatability are affected by the control resolution, which is the

smallest programmable motion of the manipulator.

2.1.1 Robot programming

The methods, an industrial robot can be “instructed” or programmed to perform

tasks, can be classified into (i) teaching methods and (ii) high level programming.

Figure 2-1: Robot programming methods

(i) Teaching methods are procedures that require the manipulator to be moved

manually to all desired locations in the workspace by an operator. The simplest

method is the manual method, which is more considered a set-up procedure (the

adjustment of mechanical stops, cams and switches) and addresses low technology

robots (pick and place units). The walkthrough or manual leadthrough method is a

continuous-path programming technique in which the robot arm is manually moved

along the desired path and the resulting trajectory recorded simultaneously. This

approach however requires a significant amount of data memory and often utilises

2 The term workspace or working envelope refers to the area that is accessible by the manipulator.

Teaching Methods

• Manual
• Walkthrough
• Leadthrough

High level Programming

Robot Task

Chapter 2. Robot calibration 18

2.1 Context and terminology

disk storage. The leadthrough method, also sometimes called powered leadthrough,

is the most common teaching technique in which the operator takes the robot arm to

the target locations typically using a handheld teach-pendant. The locations are

stored in the controller memory as they are taught. After completing the teaching

procedure, the manipulator can playback the paths along those recorded locations

very precisely benefiting from its high repeatability.

(ii) A more advanced and portable method is to program the tasks to be performed

in a high level programming language such as VAL II [72]. The support of general

concepts of structured programming3, built-in geometric entities such as frames and

locations points combined with specific robot motion commands makes these

programming languages efficient tools for developing complex robot tasks e.g. by

aggregating primitive robot instructions to high-level commands. However, the

support of those concepts requires a higher degree of sophistication from the robot

controller then teaching methods. Firstly, the controller needs to deal with the

overhead of interpreting and executing programs. Secondly, robot end-effector

positions in the program may be specified in geometric terms relatively to the base

frame of the robot for example. This requires the controller to implement an inverse

kinematic model of the manipulator to convert these 3D poses into joint

configurations, which in turn implies accurate knowledge about the parameters of the

mechanical structure of the robot.

The fundamental difference between teaching methods and high level

programming is that with teaching methods the controller is provided with the

physical goal and the information how to reach this goal. This information is stored

(or recorded) in terms of current status of the control system (i.e. the joint

configuration) of this particular robot. During the execution of the program these

previous states can be restored very precisely leading to a high repeatability. In high

level programming the controller is provided with a “soft goal” (rather than a

physical goal) specified by the programmer as a position in e.g. Cartesian co-

ordinates. Since no further information is provided as to how to reach this position,

an inverse kinematic model of the manipulator is needed to convert this position into

3 Sequencing, selection and iteration.

Chapter 2. Robot calibration 19

2.1 Context and terminology

a corresponding joint configuration. Inaccuracies in this model result in poor

absolute positional accuracy of the manipulator.

2.1.2 Offline Programming Systems

Flexible and effective robot programming has become an important issue in

industry. In the past industrial robots were mainly programmed manually by being

taught individual tasks on-line as described in section 2.1.1. However, the increasing

complexity of tasks such as riveting or spot welding in car or aerospace industries

makes such a teaching procedure extremely time and therefore cost intensive. The

conceptually better approach is to minimise human intervention in operating robots

by using Offline-Programming Systems (OLP), which enable the design, generation

and validation of robot programs without utilising the physical robot. OLP systems

use models of the robot and workcell to create a virtual shop-floor environment in

which robot tasks can be simulated. The advantages and benefits of OLP systems are

summarised as follows:

• Easy design of complex tasks (using imported CAD data)

• Reduction of programming time and production plant downtimes (robot hardware

is not involved in the programming process, thus production and programming

new tasks can run simultaneously)

• Increased production flexibility

• Failsafe debugging, optimisation and validation of tasks (collision and

reachability checks in simulation, no risk of hardware damage)

• Simplification of process optimisation

• Fast validation of tasks (simulation can be run considerably faster than the robot

hardware)

• No risk to human health (programming in a comfortable environment, presence

of programmer in physical workcell is not required)

Quite a few commercial OLP systems are now available with an increasing

number of PC based solutions such as Workspace [82], DELMIA/IGRIP [19]

Chapter 2. Robot calibration 20

2.1 Context and terminology

(used by e.g. Boeing) and more recent products such as FAMOS[30], RobotStudio

[1] by ABB and Ropsim [15] by CAMELOT.

The following components are typical for all OLP systems:

• Integrated CAD system: constructive solid geometry, library of standard 3D

primitives, CAD data import facilities (e.g. DXF, IGES)

• Modelling and simulation module: interactive kinematic modeller, modelling of

robot dynamics, discrete event simulation

• Visualisation module: graphical representation of results, solid 3D rendering,

animations of robot and/or production plant in real-time

• Library of standard robots models: models describe individual kinematic and

dynamic characteristics and contain path planning algorithms

• Robot calibration module: set of methods for numerical optimisation

• Interpreter and code generator for advanced robot programming languages

Figure 2-2: The OLP system IGRIP

Limitations in the application of OLP systems to robot programming are still

imposed by the poor positional accuracy of industrial robots and by the lack of exact

modelling of those inaccuracies. The deviations between idealised simulation in a

Chapter 2. Robot calibration 21

2.1 Context and terminology

virtual environment and the real system cause the OLP system to generate robot

poses with large positional errors. Also path-planning algorithms used within OLP

systems are often different to or simplified versions of those used by the robot

manufacturer, which results in unreliable information about cycle time and possible

collisions.

2.1.3 The role of robot calibration

In order to avoid positional errors of the robot tool positional calibration needs to

be applied, which can in general be categorised into hardware and software oriented

methods (Figure 2-3). More accurate positioning of the robot tool can be obtained by

appropriately modifying the mechanical structure of the robot for example by

replacing worn-out components by new more accurately manufactured components.

Figure 2-3: Positional calibration principles

The software-oriented methods address positional accuracy on robot controller or

robot application level. Principally, it is possible to adjust robot accuracy by

modifying appropriate parameters of the controller software. However, since robot

manufacturers usually do not document the algorithms and data structures used by

the controller (the ‘black box’ policy), this method is, apart from being not portable,

fairly limited. However, a generally supported software method falling into this

category is known as re-mastering. Re-mastering is a method where a joint is moved

to a defined position (usually the zero position designated e.g. by a mark on the

neighboured link). The controller software is then updated with this new reference

position by issuing the appropriate command to the controller.

Positional calibration

Software methods Mechanical adjustment

Re-mastering Robot Calibration

Chapter 2. Robot calibration 22

2.1 Context and terminology

Robot calibration as the second software-oriented method to adjust robot accuracy

applies position compensation on robot application level based on a calibrated model

(Figure 2-4). Robot poses (only the 3 positional components) defined in programs,

which may have been generated by OLP systems are modified by subtracting the

expected positional error estimated by an accurate calibrated model (see section 4.2

and Figure 4-2). In this way false target poses are produced with the objective to

compensate for the positional error. The deviation of the manipulator at these altered

poses eventually leads the robot to the desired positions. This process is also known

as task space compensation since the positions and the applied corrections are

defined in task space (as opposed to joint space).

Figure 2-4: The scope of robot calibration in offline programming

Robot calibration is a term associated with a set of software methods aiming at the

identification of accurate robot models used with the objective to increase the

positional accuracy of the robot [67]. There is a distinction between static and

dynamic calibration methods [12]. Static calibration aims at the identification of

accurate models covering all physical properties and effects that influence the static

(time invariant) positional accuracy of the manipulator. Dynamic calibration builds

upon the results of static calibration and addresses the identification of models

describing motion characteristics of the manipulator (forces, actuator torques) and

dynamic effects that occur on a manipulator such as friction and link stiffness etc. In

order to enable dynamic calibration, measurements of motion and forces of the

manipulator are required. However, the difficulties in accurate tracking of these

properties throughout the robot workspace and the complex problem of simultaneous

Robot

Target poses
defined by
CAD data or
programmer

Controller
Inverse kinematic model

Manipulator

 Joint
 angles

 altered
 3D poses OLP system

Calibrated Model

 3D
 poses

Subject to
Robot Calibration

Chapter 2. Robot calibration 23

2.2 Kinematic modelling

identification of e.g. mass4 and friction parameters still limit the applicability of

dynamic calibration.

This work is concerned with static kinematic robot calibration, which is typically

carried out using the 4 following steps:

1. Derivation of a suitable kinematic model usually based on prior engineering

knowledge (providing a model structure and nominal parameter values).

2. Measuring end-effector location of the manipulator in several positions.

3. Identification of the model parameters (numerical fitting usually based on

least squares methods) based on the measurements.

4. Implementation of the identified model.

2.2 Kinematic modelling

Static robot calibration typically uses parametric models of the manipulator

kinematics to find the true relationship between joint configurations and poses of the

robot end-effector. Most work in this area has reported on forward calibration

methods [23][37][43][47] where calibration is applied to the forward kinematic

model:

 y = f(ò, þ)

which computes the end-effector pose y (position and orientation) from the joint

configuration ò using the equations in f depending on parameter vector þ to be

calibrated. The inverse kinematic calibration procedure attempts to identify the

parameter vector þ using the inverted kinematic model ò = fà1(y, þ). Inverse

calibration is in general more difficult because it typically requires the model f to be

analytically invertible, which may not be the case with very complex models and in

particular with models of highly redundant5 manipulators.

Important issues for the development of accurate parametric kinematic robot

models for robot calibration are proportionality and completeness [27]. A kinematic

4 Mass parameters of a link can however be statically identified using joint torque sensors [54].
5 Redundant manipulators can reach a certain pose using different joint configurations.

Chapter 2. Robot calibration 24

2.2 Kinematic modelling

model is defined as proportional6 if small changes of the physical properties can be

represented by small changes of related model parameters. A kinematic model is said

to be complete if all kinematic properties of the manipulator are represented by

corresponding independent model parameters. In this case all possible kinematic

configurations of the manipulator can be sufficiently described. With incomplete

kinematic models the number of model parameters is usually smaller than the

number of kinematic properties of the manipulator. The contained parameters then

account for modelled properties as well as unmodelled effects. Hence there is no

proper relationship between physical and model parameters. An identification

algorithm might be able to find optimal parameter values. However, these values are

optimised for this particular incomplete model and may not reflect the physical

properties of the robot. In order for a kinematic model to be complete it is required to

sufficiently describe geometric properties as well as non-geometric effects of the

manipulator (see Table 2-1).

Geometric Parameters Non-geometric effects

• link length
• link twist- joint axis

orientation
• joint encoder offsets

Joint related:

• Gear transmission errors
(e.g. tooth errors)

• Joint compliance
• Joint eccentricities, bearing

wobble
• Gear Backlash
• Joint cross coupling

Link related:

• static deflection
• thermal expansion

Encoder related:

• Non-linear transfer function
• Coupling
• Hysteresis

Table 2-1: Physical properties to be considered by an accurate kinematic model

6 Proportionality is sometimes termed “model continuity” due to its similarity to the mathematical
concept of continuity [12][37].

Chapter 2. Robot calibration 25

2.2 Kinematic modelling

Geometric parameters are usually assumed to be time-invariant, which is

convenient for setting up a compensation strategy to improve positional accuracy.

Errors in geometric parameters have been reported to have the largest contribution to

positional error. For example in experiments with Automatix AID-900 Robots almost

90% of the RMS (Root Mean Square) error was caused by joint angle offsets [47].

On a TH8-ACMA six-axis robot the calibration of geometric parameters resulted in

accuracy improvements from 3 mm to 0.69 mm. Model refinements accounting for

non-geometric effects achieved further accuracy improvements to 0.58 mm [14].

Non-geometric effects [76] such as gear backlash and tumbling are difficult to model

since they vary with manipulator pose and payload. However, their contribution to

the positional error of the manipulator cannot be neglected if high positional

accuracy of the manipulator is required.

2.2.1 Geometric modelling

The most popular method of modelling robot kinematics is serially composing

link models that are based on the Denavit-Hartenberg (DH) parameterisation [34].

These link models use only four geometric parameters per link to describe the

relative displacement between co-ordinate frames of neighboured links. Hence

kinematic models based on DH parameters are very compact and have therefore been

commonly implemented in controller software7. However, for calibration purposes

pure DH models do not fulfil the requirements of completeness and proportionality

[84]. Four parameters are not sufficient to describe any arbitrary displacement of two

consecutive link frames. Since the DH parameterisation relies on the existence on a

common normal of neighboured joint axes, it is not well defined in configurations

where neighboured joint axes are at or near to parallel8. Hence the identification is

ill-conditioned and will either fail or result in meaningless parameter values.

Addressing this issue Hayati [41] proposed a modification to the DH model by

7 Denavit-Hartenberg parameters (see also Appendix section A.2) are commonly used by robot
manufactures to document the geometric properties of their robots (see for example the equipment
manual of the PUMA 761 [75]).
8 Near to parallel neighboured joint axes certain model parameters are very sensitive to small physical
changes (non-proportionality), whereas the model continuity constraint is violated with the transition
from the near-to-parallel to parallel case.

Chapter 2. Robot calibration 26

2.2 Kinematic modelling

introducing an alternative parameterisation, which is however not well defined for

nearly perpendicular joint axes. Hollerbach [43] has therefore suggested applying a

complementary mix of DH and Hayati parameterisation by using Hayati parameters

whenever the corresponding DH parameters are not well defined and vice versa.

Other researchers have proposed geometric extensions to the conventional DH

model. Stone [73] developed the S-model by adding 2 parameters to the DH model,

which results in a complete, but not proportional parameterisation [84]. As with

Hayati parameters the S-model parameters can be converted back into DH

parameters.

An incomplete model can be made complete by appropriately adding a certain

number of parameters. This however impairs the computational performance of the

model and may affect the identifiability of the model parameters. A complete and

proportional (because singularity free) parameterisation is the CPC (Complete and

Parametrically Continuous) model [84], which is based on the DH model extended

by 2 parameters. Other complete models are the zero-reference model [59] and the

Sheth- Uicker model [29][37] in which redundant parameters have to be removed

prior to calibration (or held constant during calibration), which however is not

always considered to be a straightforward task [76].

2.2.2 Examples of non-geometric models

Non-geometric effects are usually modelled by adding terms or more complex

components to the overall geometric model of the manipulator. Since non-geometric

effects are primarily due to joint related characteristics [76] the most common model

adopted (see [37][43]) is a simple linear joint correction model:

Θ = kò+ í

where the effective joint angle Θ is computed from the joint angle sensor reading ò

depending on the joint angle zero offset í and joint transmission gain k. This model

is applied to each joint adding 2 more parameters per joint to be calibrated to the

overall model. In other research [81] different joint models are applied to selected

joints (1-3):

Chapter 2. Robot calibration 27

2.2 Kinematic modelling

Θ1 = ò1 +P1 cos(ò1)

Θ2 = ò2 +P2 cos(ò2) +P3 sin(ò2) +P4 cos(ò2 + òã3)
Θ3 = òã3 +P5 sin(ò

ã
3) +P6 cos(ò

ã
3) +P7 cos(ò

ã
3 + ò2) +P8 sin(load)

with Θi being the effective ith joint angle, òi the ith joint angle sensor reading, Pi the

ith parameter to be determined and òã3 = ò3 à ù/2.

A different non-parametric approach has been proposed by Everett [29] where

each geometric model parameter is enhanced with a Fourier Series (FS) in order to

model (or approximate) the influence of particularly periodically occurring non-

geometric effects upon these model parameters. Adopted by Vincze [77] a Fourier

series was used to describe effects such as tumbling upon all geometric parameters:

 a(q) = ano +∆a+
P
j=

nsc

(ajs sin(j á q) + ajc cos(j á q))

with ano being the nominal parameter value, ∆a the geometric error, q the joint

variable and ajs, ajc the Fourier coefficients to be determined. It was found in these

experiments that second and third order FS were capable of reducing tumbling errors

down to axis repeatability level, which is the theoretical calibration limit [12].

Other non-geometric models include backlash (for example òb = pbsign(M) [76]

with òb being the joint backlash, pb a backlash parameter and M the momentum at

the joint) or errors of transmission ratio (e.g. polynomials or Fourier series). A

comprehensive list of non-geometric errors and their models can be found in Vincze

et.al.

Vincze [79] also introduced a deterministic method of automatically generating

robot models (based on his SYNE-axis description: SYstematic Non-redundant and

Extendible). This method composes the calibration model from a given geometric

description of the manipulator and given non-geometric models to be used. To

achieve non-redundancy of the composed model and to improve its accuracy,

deterministic rules are applied to eliminate redundant parameters. If the accuracy

after parameter identification is not sufficient the modelling procedure may be

repeated using a different set of non-geometric models.

Chapter 2. Robot calibration 28

2.2 Kinematic modelling

2.2.3 Alternative modelling techniques

Due to the complexity of the positional error of industrial robots it is common

practice to approximate the error rather than modelling it explicitly by developing

parametric models. Functional approximation theory is a well established

mathematical discipline, which provides a variety of approximation models and

methods based on uni- and multivariate polynomials, splines, Bezier curves,

wavelets, Fourier series, artificial neural networks9 etc. An approximation model is

chosen according to the characteristics of the data to be approximated in a certain

interval, and finally fitted (or trained) to this data. However, approximation models

are inherently non-parametric, i.e. there is no semantic relationship between model

parameters10 and physical properties of the data to be approximated. Hence these

models are only valid within the interval they have been trained in and are weak or

not capable of extrapolating or generalising beyond these interval boundaries.

However, for most practical applications they are generally assumed to be adequate.

Applications of approximation models utilising Fourier series, polynomial functions

and artificial neural networks have been outlined in sections 2.2.2 and 2.2.4.

2.2.4 Kinematic modelling in OLP context

When designing tasks for a particular robot using OLP systems, information from

a calibrated kinematic model of the manipulator is used to correct designed (or

nominal) poses with the expected positional error so as to compensate for the

effective positional error. This correcting pose-to-pose mapping (see also Figure 2-4)

can be provided by a sequence of calibrated inverse and nominal forward kinematic

model as illustrated in Figure 2-5.

9 However, Jordan and Rummelhart pointed out [46] that a Backpropagation algorithm cannot learn
the inverse kinematics of redundant manipulators because it does not represent a functional
relationship (one to many mapping). While forward modelling of those manipulators is
straightforward by learning the relation (input: joint configuration vector; output: Cartesian vector) the
inverse relation cannot be learned just by swapping output/input vector.
10 Sometimes referred to as coefficients or weights.

Chapter 2. Robot calibration 29

2.2 Kinematic modelling

Figure 2-5: Task space compensation in OLP based on a calibrated inverse
kinematic model

Designed poses in task space are first transformed by the calibrated inverse model

into calibrated joint configurations, which are then transformed back into task space.

Alternatively, the calibrated joint angle poses could be fed directly into the robot

controller saving two transformations11. The inverse calibrated model can be

obtained either by calibrating the nominal inverse model or by inverting the

calibrated forward model. Both methods require the forward kinematic model to be

invertible, which is usually possible for the plain geometric DH model of most

manipulators. If so the second method should be preferred since the model inversion

introduces equations with even a higher degree of non-linearity (discontinuities) than

the forward equations, which would impair the subsequent parameter identification.

On the other hand a forward kinematic model that contains complex non-geometric

components can usually not be inverted analytically.

Figure 2-6: Task space compensation in OLP using a mapping that includes a
nominal inverse kinematic model

To circumvent the problem of finding an accurate inverse model for the task space

compensation model shown in Figure 2-5 a common approach is to use the nominal

inverse to convert nominal poses into nominal joint configurations. The relationship

11 Nominal forward transformation (Figure 2-5) of calibrated joint configurations by the calibration
software, and nominal inverse transformation within the controller (see Figure 2-4)

Calibrated
Inverse
Kinematics

Nominal
Forward
Kinematics

Calibrated
Joint Angles

Corrected
3D poses

Nominal
3D poses

Nominal
Inverse
Kinematics

Calibration
Model

Nominal
Joint Angles

Corrected
3D poses

Nominal
3D poses

Chapter 2. Robot calibration 30

2.3 Measurements

between nominal joint configurations and corrected end-effector poses (i.e. the

forward model) is then made subject to calibration as illustrated by Figure 2-6.

An inverse calibration solution fitting in this category was presented by Shamma

[70]. This method improves the accuracy of the inverse mapping by modelling the

error of the nominal inverse model rather than calibrating the inverse model. The

error between nominal and calibrated joint configuration for different joints is

approximated by polynomial functions, which however have no physical

significance. These predefined functions together with the nominal forward model

constitute the calibration model shown in Figure 2-6:

 fCal(ò) := f(h(ò, ø), þN)

with h being the vector of polynomial functions depending on parameters ø to be

calibrated, þN being the vector of nominal kinematic parameters and ò being the

vector of nominal joint angles. A similar technique for inverse calibration is

described by Zhong [85], in whose work a feed-forward artificial neural network

(ANN) is used to compute the corrections for a given joint configuration. The

calibration model in Figure 2-6 can for this method be formulated as

 fCal(ò) := f(ò+ FANN(ò), þN)

with FANN being the artificial neural network to be calibrated (or trained).

A solution based on forward calibration [45] uses ANN’s based on Radial Basis

Functions (RBF) to map nominal joint configurations to corrections of the end-

effector pose. The calibration model in Figure 2-6 is then described by:

 fCal(ò) := f(ò, þN) + FRBF(ò)

which uses the nominal kinematic forward model and adds the corrections delivered

by the RBF networks to establish a corrected pose for a given nominal joint

configuration. In this model the RBF networks are subject to calibration.

2.3 Measurements

The second step in robot calibration typically involves the collection of data. To

perform open-loop calibration (for closed-loop calibration, see e.g. [43]) on a

Chapter 2. Robot calibration 31

2.4 Parameter identification

kinematic manipulator model a sufficiently large set of data pairs (consisting of end-

effector pose and corresponding joint configuration) needs to be sampled using an

external measurement device. Different measurement systems are available varying

in measurement method (contact and non-contact), the number of captured DOF’s12,

accuracy and costs [43]. Typical measurement devices for robot calibration are wire

potentiometers, telescopic ball system measured by a radial distance linear transducer

(LVDT) [37], interferometer, ultrasonic systems [11], proximity sensors, imaging

laser tracking systems [78], single and stereo camera systems, magnetic trackers,

(stereo) theodolites and cable driven systems [82] etc.

In order to ensure a good performance of the parameter identification procedure a

sufficiently large set of data samples needs to be recorded where the poses have to be

selected throughout the workspace in a way that guarantees the best observability13

of all parameters to be calibrated [43]. To identify the influence of a parameter on all

DOF’s it would in general be beneficial to involve full pose measurements. In

practice, however, appropriate measurement devices are fairly expensive, relatively

slow, and difficult to set up. Alternatively, calibration can be performed using only

position measurements, since all kinematic parameters of a manipulator may be

identified based on position measurements if the measured points are not located

along the tool axis [25].

In the experiments reported in this thesis the Robotrak measurement device [82]

(position measurements only, see also Appendix section A.1) was used because it is

robust, easy to set up and to use, particularly when a large set of measurement data

samples needs to be recorded.

2.4 Parameter identification

Having established the structure of the kinematic model and a set of measurement

data, the third step in robot calibration is the numeric identification of the model

parameters. Generally used in practice are indirect methods based on gradient search,

12 From single to 6 Degrees Of Freedom (6 DOF = full pose consisting of 3 position and 3 orientation
components).
13 Parameters must be sufficiently excited by the sampled poses to guarantee a successful
identification.

Chapter 2. Robot calibration 32

2.4 Parameter identification

which will be outlined in this section. The notation for the forward kinematic model

f has been adopted from section 2.2:

 y = f(ò, þ)

where y = [p,ϕ]T is the end-effector pose (consisting of position vector p and the

vector ϕ of orientation values14) computed from the joint configuration ò and

þ = [þ1. . .þj]T being the vector of all j model parameters (geometric (e.g. DH) and

non-geometric). Identification of þ can then be performed by minimising the

performance index:
P
i=1

n
ei

Tei with ei = yià f(òi, þ)

subject to þ where (yi, òi) is the ith sample of n measurements. Due to the non-

linearity of f in the orientation parameters and possibly in non-geometric parameters

the optimal values in þ have to be found iteratively by applying a method such as

non-linear least squares optimisation (see e.g. [2]). Mostly indirect gradient-based

methods are applied (see [43]) for which the model equations have to be locally

linearised using a first order Taylor expansion around the current parameter estimate

þk:
 f(òi, þk +∆þ) ù f(òi, þk) +C(òi, þk)∆þ

where C(òi, þk) = ∂þ
∂f
ììì
ò=ò i;þ=þk

is the parameter Jacobian (or gradient) of f evaluated

at the current joint configuration òi using the parameter estimate þk. Substituting this

approximation into the performance index equation yields:

P
i=1

n
ei

Tei with ei = yià f(òi, þk) àC(òi, þk)∆þ = ∆yi àCi∆þ

which has now turned into a linear least squares problem:

 (∆y àC∆þ)T(∆y àC∆þ) with C =
C1...
Cn

  and ∆y =
∆y1...
∆yn

 

subject to the parameter update ∆þ . The solution is the Gauss- Newton update

∆þ = (CTC)à1CT∆y, which is computed in each iteration to refine the parameter

values by applying þk+1 = þk +∆þk beginning with an initial estimate for þ . The

iteration is stopped if the updates become very small. However, the Gauss- Newton

14 For full pose measurements f contains 6 calibration equations (3 position (x, y, z)and 3 orientation
components e.g. Euler angles [34][44]). In case only positional measurements were taken f contains
the 3 positional equations, which however also depend on the orientation parameters.

Chapter 2. Robot calibration 33

2.4 Parameter identification

solution requires the matrix CTC to be inverted, which might not always be

possible. Instead typically the Levenberg-Marquardt update

∆þ = (õI +CTC)à1CT∆y is applied with I being the identity matrix and õ being

a scalar control parameter. õ is chosen and modified during the iterations in a

compromise between invertibility of the matrix õI + (CTC) and convergence speed.

While a sufficiently large value for õ enables the matrix inversion it also gives the

algorithm the slow convergence characteristic of the steepest descent algorithm. A

low value on the other hand will increase the efficiency of the parameter updates

towards Gauss- Newton updates. Initially, the value of õ is usually chosen to be

large enough to enable the matrix inversion and then steadily reduced while

monitoring the invertibility of the matrix.

2.4.1 Problems of numerical identification in kinematic robot
calibration

The application of indirect methods such as non-linear least squares optimisation

to kinematic parameter identification in general raises a number of issues, which

have to be considered to obtain high model accuracy. The non-linearity of the

kinematic model equations enforces an iterative parameter search based on local

model linearisation. Since the equations of ordinary kinematic robot models are only

“mildly non-linear” [68] gradient search can usually be effectively applied. Gradient

search algorithms however require the model to be continuous in its parameters. As

discussed in section 2.2.1 this is not always the case for the DH and Hayati model

and therefore requires the application of special methods such as Levenberg-

Marquardt or Singular Value Decomposition (SVD) (see [2]).

The utilisation of complex non-geometric models in kinematic models raises

particular problems for the simultaneous parameter identification based on gradient

search. For example the continuity of an overall kinematic model is impaired by the

introduction of discontinuous non-geometric models. Since the gradient cannot be

computed at parameter discontinuities, the search aborts.

For global convergence of the gradient search it is important to provide initial

estimates of the parameter values close to the optimum. For complex non-geometric

models these estimates however may be difficult to obtain. Global convergence is

Chapter 2. Robot calibration 34

2.5 Implementation

also at risk if the gradient is inaccurately approximated by, for example, finite

differences, which is a common technique in practice particularly if the model is

complex. To ensure proper convergence of the non-linear least-squares optimisation

it is also important to apply scaling to task variables and parameters [43]. Since

position and orientation errors are combined in ordinary least squares, task variable

scaling may be necessary to weight these errors differently to account for different

accuracy of measurements. Scaling to parameters has to be applied when they cannot

be directly combined in least-squares search [22]. Scaling may also improve the

conditioning of the identification.

Another serious problem for gradient search is parameter redundancy. In such a

case there are more parameters in the model than necessary for model completeness,

hence the model is not minimal (redundant parameters do not increase the accuracy

of a model [28]). Parameter redundancy results in linear dependence of columns of

the Jacobian and therefore in ill-defined identification. Detecting and removing

redundant parameter is important, but not trivial particularly in the case of strong

parameter interaction [37].

2.5 Implementation

The last step in robot calibration typically involves all procedures and

mechanisms necessary to transfer the calibration results into practice. In offline

programming this includes the implementation of a postprocessor that uses

information from the calibrated model to perform corrections on positional data in

program files which have been generated by OLP systems. Fortunately, basic

numerical calibration methods and postprocessors have become built-in components

in most of the recent OLP systems. Thus the user is not required to perform this task

explicitly.

2.6 Scope of this work

Robot calibration methods have so far been considered a set of parameter

estimation methods relying heavily on numerical analysis. Conventionally, robot

models are developed by humans based on prior engineering knowledge and

Chapter 2. Robot calibration 35

2.6 Scope of this work

according to certain accuracy requirements and specific constraints (e.g.

proportionality), which are related to stability issues of subsequent numerical

parameter identification.

This research describes an approach to move away from conventional robot

calibration methods based on numerical non-linear parameter estimation methods

with their drawbacks such as possible ill-conditioning and local convergence. It

introduces symbolic model regression techniques to robot calibration and contributes

a novel inverse static kinematic calibration method that merges established kinematic

modelling techniques with the recent genetic programming paradigm. It is the aim of

this research to show the potential genetic programming has to solve the kinematic

calibration problem.

Genetic programming is a problem domain independent stochastic method of

automatic programming, which has performed extremely successfully in numerous

applications in various areas of computer science, physics and engineering [49]. The

application to robot calibration reported in this thesis however is new.

In this work genetic programming is employed to generate joint correction models

as parts of an inverse calibration model. Contrary to conventional calibration

methods this process of designing and validating a correction model is fully

automated and does not require human knowledge as to how to build these models.

Only information about primitive model components needs to be provided.

The model generation is performed by symbolic regression. Since there is no

iterative numerical parameter identification involved, corresponding stability and

conditioning issues are of no concern.

Chapter 3. The principles of evolutionary computation 36

3.1 Introduction

Chapter 3

The principles of evolutionary
computation

This chapter reviews evolutionary computation and in particular genetic

programming emphasising its application to symbolic regression, which is the basis

of the kinematic calibration method developed in this research. Firstly, the chapter

introduces the general terminology and principles of computational genetic search

and outlines the scope of applications. Finally, the concept of genetic programming

is presented as a versatile variant of classical evolutionary algorithms, capable of

solving a variety of tasks.

3.1 Introduction

Evolutionary Computation (EC) is a broad term describing a set of problem

domain independent computational algorithms. These algorithms attempt to find

solutions to problems by implementing a search process, which uses artificial

mechanisms analogous to natural evolution. Due to this similarity a whole range of

the terminology from biology and evolutionary theory has been adopted to describe

the principles of evolutionary computation.

The heart of the EC concept is the Evolutionary Algorithm (EA). Rather than

being confined to improving a single solution an EA takes advantage of operating on

a set or population of different candidate solutions (also termed individuals). An

Chapter 3. The principles of evolutionary computation 37

3.1 Introduction

individual consists of a set of primitive components (the genes), which constitutes

the genome (or chromosome as the carrier of genes) as a kind of construction plan

used to build the solution. The data structure of an individual solution that undergoes

modification by the EA is referred to as the genotype. The representation of a

solution during evaluation in the particular problem domain is known as the

phenotype.

During the evaluation of a population each individual (solution) is assigned a

fitness value, representing a direct measure of its performance. By applying

evolutionary operators such as selection, recombination, mutation and reproduction

to the individuals based on their fitness, the EA attempts to produce populations of

better performing (or fitter) solutions. The process of producing new individuals

(also called children or offspring) is termed breeding, which involves selected parent

individuals from the population. The EA is said to have completed a generation,

when the old population has been replaced by a population of offspring (traditional

EA), or a number of children equal to the population size has replaced individuals in

the population (the steady state EA concept – see section 3.2). Over several

generations the evolutionary algorithm stochastically infers improved individual

solutions converging towards the optimal solution. A population is said to have

converged if all its individuals have converged. The convergence characteristic

(convergence speed) of a population largely depends on the evolutionary operators

applied to the individuals. The solution found by an EA is termed an evolved

solution.

Two key parameters of a general EA are the population size and the number of

generations. In addition a termination parameter may be specified, for example the

acceptable fitness of the best individual.

The diversity of individual solutions within a population provides a rich pool of

different genotypic material, which is used by the EA to create potentially better

solutions (the exploitation concept). In fact, this diversity guarantees a wide coverage

of the search space. Many different solutions are able to represent many different

regions in the search space to be evaluated by the EA. This property is known as

exploration and makes evolutionary algorithms robust tools for searching for

globally best performing individuals particularly in multi-modal search spaces.

Chapter 3. The principles of evolutionary computation 38

3.1 Introduction

3.1.1 Historical development

The basic principles outlined in section 3.1 are common to all implementations of

the evolutionary algorithm concept such as: evolutionary strategies (ES),

evolutionary programming (EP) and genetic algorithms (GA) as the traditional and

genetic programming (GP) as a more recent example [71]. Developed for different

purposes these paradigms vary in the way they represent individual genotypes, in

terms of the fitness measure applied and in design and implementation of the

evolutionary operators. Evolutionary strategies were introduced by Rechenberg [65]

in the 1960’s as a method of continuous parameter optimisation in hydrodynamic

context (i.e. real valued representation of genotypes). Initially, solely selection and

mutation were used as evolutionary operators on a single solution only. Schwefel

[69] enhanced this approach by the populational concept and the recombination

operator. Independently of the work on evolutionary strategies Fogel [31] developed

evolutionary programming originally in an attempt to create artificial intelligence by

evolving finite-state machines (FSM) for symbol string transformations. In contrast

to evolutionary strategies the selection of individuals in EP is typically stochastic

rather than deterministic and there is usually no recombination (crossover) operator.

The representation of the individuals in evolutionary programming is problem

domain dependent and can involve ordered lists, graphs, and for most optimisation

problems real values.

The probably most popular evolutionary computation concept for parameter

optimisation however has been genetic algorithms pioneered by Holland [42] and

developed further by De Jong [20]. The success of this concept is primarily due to

the representation of the genotypes, which are strings of genes15. In early work this

representation involved fixed-length binary strings and later also strings of variable

length [36]. In contrast to evolutionary strategies and evolutionary programming

typically operating on the phenotypic level this string representation of the genotypes

is problem domain independent. This domain independence is provided since a GA

practically operates on standardised meta-information (bit strings) about the solution.

A substantial body of theory has been established around this representation and its

15 In GA context genes are primitive components of a solution. In early work [42] individuals were
encoded as fixed length binary strings, where bits represented genes. In other work strings of real
valued numbers were used.

Chapter 3. The principles of evolutionary computation 39

3.2 The evolutionary algorithm

benefits. The Schema Theorem, Implicit Parallelism [42] and Building Block

Hypothesis [35] have particularly contributed to the popularity of genetic algorithms.

An evolutionary paradigm that has attracted much attention recently is genetic

programming (GP). While evolutionary programming, evolutionary strategies and

genetic algorithms usually involve optimising parameters of a solution, in genetic

programming computer programs are evolved to solve a particular task. The idea of

evolving computer programs was originally proposed by Cramer [17], but the theory

and standards were established by Koza [49].

Beside these main paradigms many alternative evolutionary computation methods

have been developed such as Classifier Systems, LS systems etc. An overview of

different methods with a vast number of references can be found in [8].

3.2 The evolutionary algorithm

The typical generational evolutionary algorithm is shown in Figure 3-1 using

abstract syntax.

Figure 3-1: Generational evolutionary algorithm

The algorithm starts with the initialisation of a population P of individuals. This

process may be random, or biased if initial knowledge about the solution is available.

Then a fitness measure is carried out on all individuals in the population. This

usually involves decoding of the genotypes (data structures of the individuals) into

 P:=Create_initial_population()
 Measure_Fitness(P)
 generation_index:=0
 while (not terminated)
 { M:=∅
 repeat

 S:=select_parents(P)
 recombine(S)
 mutate(S)
 M:=M∪ elements(S,|P|-|M|)
 until (|M|=|P|)
 P:=M
 Measure_Fitness(P)
 increment(generation_index)
 }

Chapter 3. The principles of evolutionary computation 40

3.2 The evolutionary algorithm

their corresponding phenotypic representation in the problem domain, where the

fitness measure is eventually taken.

Before creating a new generation the population M receiving offspring individuals

is initialised as an empty set. In order to breed a new population the sequence of

selection, recombination and mutation has to be iterated until the new population is

entirely filled with offspring. In each iteration a set S of individuals (often called a

mating pool; consisting usually of 2 parent individuals) from the old population P is

selected based on the fitness of the individuals. To generate new offspring the parent

individuals in set S may then be subject to recombination (mating), where genotypic

material is swapped between individuals e.g. by applying the crossover operator.

Subsequently, mutation may be applied to some individuals in S by randomly

modifying their genotypes. Both, recombination and mutation may be performed

with a certain probability (crossover rate, mutation rate). If neither evolutionary

operation was applied to any individual in S this particular iteration resembles a plain

reproduction cycle where the children are identical copies of their parents. Finally,

the generated offspring (typically one or two children) in the updated set S will be

added to the new population M. Since the number of generated children varies

between the iterations depending on which evolutionary operator has been used, the

last update in a generation may involve more individuals than necessary to saturate

the new population. In that case the function elements returns only the subset of S

required to complete the new population by discarding a possible surplus of

individuals. This is controlled by the second parameter, which is passed to the

function as the number of free slots in the new population calculated by the

difference of the cardinalities of old and new population. A generation is completed

if this difference is zero. The old population will be replaced with the new one

followed by the fitness measure of all individuals in the new population. The

evolutionary algorithm proceeds with breeding new populations until a termination

criterion is met, typically if a good solution was found or a certain number of

generations has been completed.

The traditional generational evolutionary algorithm uses two populations for the

parent and offspring generation. A different concept to the generational algorithm is

the steady- state algorithm, which involves only one population. The offspring

generated by the EA is inserted back into the same population the parents were

Chapter 3. The principles of evolutionary computation 41

3.2 The evolutionary algorithm

picked from by replacing selected, usually poorly performing individuals. This

creates a generational overlap of individuals within the population and permits a

direct competition of parents with offspring in the evolutionary process. Since the

life spans of the individuals during the evolution may be different (some individuals

may even survive the whole evolutionary process unchanged) the actual numbering

of generations is difficult. Hence the steady-state evolutionary algorithm is said to

have completed a generation if the number of children created since the last

generation change is equal to the size of the population.

3.2.1 Fitness evaluation

Fitness evaluation of an individual is performed by examining its performance in

the problem domain. In implementations of evolutionary algorithms such as

evolutionary strategies that optimise a set of model parameters this would typically

include the transfer of those parameters into the particular model and subsequently

the assessment of the accuracy of that model. For domain independent

representations of the genotype used e.g. by GA’s the fitness evaluation involves

decoding16 (or interpreting) the genotype of a solution into its phenotypic

representation. This process is known as ontogenetic mapping and establishes the

representation of the individual in the particular problem domain, where the actual

performance measure can be taken by an objective function. The value returned by

this function may be a scalar, but is often a vector since several aspects17 of

performance (multi- objective) may need to be recorded.

The result of the performance measure of an individual is used for the

determination of a scalar (usually positive) fitness value. For a scalar performance

measure the fitness value may be equal to the return value of the objective function.

In the case of a multi-objective performance measure the fitness is determined from

the vector returned by the objective function by applying scaling or ranking

strategies [33]. The fitness value is assigned to an individual and enables the

16 Decoding is however not always necessary. For parameter optimisation problems the genotype
often used by GA’s is a string of real values that undergo modification. Since the same representation
is used in the problem domain (binary coding of the parameters) there is no decoding required.
17 For example gradient information may be included as an indication as to how this particular may be
improved.

Chapter 3. The principles of evolutionary computation 42

3.2 The evolutionary algorithm

selection mechanism of an EA to perform a comparative performance analysis

between the individuals in a population. The preparation of an individual for the

fitness evaluation (decoding) and actual performance measure is carried out by the

performance and fitness functions, which both need to be implemented by the user.

3.2.2 Selecting individuals

Having assigned the fitness value to all individuals in a population the breeding

process of new offspring can be initiated. Each offspring producing cycle begins with

the probabilistic (respectively deterministic in evolutionary strategies) selection of

parent individuals according to their fitness. The selection operator has a large

influence on the convergence properties of the EA. By favouring better performing

individuals for breeding this operator applies selective pressure of some degree to the

population. The higher the selective pressure the higher is the preference for

selecting highly fit individuals for the breeding process. Also, high selective pressure

usually increases the convergence rate, i.e. the pace with which an optimal solution

is approached. A strong preference for only highly fit individuals may however

prevent the EA from globally exploring the search space of solutions (biased search).

As a consequence the search space is narrowed down too early limiting the diversity

of individuals in subsequent populations and may hence lead to local premature

convergence of the population around a sub-optimal solution. A too low selective

pressure in turn increases the time used by the EA to find an optimal solution

(possible stagnation of evolutionary progress). Therefore it is desirable to use a

selection operator that applies high selective pressure and preserves the diversity of

individuals in a population.

Commonly used selection methods divide into proportionate-based and ordinal-

based selection [56]. Proportionate-based strategies select individuals according to

their relative fitness. Holland introduced proportional selection [42] with the

individual having the normalised fitness being the selection probability

p(si) = P
k=1

n f(sk)
f(si) for breeding (f (s) is the fitness value of individual s). This

selection scheme however is not applicable for negative individual fitnesses or

minimisation tasks [7] unless proper scaling is applied. Roulette Wheel selection [35]

is another popular proportionate selection strategy where each individual is assigned

Chapter 3. The principles of evolutionary computation 43

3.2 The evolutionary algorithm

a slot in the selection interval [0, 1] . The size of such a slot adjusts in proportion to

the normalised fitness of the particular individual in the population. The slots in the

interval are positioned according to the order of the individuals in the population.

The selection is performed by drawing a uniform random number λ, which acts as an

“index” pointing into that selection interval and chooses the individual found at this

index similarly to a Roulette wheel. Convenient for the implementation is that

individuals do not need to be ordered according to their fitness. However, this

selection method introduces a bias for highly fit individuals since they receive larger

slots in the selection interval. Another problem occurs when the population

converges and the differences between fitnesses of the individuals become smaller.

The method then resembles random selection with no guarantee of propagating fitter

individuals (stagnation). To overcome this problem fitness scaling18 needs to be

introduced which amplifies the differences in fitness between individuals. Baker [9]

introduced stochastic universal sampling, which works similar to roulette wheel

selection, however with no bias and minimal spread19. This method chooses n

individuals for the mating pool simultaneously from the selection interval. n

equidistant pointers (distance 1/n) are used as “indices” into the selection interval

beginning from the initial “index” given by a uniform random number.

Contrary to proportionate-based methods ordinal-based selection techniques are

those, which do not pick individuals based on their fitness value. Instead they

introduce a ranking of the individuals within the population based on their fitness and

select those individuals according to their position in this ranking. Through ranking

the selective pressure is independent from the fitness distribution of the individuals

[56]. Truncation selection [60] introduces a threshold T ∈ [0, 1] , which is used to

identify the proportion of the population with the fittest individuals from which

parents will be selected. In this proportion all individuals are equally ranked for

selection. This method requires the individuals in the population to be ordered

according to their fitness. Truncation selection is equivalent to deterministic (ö, õ)-

18 Scaling is performed by multiplying some constant to all fitness values. This however changes the
selective pressure and therewith the statistical properties of the selection scheme. Therefore care needs
to be taken in the choice of the scaling method. Contrary to proportionate selection methods ranked
based selection techniques are translation and scale invariant [56]. That is neither adding (translating)
nor multiplying a constant to all individual fitness values would change the selective pressure of the
selection scheme used.
19 Spread: Range of possible values for the number of offspring of an individual [7].

Chapter 3. The principles of evolutionary computation 44

3.2 The evolutionary algorithm

selection used in ES with T = õ
ö [6] where õ is the number of parents and ö a

number of best performing offspring individuals.

Using ranked selection all individuals in a population are sorted according to their

fitness, and assigned an index describing its rank in the population. This implies that

each individual has a different rank and hence usually a different selection

probability, even if there are individuals with the same fitness. Since the probability

for an individual to be selected does not (directly) depend on its fitness, ranked

selection avoids the problems of proportional fitness selection such as stagnation (see

proportional selection section 3.2.2) and necessary scaling [35][80]. In linear ranking

[38] the selection probability is assigned linearly to individuals (more specifically to

their ranking index) across the population according to:

 pi = N
1
à
2 à ñ+ + (2ñ+ à 2)Nà1

ià1
á
; i ∈ {1, . . ., N} [13]

with 1 ô ñ+ ô 2 being the selection bias to adjust the selection pressure and N the

population size. The individuals in the population need to be ordered according to

their rank (The first individual has the lowest rank and the last the highest). The

higher ñ+ the higher is the preference for better individuals with the best individual

being selected according to the probability N
ñ+ . In exponential ranking as one example

of non-linear ranking the selection probability of a population index (population is

ordered as in linear ranking) can be obtained from

 pi = P
j=1

N cNàj

cNà i

; i ∈ {1, . . ., N}

with 0 < c < 1 being the parameter to determine the exponential characteristic of

this mapping. A low value for c reflects a strong exponential bias for highly fit

individuals while a value close to 1 resembles approximately linear ranking. The

normalisation by
P

j=1
N cNàj guarantees the compliance of the fitness distribution

within the population to the uniformity condition
P

i=1
N pi = 1 . There are however

variants of this methods that do not meet this constraint [55].

A very popular and often used method based on ranked selection is tournament

selection, which is also applied in this research.

Chapter 3. The principles of evolutionary computation 45

3.2 The evolutionary algorithm

Figure 3-2: Binary tournament selection

This selection technique uses n sets of individuals (also known as tournament sets;

for n = 2 the selection technique is referred to as binary tournament selection shown

in Figure 3-2). These sets are filled with a number (typically smaller than the size of

the parent population) of uniformly randomly picked individuals from the parent

population. From all tournaments the fittest individuals are then chosen into the

mating pool for breeding.

The popularity of tournament selection is due to its computational efficiency and

statistical properties [53]. Due to the independent random selection20 of individuals

for the tournament sets the parent population does not need to be ordered (no pre-

processing of the population is required) which makes this selection method fast. By

altering the tournament size the selective pressure can be varied. A low tournament

size corresponds to a low selective pressure. In fact, a tournament size of 1 would

result in uniformly random selection while a large tournament size allows more

individuals from the parent population to be compared to find the fittest and hence

increases the selective pressure.

A general issue in evolutionary computation is the potential loss of good

genotypes. This can be prevented by applying elitist selection, which carries the

fittest parent unchanged over to the offspring generation if this individual has not yet

been copied by reproduction. Elitist selection was introduced in GA context by De

20 Independent selection, individuals may be picked more than once into a tournament.

Selected Parents

Random
Selection

Fitness
Selection

Population

Tournament 2 Tournament 1

fFittest() fFittest()

Chapter 3. The principles of evolutionary computation 46

3.2 The evolutionary algorithm

Jong [20] and found to improve the performance of the GA particularly in uni-modal

but to degrade the performance in multi-modal search spaces.

3.2.3 Generating offspring

After selecting parent individuals the next breeding step involves the actual

creation of offspring. There are in general three ways of producing new individuals

from parent individuals: recombination, mutation and reproduction.

Recombination is often used and involves two or more parents swapping

genotypic material (sexual reproduction) by applying a crossover operator, which

needs to be adapted to the particular representation of the genotype. This is the only

offspring-generating operator that actually benefits from the populational search

concept in EC in the sense that it combines components of different good performing

solutions from the population to produce a new solution. In order to apply crossover

the genotypes need to provide a certain number of crossover points, places at which

the solution can be broken down into their constituent parts. Crossover can be

applied at a single point, i.e. each parent only swaps one component. Alternatively,

with multi-point crossover (this is demonstrated by De Jong [21]) an individual may

swap several components simultaneously with other parents. However the

recombination operator should always adhere to a closure property, which means that

it should always produce valid offspring. Invalid offspring would cause the fitness

evaluation to fail and therefore make the fitness assessment of those individuals

impossible.

Introduced and promoted by Holland [42] recombination builds upon a significant

body of theory in GA context. As indicated in section 3.1.1 the genotypes in GA are

gene strings, which appear to be a representation ideally suited for crossover.

Holland showed that by swapping string fragments of individuals during the course

of evolution string patterns or schemata accountable for fitness emerge in individuals

across the population. It is believed that fit individuals contain a set of schemata that

this fitness can be attributed to. Since individuals are selected according to their

fitness beneficial patterns are combined and passed on to the offspring resulting in

potentially better performing solutions. The existence of several different schemata

in an individual involves many of these patterns when undergoing modification e.g.

Chapter 3. The principles of evolutionary computation 47

3.2 The evolutionary algorithm

by crossover which is known as implicit parallelism and an explanation for the

efficiency of genetic algorithms established by Holland in his Schema Theorem [42].

Goldberg explained in his Building Block Hypothesis [35] the efficiency of GA’s by

attributing the fitness of individuals to the presence of certain string sequences

(building blocks) in the genotype. Using crossover building blocks from different

individuals can be combined to form fitter offspring and thus spread across future

populations.

In contrast to recombination the generation of offspring by mutation involves only

one parent individual (asexual reproduction), hence there is no interaction between

different genotypic material in the population. The populational search concept of

evolutionary computation is only exploited through the wide coverage of the search

space by the diversity of individuals. During mutation a genotype undergoes random

modification to some degree depending on the representation. In parameter

optimisation problems with binary representation of the individuals this usually

involves flipping one or more bits. In genetic programming on the other hand the

mutation operator is very complex (see section 3.3.4). Mutation is particularly useful

in cases where certain genotypic material is needed, which is not contained in any

individual in the population. During the evolution it may happen for example that

individuals carrying certain genotypic material extinct. In a different context

however, these particular genotypic characteristics may greatly improve the

performance of some individuals in subsequent populations and might therefore be

restored by mutation.

Contrary to recombination in GA’s, mutation has been advocated by Fogel [31]

who used it as the only offspring-generating operator in evolutionary programming

(EP). Similarly, early work in evolutionary strategies (ES) [65] involved only

mutation for breeding. Both, EP and ES differ in the application of crossover, which

is deterministic in ES and stochastic in EP.

Finally, reproduction is the plain generation of copies of the parent individuals,

which is useful if the parents have a high fitness e.g. above the population average.

Reproduction is also often performed in recombination cases where generated

offspring is less fit than the parents or even invalid, which e.g. occurs at times in

genetic programming if tree generation constraints are violated for example as a

consequence of code bloat [53].

Chapter 3. The principles of evolutionary computation 48

3.3 Genetic programming

3.3 Genetic programming

One of the main differences between evolutionary computation paradigms is the

representation of the individual solution undergoing modification. Chosen depending

on the problem context this representation in conjunction with appropriate

evolutionary operators provide a certain degree of freedom for finding a good

performing solution. In classical EP, ES and GA these representations involved sets

of parameters hence constraining the search to the space of possible parameter

configurations. Genetic programming (GP) departs from these approaches of

numerical search by attempting to evolve symbolic computer programs that solve the

problem. Hence GP can be viewed as a stochastic program compilation method.

Computer programs are very complex (usually variable-length) compositions of

program code and data. Thus this representation spans a large search space of

possible programs (there are usually several alternative algorithms) for the

evolutionary algorithm to be explored. However, this large degree of freedom also

explains the potential GP has to find or to program very good performing solutions21.

The general idea underlying genetic programming namely the evolutionary

synthesis (or induction) of computer programs from primitive components has been

initially investigated by Cramer [17] who designed a “number string” language (JB

and TB language) to code simple sequential programs that undergo adaptation by a

genetic algorithm. The main principles of genetic programming and its terminology

based on the LISP programming language were introduced by Koza [49].

3.3.1 Representation of individuals

Since it involves the synthesis and evaluation of computer programs GP works on

the same level as an interpreter for programming languages and hence utilises

program and data structure concepts used by those tools. To implement a GP system

Koza [49] used the LISP programming language since it provides built-in

mechanisms to modify program code and data syntactically in the same way at

21 There are however concepts e.g. for program modularisation such as ADF (Automatic Defined
Functions, see e.g. [50][66]) which can greatly improve the search efficiency in domains where
several similar tasks have to be learned. Those tasks could be described with one program module
being called with different arguments (see e.g. the lawnmower example in [50]).

Chapter 3. The principles of evolutionary computation 49

3.3 Genetic programming

runtime. He called the evolved programs s-expressions, which are internally

represented by rooted labelled trees containing two kinds of nodes: inner tree nodes

or non-terminal nodes and leaf nodes or terminal nodes.

 3 á sin(q) + cos(1à q)

Figure 3-3: Genetic programming tree example for a mathematical expression

Non-terminals have at least one argument (child node or branch) that is there is at

least one arc leaving the node (out-degree or arity > 0). Terminal nodes are atomic

nodes (no arguments are to be evaluated) with no leaving arc (out-degree = 0). All

genetic programming trees have a root from which the evaluation starts. The

evaluation is performed depth-first and typically by evaluating children from left to

right. The depth of a tree is the maximum number of arcs on the way from the root

node to the most remote leaf node. Terminals therefore have a depth of zero while

function trees have a depth equal to or greater than zero.

Non-terminal and terminal sets are the only resources of elementary node

definitions a GP algorithm uses to compose programs. Both sets are defined in

problem context. The non-terminal set may contain arithmetic, trigonometric,

Boolean functions, conditional operators (if-then-else) and other problem domain

depended functions such as motion commands etc. The terminal set typically

contains constants, variables or other primitive problem domain-dependent entities

such as functions or commands without arguments. With symbolic regression the

terminal set may also contain an ephemeral random constant <, which returns a

random number in a specified range every time this terminal is chosen. An important

requirement for non-terminal and terminal set is sufficiency. This means both sets

need to have all node definitions that are necessary to induce a program that solves

cos

+

*

sin 3 -

q 1 q

Chapter 3. The principles of evolutionary computation 50

3.3 Genetic programming

the particular problem22. Also, all nodes in particular function nodes are required to

adhere to the closure property, i.e. the evaluation result of any node is always well

defined. Since GP is typically unconstrained23 in the way of constructing programs,

the closure property ensures that all nodes (terminals and non-terminals) have the

same type. Also, possible invalid operations need to be prevented by securing

(redefining) all used operators that may have undefined results in certain situations.

For example if the division operator is used, the protected division24

a%b =
1 ;b=0
a/b ;else

ú
 needs to be introduced to prevent invalid results from a

possible division by zero. Correspondingly the protected square root is defined as

sqrtp(x) = |x|p
 or the protected logarithm as log

p
(x) =

0 ; x=0

log(|x|) ; else

ú
.

3.3.2 Tree generation

Individual trees can be created by two recursive methods: GROW and FULL [49].

The GROW algorithm (Figure 3-4) generates trees in which leaf nodes may have

different distances (number of arcs) to the root node. Supplied with the maximum

tree depth parameter D, the algorithm first generates a local root node. If the

maximum tree depth is reached this node will be a randomly chosen terminal node

since no further tree growth from this local root is permitted. If the maximum tree

depth is not reached yet this node is randomly chosen from the union set of terminals

or non-terminals. If a terminal was chosen the tree growth ends at this node. If a non-

terminal was chosen the algorithm recursively creates its arguments trees and thus

increases the depth of this particular branch.

22 Sufficiency in genetic programming is a quite similar concept to completeness in context of
parametric kinematic modelling (see section 2.2). Both, sufficiency and completeness are
requirements to be met (typically by human intervention) in order for the respective paradigm to
succeed. Whereas completeness is required to numerically identify true parameter values, sufficiency
is essential to enable the GP algorithm to find the actual model structure and parameter values.
23 However, usually there is a maximum tree depth constraint that prevents the tree offspring from
growing beyond a certain limit (see also section 3.3.4). Another example: Since in strongly typed
genetic programming [58] trees may have different types, a constraint has been introduced that
ensures type compatibility between formal parameters in the function declaration (non-terminal set)
and actual arguments.
24 It is important to preserve the precedence level of the protected division operator when representing
symbolic expressions in infix notation without redundant parentheses. For example, using the ordinary
division operator the expression a ã (b/c) is equivalent to a ã b/c . However, a ã (b%c) is, due
to the definition of the protected division (see above), not equivalent to a ã b%c !

Chapter 3. The principles of evolutionary computation 51

3.3 Genetic programming

Figure 3-4: The GROW algorithm

The FULL algorithm always creates balanced trees (see the left-hand parent

shown in Figure 3-6), which means that all leaf nodes in a tree have the same

distance to the root node. While trees generated by the GROW method using the

same depth parameter D may vary in depth across the range of integers {0, . . .,D} ,

the FULL method always produces trees with a depth specified by D.

Figure 3-5: The FULL algorithm

These tree generation algorithms are an important part of a GP system for creating

the initial generation of individuals and for the subtree mutation operator (see section

3.3.4).

function GROW(D,T,N) //D=Tree depth; T=Terminals; N=Non-terminals
{ if (D=0) then

return randomly chosen terminal from T;
 else
 { t := randomly chosen from T∪N;
 if (t is a terminal) then return t;
 else
 { Instantiate each parameter in t by GROW(D-1,T,N);
 return t with instantiated parameters;
 }
 }
}

function FULL(D,T,N) //D=Tree depth; T=Terminals; N=Non-terminals
{ if (D=0) then

return randomly chosen terminal from T;
 else
 { t := randomly chosen non-terminal from N;
 Instantiate each parameter in t by FULL(D-1,T,N);
 return t with instantiated parameters;
 }
}

Chapter 3. The principles of evolutionary computation 52

3.3 Genetic programming

3.3.3 Initialisation of the first population

Before the evolution begins an initial population needs to be created. To provide a

large diversity of programs the most widely used method to generate the first

population is RAMPED HALF & HALF proposed by Koza [49]. This method

combines GROW and FULL method and is capable of generating trees of various

shapes and depths. It splits the population into intervals in which one half of the

individuals are created by the GROW method and the other by the FULL method.

Each interval represents a different tree depth starting from the minimum to the

maximum tree depth forming a tree depth ramp. The minimum tree depth is usually

greater than zero in order to prevent terminal nodes from becoming individuals

(zero-depth individual) in a population. Terminal nodes only have one crossover

point (respectively mutation point). Hence single terminal nodes being individuals in

the population usually have less potential to introduce larger changes to their

offspring. In fact, the crossover operator is disabled for two zero-depth individuals.

In this scenario the parents are only swapped and reproduced without any changes to

the genotypic material. The only way to produce offspring from zero-depth

individuals that is different from its parents is the application of mutation (e.g. by

changing variable values or replacing the terminal nodes by randomly generated

trees). Since the GROW method may occasionally produce zero-depth trees (plain

selection of terminals), those trees need to be discarded. The GROW method is then

applied with the same parameters until a tree with a desired minimum depth> 0 has

been created.

3.3.4 Crossover and mutation

In genetic programming offspring is generated by applying crossover and

mutation25 to selected parent individuals.

Subtree crossover as shown in Figure 3-6 is performed by selecting one crossover

node (also known as single point crossover) in each of both parents and swapping the

tree fragments rooted at these nodes. Since the crossover operator may select

subtrees of different depths, the offspring trees may grow. Larger trees imply

25 Initially crossover was the only offspring-producing operator in GP [49].

Chapter 3. The principles of evolutionary computation 53

3.3 Genetic programming

expensive evaluation. They are however not necessarily fitter than less complex

trees, which is one reason why GP systems impose a maximal depth constraint on the

trees in a population. If a tree generated by crossover exceeds this limit it will be

discarded. If the crossover operator fails to generate valid offspring after a certain

number of repeated attempts, the parents will be reproduced instead26.

Figure 3-6: Subtree crossover example

Since swapping non-terminal trees usually results in larger performance changes27

between parents and offspring, the probability of selecting non-terminals for

crossover is typically 90% [53].

The mutation operator selects a node in a parent tree and replaces the tree rooted

at this node by a randomly generated tree (See Figure 3-7). This new subtree may be

produced by either FULL or GROW method with the depth parameter being

D = DMax àDMP, where Dmax is the maximal depth allowed for trees and DMP is

the depth of the tree rooted at the mutation point. This ensures that the mutated tree

26 This phenomenon occurs more often in later generations as the trees usually grow during the course
of evolution. This code bloat however presents serious problems for the evolutionary progress as the
applicability of crossover as the main offspring-generating operator becomes limited or even
ineffective as more parents are reproduced [53].
27 This is a reason why genetic programming is less sensitive to premature convergence than genetic
algorithms.

 Parents

Crossover

+

* sin

4 x x

+

*

x 4

cos

x

*

x

 Offspring

*

x +

* sin

4 x x

+

*

x 4

cos

x

Chapter 3. The principles of evolutionary computation 54

3.3 Genetic programming

will always be of valid length. Mutating non-terminal nodes is referred to as macro

mutation (The same concept applies if fit individuals swap trees with random

individuals [63]) whereas micro mutation involves terminal nodes. Shrink-mutation

is a process where a subtree is replaced with another tree having a lower depth

eventually leading to a lower depth of the overall tree. An example for grow-

mutation where the modification of the individual results in a higher tree depth is

depicted in Figure 3-7. Other forms of mutation implement swapping subtrees within

an individual, replacing trees with trees of the same arity (number of arguments),

modifying random constants etc. (see [16] for reference).

Figure 3-7: Example of subtree mutation in GP

3.3.5 Symbolic regression

Genetic programming has been applied to a variety of problem domains such as

structured process modelling [64], parameter identification (e.g. analysis of the

existence and identification of multi-steady states in non-linear dynamical systems

[57]), machine learning (e.g. evolution of multiplexers; control strategies of

autonomous robots [61]28), artificial intelligence (e.g. synthesis of artificial neural

networks by grammar evolution [39], navigation strategies e.g. of an artificial ant in

the “Santa Fe Trail” [49] or of a Lawnmower [50]) etc29.

28 Interestingly, in this approach genetic operators are applied to linear strings (rather than trees; Æ
Linear Genetic Programming) of 32 Bit CPU instructions. Since machine code is generated the
concept is called Compiling Genetic Programming (CGP).
29 See also [51] for further applications of genetic programming.

+

2 x

*

cos

x

Parent

2

x

x

*

-

*

cos

x

Offspring
Mutation Node

Chapter 3. The principles of evolutionary computation 55

3.3 Genetic programming

The GP domain addressed in this work is symbolic regression [49]. Classical

mathematical regression techniques (traditional robot calibration methods belong to

this category) typically utilise a regression model (e.g. linear, non-linear, parametric)

pre-specified by a user according to the requirements of the problem domain. The

parameters of these models are subsequently fitted to measured data. Symbolic

regression in contrast attempts to find (or induce) a symbolic description for the

relationship typically between two variables (action and response) by evolving an

appropriate mathematical model consisting of functions and parameters (see example

application in [48]). Since symbolic regression is not limited to a predefined model

structure it has more potential in terms of accurate modelling than conventional

regression methods. In fact, it is principally capable of identifying the true functional

relationship of variables based on measurement data, provided sufficiency of

terminal and non-terminal set is given. The terminal set must contain the dependent

variables30 and usually an ephemeral random constant. The non-terminal set contains

mathematical functions and operators that are assumed to be part of the solution, for

example, periodic data is likely to be modelled by sine/cosine-functions. The

principal representation of the mathematical expressions that are subject to evolution

is shown in Figure 3-3, Figure 3-6 and Figure 3-7.

Fitness measures typically applied in genetic programming and particularly in

symbolic regression are raw fitness, standardised fitness, adjusted fitness and

normalised fitness [49]. A fitness measure often used (also in this work) is raw

fitness r(i) =
P

j=0
N |S(i, j) à C(j)| of the ith individual with S(i, j) being the value

returned by the individual and C(j) the value to be pursued for the jth out of N fitness

case. Standardised fitness is defined either as s(i) = r(i) or s(i) = rmax à r(i) ,

adjusted fitness as a(i) = 1+s(i)
1 and normalised fitness as n(i) = P

k=1

N a(k)
a(i) .

30 Variables used in symbolic regression are usually continuous. However, function induction is also
possible in discrete domains (multiplexer synthesis using Boolean variables).

Chapter 3. The principles of evolutionary computation 56

3.4 Summary

3.4 Summary

This chapter introduced the principles of evolutionary computation as alternative

stochastic search methods to conventional deterministic optimisation techniques.

Based on [32] the general advantages of EC techniques are summarised as:

• Domain independence and hence a wide area of applications (The same

algorithm (Figure 3-1) applies to all implementations (conceptual simplicity)

with specially adapted fitness function and evolutionary operators).

• Incorporation of domain specific knowledge possible.

• Parallelism (The process of breeding new individuals is an independent local

process and can be performed in parallel).

• Good chances for global convergence (Usually outperforms gradient methods in

multi-modal search spaces due to better search space coverage by multi-

individual search).

• Reuse of solutions (Exploiting good characteristics of former solutions).

• Potential to solve problems with unknown solutions or in areas with no human

expertise

If solutions to problems can be formulated as computer programmes the

performance of which can be evaluated by computers, genetic programming can be

applied to populations of these solutions to automatically combine or modify their

different subprograms to eventually form optimal programs.

Section 3.3 presented genetic programming, which is the evolutionary paradigm

used in this work. The principles of genetic programming were introduced with focus

on symbolic regression, which is the application domain for the inverse kinematic

calibration method described in Chapter 4.

Chapter 4. Static symbolic robot calibration based on genetic programming 57

4.1 Evolutionary calibration concept

Chapter 4

Static symbolic robot calibration based
on genetic programming

This chapter presents a new application of genetic programming particularly

symbolic regression to static inverse kinematic robot calibration in context of offline

programming. Building upon the robot calibration and evolutionary computation

basics introduced in chapters 2 and 3 a general symbolic calibration system is

developed and its principles and properties detailed.

4.1 Evolutionary calibration concept

As outlined in section 2.1.3 the objective of static calibration in context of offline

programming is to establish an accurate calibration model, which provides a

mapping between nominal and corrected end-effector poses. These corrected poses

represent false targets that compensate for path deviation and eventually lead the

robot to the desired location. This pose-correcting mapping can either be based on

parametric or non-parametric models. The principle structure of the mapping model

used in this work is illustrated in Figure 4-1. This model fits into the category of

compensation models that use a nominal inverse kinematic model as outlined in

section 2.2.4 and illustrated in Figure 2-6. Hence it avoids the problems of finding

the calibrated inverse of the overall kinematic model (section 2.2.4), which expresses

the calibrated joint configurations indirectly by calibrated parameters in geometric

Chapter 4. Static symbolic robot calibration based on genetic programming 58

4.1 Evolutionary calibration concept

and non-geometric model components. The calibration model in Figure 2-6 is

represented by a vector of joint correction functions followed by a nominal forward

kinematic model. The joint correction functions, which are subject to calibration,

describe herein the error of the nominal inverse kinematic model (as used by the

robot controller) hence it fits into the category of inverse kinematic calibration. This

calibration principle using correction functions was initially tested by Shamma [70]

(recently by Jenkinson [45]) and is outlined in section 2.2.4. However, in Shamma’s

approach pre-specified polynomial functions have been used with little of no

physical significance. The accuracy of those models depends on the functions used

and is hence also pre-specified. The calibration of these models again involved

numerical identification of the parameters (coefficients).

Figure 4-1: Calibration model: Joint correction functions are evolved in context
of nominal inverse and nominal forward kinematic models establishing a
mapping between nominal and corrected 3D poses

In this research the joint correction functions are evolved by applying genetic

programming particularly symbolic regression to the calibration problem. In result

correction functions for joints are obtained in symbolic form rather than numerical

values of parameters within predefined models. Therefore this calibration method is

denoted as symbolic calibration. By providing appropriate sets of terminals and non-

terminals (e.g. functions that typically occur in non-geometric models; see e.g.

section 2.2.2) this approach has the potential not only to compensate for positional

error of the manipulator, but also to identify the structure and parameters of the

correction functions enabling further mathematical analysis.

Performing the calibration on joint level the method primarily avoids the

problems related to task space correction of redundant manipulators. A redundant

manipulator can reach a pose using different joint configurations. Since the

positional error caused by different joint configurations is typically different, the

calibration algorithm would have to calibrate a one-to-many mapping. This would

Nominal
Forward

Kinematics

Calibrated
Joint Angles

Corrected
3D poses

Nominal
Inverse

Kinematics
Nominal
3D poses

Nominal
Joint Angles

Evolved Joint
Correction
Functions PN PCòCòN

Chapter 4. Static symbolic robot calibration based on genetic programming 59

4.2 Pose correction principle

result in an averaged compensation for these different joint configurations, which

does not reflect the error in the individual configuration. This problem does not arise

when calibrating joint correction models as proposed in this work. Possible different

joint configurations of a pose are obtained as different solutions from a nominal

inverse kinematic model, which is not subject to calibration.

4.2 Pose correction principle

Prior to the actual calibration of the model in Figure 4-1 a set of data pairs

(PN,PC) has to be generated where PN is a nominal pose e.g. generated by an OLP

system, and PC the corresponding corrected pose (false target) to compensate for

positional error and lead the robot to the desired pose. The robot is programmed to

move to the nominal positions and the actual achieved positions are recorded by an

external measurement device. In the experiments reported in this work the Robotrak

measurement system was used (See section A.1 and A.1.1 for reference about

measurement principle and data transformations). A corrected pose is obtained by

subtracting the positional error represented by the difference between corresponding

measured pose PM and nominal pose PN from the nominal pose (see Figure 4-2).

Note that in this work only the position vector of a pose is subject to correction.

Figure 4-2: Illustration of the correction principle

Corrected poses for the calibration data set are established from nominal

calibration poses using the algorithm shown in (Figure 4-3). Arguments for this

algorithm are nominal end-effector poses and local frame poses31. First the robot is

31 In this work calibration is carried out relative to a local frame (see also [45]). The local frame
concept is explained in the appendix section A.1.1.

PM

PC

PN

PC = PN à (PM àPN)
= 2PN àPM

Chapter 4. Static symbolic robot calibration based on genetic programming 60

4.3 Calibration principle: Distal Supervised Learning

sent to all local frame points and the end-effector poses are measured and stored in

LLM. Then the robot is sent to all poses in the calibration data sample set P and the

corresponding end-effector poses are measured and stored in PLM. Since the

calibration poses have been measured relatively to the measurement system frame,

they need to be transformed into robot base frame co-ordinates. The therefore

required transformation matrices are constructed from the local frame points

expressed relative to robot base frame (set L) and measurement system frame (set

LLM) (See also appendix section A.1.1). Having established this transformation,

nominal and actual poses can be compared and the corrected poses generated as

illustrated in Figure 4-2. A further result of the data preparation procedure is an error

statistic computed from transformed measured and nominal poses (describing the

error prior to calibration), and a set of joint angles generated from the corresponding

nominal poses.

Figure 4-3: Abstract data preparation algorithm

4.3 Calibration principle: Distal Supervised Learning

The problem of finding the joint correction functions in Figure 4-1 can be

interpreted as a distal supervised learning problem. The problem of distal supervised

learning is generally stated as finding a mapping from intentions to desired distal

results or tasks (Figure 4-4). A model to provide this mapping is trained with pairs of

(intention, result) in a supervised fashion. The model internal problem is to find a

function data_preparation(P, L)
//P= Robot Poses; L= Local Frame Poses
{ LLM :=goto_poses_and_measure(L);
 PLM :=goto_poses_and_measure(P);
 M :=transform_calibration_data(PLM, L, LLM);
 C :=compute_corrected_poses(M, P)
 S :=write_error_statistic(M, P);
 J :=compute_joint_angles(P);
 return {C, J, S}
}

Chapter 4. Static symbolic robot calibration based on genetic programming 61

4.3 Calibration principle: Distal Supervised Learning

mapping that transforms given intentions into appropriate proximal actions32 (inverse

mapping), which can then be transformed into the desired distal results in the

problem domain [46].

Figure 4-4: Distal supervised learning

To transfer these concepts into the symbolic kinematic calibration domain of this

research: intentions are interpreted as nominal end-effector poses PN, actions as

calibrated joint configurations òC and results as the corrected end-effector poses PC .

Hence the task of the model in Figure 4-1 is to find an accurate mapping between

nominal and corrected end-effector poses by establishing the required calibrated joint

configurations. Learning of these calibrated33 joint configurations from nominal joint

configurations is performed by evolving joint correction functions implicitly using a

forward kinematic (geometric) model as a distal teacher. Implicit learning refers to

the fact that the calibrated joint configurations as being the target configurations are

not explicitly provided. Instead the evolution of the correction models is driven by

their distal performance being the accuracy of the whole forward kinematic model

(geometric model + evolved joint correction models).

Correction of a joint configuration ò is performed as shown in equation 4.1 by

adding a vector of correction values computed at ò by correction terms stored in g:

 h(ò) = ò+ g(ò) (4.1)

where h is a function vector consisting of k joint correction functions where k is the

number of joints in ò. The correction term to each function in h is stored in the

corresponding component of function vector g. These correction terms in g are the

actual subject to evolutionary refinement by symbolic regression (In the following

the correction terms in g are also referred to as correction models). At any

32 There may however be several different proximal actions that have the same distal result [46]. In
robot calibration context this is equivalent to the problem of redundant manipulators, which can
establish certain poses with different joint configurations.
33 A calibrated joint configuration òC results exactly in the desired target end-effector pose PC . Note
however that òC is not explicitly given in this approach.

Learning
System

Problem
domain actions results intentions

Chapter 4. Static symbolic robot calibration based on genetic programming 62

4.3 Calibration principle: Distal Supervised Learning

evolutionary step the components of g contain the currently best performing evolved

correction model (see section 4.4.1). Using these currently evolved correction models

in g an evolved joint configuration òE (as an intermediate result of the evolution

from nominal to calibrated joint configurations) is computed from a nominal end-

effector pose PN as the result of the correction applied at the current stage of

evolution:

 òE := h(òN) (4.2)

 with òN := fà1(PN, þN) . (4.3)

The nominal joint configuration òN, which is corrected by h resulting in òE, is

obtained from PN using the nominal inverse kinematic model (equation 4.3). From

the evolved joint configuration òE the corresponding evolved end-effector position

PE can then be obtained using the nominal geometric forward model (in this work a

Denavit-Hartenberg model is used; see Appendix section A.2) based on nominal

geometric parameters þN of a Unimation PUMA 761 industrial robot (Table A-1):

 PE := f(òE, þN) .

Hence, using equation 4.2 and 4.3 the entire mapping from nominal to evolved end-

effector positions can then be written as:

PE = f(h(fà1(PN, þN)), þN)

= Fmap(PN).
 (4.4)

In order to illustrate the location of the correction functions in h being the

arguments of the forward kinematic model the mapping can also be formulated using

the sequential structure of the Denavit-Hartenberg parameterisation as:

 PE =
Q
i=1

k
Ai(hi(òN)) (4.5)

where k is the number of links, hi is the ith correction function (òN has been obtained

from PN using the nominal inverse using equation 4.3) being the argument of Ai

which is the DH transformation matrix (see Appendix A.2) for the ith link (Ai

absorbs the (nominal) DH parameter ëi, ai and di, hence this formulation is only

valid for manipulators with exclusively revolute joints as for the PUMA 761).

Chapter 4. Static symbolic robot calibration based on genetic programming 63

4.4 The evolutionary calibration system

During the learning (or training) phase the mapping model (equation 4.4) is

presented a number of pairs of nominal and corrected end-effector poses (PN,PC) .

In order to establish an accurate mapping between all n training pairs in the

calibration sample set the objective of the supervised learning process is to minimise

the performance index:

P
i=1

n
eiTei ; where

ei = Pi
C
àPi

E

= Pi
C
à Fmap(P

i
N)

. (4.6)

(Note that the superscripted i does not represent exponentiation). The

minimisation is performed by evolving the joint correction models (using symbolic

regression) in g so as to minimise the differences between corrected end-effector

poses from the training set (desired pose) and those computed (by the mapping

model) from the corresponding nominal end-effector pose. Practically, the inverse

transformations of the nominal poses PN by the nominal inverse model in Fmap may

not be computed explicitly by the calibration program. Instead the joint

configurations of the nominal poses may be taken directly from the robot control

system by storing34 them in controller memory when the robot is sent to these poses

to establish the external measurements as part of data preparation algorithm (Figure

4-3). Using calibration (or training) samples (òN,PC) comprising of nominal joint

configuration and corresponding corrected target pose the performance index in

equation 4.6 can then be rewritten with:

 ei = Pi
C
à f(h(òiN), þN) .

The performance index in the experiments reported in this work is a raw fitness

measure (see section 3.3.5) used by the EA to select individuals.

4.4 The evolutionary calibration system

The context and the components of the evolutionary calibration system are

illustrated in Figure 4-5. The input calibration data for the system are obtained from

data preparation module as outlined in section 4.2. For the laboratory PUMA 761

robot used in the experiments the calibration system consists of 6 separate genetic

34 In VAL II the joint configurations of corresponding Cartesian poses can be logged into system
memory as precision points by issuing e.g. “here #p” [72] (see also section 6.1.1).

Chapter 4. Static symbolic robot calibration based on genetic programming 64

4.4 The evolutionary calibration system

programming system instances (one for each joint), each of which works on one

population of parent models. The fittest correction model of each population in these

GP systems at any evolutionary step constitutes the corresponding component in the

correction model vector g.

Figure 4-5: Overview of the evolutionary calibration system

4.4.1 The symbolic co-evolutionary calibration algorithm

The principle of the calibration algorithm used to evolve the joint correction

models is shown in Figure 4-6. First the populations of correction models are

initialised using the RAMPED HALF & HALF method (section 3.3.3). The terminal

set contains the joint variable ò and an ephemeral uniform random constant

< ∈ [0, 1] . The function set contains functions that typically occur in joint-related

non-geometric models i.e. arithmetic functions such as addition, subtraction,

multiplication and protected division, and trigonometric functions such as sine and

cosine (see section 2.2.2 and section 6.2). At initialisation one non-random neutral

Calibration Data

Data Preparation

Local Frame Poses Nominal Poses
Robot and Measurement
system

Evolutionary Calibration System

Populations
of correction
models for
each joint

GP system 1

GP system 2

GP system 3

GP system 4

GP system 5

GP system 6

Fittest model
from each
population

g1(θ1)

g2(θ2)
g3(θ3)

g4(θ4)

g5(θ5)

g6(θ6)

g(ò) =

Chapter 4. Static symbolic robot calibration based on genetic programming 65

4.4 The evolutionary calibration system

model35 is introduced to each population. Such a model returns a zero value (no

correction), which corresponds to an uncalibrated joint angle. The reason for this is

to guarantee (elitism provided) the evolution to start with at least the uncalibrated

(nominal) joint configuration. This is particularly important when the algorithm

switches to a joint for the first time, which is explained in context later in this section

(see page 67).

After creation and initialisation of the populations the components of the

correction model vector g are initialised with neutral models (no correction). In this

way it is ensured that the initial performance index (measure of positional error at the

beginning of the evolution) of the kinematic model is equal to the performance index

of the plain uncalibrated kinematic model (without correction models).

Figure 4-6: Co-evolutionary calibration algorithm

An evolutionary cycle (wrapped into the repeat-until statement in the algorithm

illustrated in Figure 4-6) begins by selecting a joint corresponding to the contribution

of its correction model in g to the positional error (see section 4.4.2). As shown in

equation 4.5 the kinematic forward model is represented by a sequence of

homogenous Denavit-Hartenberg transformations. Hence the correction models in

35 In the experiments g(ò) = (òà ò) (more specifically the right hand side of it) has been inserted
as an individual providing no correction into the initial population. Principally, g(ò) = 0 could have
been used. However, the right hand size of this expression is a plain terminal the occurrences of which
as single individuals are to be avoided in the population due to their limiting influence on the
crossover operator and population diversity as described in section 3.3.3.

k:= Number_of_joints
P:= Create populations of correction models for k joints
for each k do
 gk(ò) := neutral correction
Compute initial performance index
repeat
 j := Select Joint according to the contribution of its

 corresponding correction model in g to the
 positional error of the end-effector

 Evolve correction model for joint j in population P[j]
 until performance index improves
 Update gj(ò) := fittest model of population P[j]
until terminated

Chapter 4. Static symbolic robot calibration based on genetic programming 66

4.4 The evolutionary calibration system

their corresponding correction functions (equation 4.1), which are arguments of their

corresponding DH transformations, collectively contribute to the performance index

within this serial arrangement. This also implies that the correction models depend

on each other during the evolutionary learning process. When altering one correction

model the other models are directly affected in their potential to minimise the

remainder of the positional error. An example is illustrated using a planar

manipulator in Figure 4-7:

Figure 4-7: Dependence of joint corrections: The positional error between
target and tool endpoint was reduced by increasing joint angle ò1 . In effect the
correction that needs to be applied to joint ò3 compared to the previous state is
now reduced.

Since this property prohibits a parallel implementation of evolution for each joint

(in this calibration method), only correction models for one joint are evolved at the

time with the objective to minimise the performance index in the “environment”

provided by the fittest correction models of the other joints. This concept is also

known as co-evolution since the performance of individuals depends on the

performance of individuals in other populations. While one correction model is

evolved in its corresponding population, the evolution of the other models is

suspended. The generations used by the calibration system (in Figure 4-5) to evolve

the correction model vector g are the sum of the generations completed by each GP

system.

 θ3
 θ3

θ2

 θ1

 θ2

 θ1
Target Target

Chapter 4. Static symbolic robot calibration based on genetic programming 67

4.4 The evolutionary calibration system

Figure 4-8: Necessity of joint selection: The desired pose cannot be reached by
altering joint angle ò1

The necessity of selecting a correction model for evolutionary improvement

depending on its contribution to the positional error is illustrated in Figure 4-8. The

depicted 3-link manipulator is not capable of reaching the desired position by

modifying the angle of 1st joint since this joint does not contribute to the positional

error (The angle determined by X and Y co-ordinates of this pose is assumed to be

equal to joint angle ò1). Hence it would not be possible to minimise the performance

index by evolving a correction model for joint 1. Instead appropriate correction needs

to be applied to joint 2 and 3 by co-evolving their correction models based on an

appropriate joint selection.

A problem occurs when a joint is selected for the first time. Its population of

correction models has been randomly initialised with functions the fittest of which

however might deteriorate the currently archived performance index (Note that the

corresponding component in vector g (see equation 4.1 on page 61) is updated for

evaluation with the fittest model of that population). This would mean a further

unnecessary computational expense since the correction model of this joint would

have to be evolved until the previous better performance index is regained and the

evolution can actually progress. By introducing a neutral model (non-correcting

model) to each initial population as explained before it is ensured that the currently

achieved performance index of the model (kinematic plus best performing correction

functions for all joints so far) is not degraded when the algorithm selects a joint for

the first time. Since the GP system used in this work implements elitism, the best

performing correction model is carried over to the next generation without changes.

Hence the fittest correction model is kept until a better performing model emerges. In

Desired Pose

ò3

ò2

ò1

Chapter 4. Static symbolic robot calibration based on genetic programming 68

4.4 The evolutionary calibration system

this way it is ensured that the currently achieved correction models and hence the

performance index cannot be degraded.

Whenever the performance index (and thus the positional error between evolved

and corrected position) has been reduced (which may take several generations) by

evolving a particular joint correction model, the next step in the algorithm in Figure

4-6 is to update the corresponding component in the correction model vector g with

the fittest model of that population. Then the evolutionary cycle starts again by

selecting a joint corresponding to the contribution of its correction model in the now

updated correction model vector g to the remainder of the positional error (see

section 4.4.2). This evolutionary cycle is repeated until the performance index drops

below a certain limit or the sum of generations used to evolve all joint correction

models exceeds a certain number.

Joint
number

Gene-
ration

Symbolic expression of the fittest correction model Perform.
Index

2 3 theta+SQRTp(0.3988464003418073)*0.0002441480758079775 98.18535
2 4 theta+SQRTp(theta)*0.0002441480758079775 95.77828
2 5 theta+(0.8793908505508591-theta-

SIN(theta))*0.0002441480758079775
94.24098

2 7 COS(0.5919370097964416*0.04806665242469558*theta)*theta 88.69122
2 8 theta+theta*(theta-(theta-

COS(0.260567033906064))*0.04806665242469558*0.790063173
3146153)*0.001244148075807978

88.45305

2 9 theta+0.6468703268532365%(theta-(0.1467635120700705-
SIN(0.837916196172979)+theta-(theta-(0.2048097170934172-
theta))))*0.0002441480758079775

86.1388

2 10 theta+theta*(theta-0.6468703268532365%(theta-
(0.3129062776573992*0.001244148075807978-(theta-
0.4824976348155156))))*0.001244148075807978

84.39505

1 14 COS(SQRTp(0.9591051973021638)-
SIGN(0.4750205999938963))*theta

83.3114

1 16 COS(SQRTp(SQRTp(SIN((theta+0.03137302774132512)*SIGN(0.
03338724936674093))))-SIGN(0.4750205999938963))*theta

65.1133

2 17 theta+theta*(theta-0.6468703268532365%(theta-
(0.3988464003418073*0.0002441480758079775-(theta-
0.4824976348155156))))*0.001244148075807978

65.11246

Table 4-1: Symbolic expressions of the correction models generated during a
typical run of the symbolic calibration algorithm beginning with a performance
index of 106.203676 (uncalibrated model without joint corrections)

The results from the beginning of a typical run (captured from the log-file of the

calibration system during the experiments) of the calibration procedure is shown in

Chapter 4. Static symbolic robot calibration based on genetic programming 69

4.4 The evolutionary calibration system

Table 4-1 which lines up in rows the evolved correction model of a particular joint,

the generation36 at which this correction model emerged and the resulting improved

performance index. Based on the calibration data used in this experiment joint 2 is

first selected (see details of the selection method in section 4.4.2). Breeding of new

correction models in the corresponding (second) GP system (see Figure 4-5) is

performed until the performance index could be improved in generation three. The

second component in correction model vector g is updated with the obtained

correction model for the second joint. Based on the remainder of the positional error

and the updated vector g joint 2 is selected again for further improvement of its

correction model. In this way genetic programming gradually improves the

performance index by refining the correction model of the second joint. In generation

ten however a correction model emerges which reduces the positional error in a way

that gives a correction of joint 1 more potential for a further reduction of the

performance index (see section 4.4.2). Hence from generation 11 the algorithm

switches to joint 1 and successfully evolves the first correction for this joint in

generation 14 with a further refinement in generation 16. Based on the currently

evolved correction models for joint 1 and 2 the algorithm switches at generation 16

to joint 1 and proceeds evolving its correction model from generation 17. In this way

the calibration algorithm automatically selects and improves joint correction models

in g.

4.4.2 Joint selection

A problem of the symbolic calibration method described in section 4.4.1 is that

applying corrections to joint configurations inevitably implies an alteration of the

tool orientation (applies to the laboratory robot used in the experiments). To

approach this problem a joint selection method has been used that selects joint

correction models according to their potential to improve the positional error of the

end-effector by applying minimal correction. The method is described as follows:

36 Note that the generations within the single GP systems in Figure 4-5 are numbered globally due to
the serial processing. For example, in Table 4-1 after the initialisation the GP system 2 has completed
10 generations. Then from the next generation (globally the 11th) the focus is switched to the GP
system for joint 1, which processes locally its first generation.

Chapter 4. Static symbolic robot calibration based on genetic programming 70

4.4 The evolutionary calibration system

The overall kinematic forward model can be expressed using the Denavit-

Hartenberg parameters as:

 T = Tr Tp
0T 1

ô õ
= A1A2A3A4A5A6P

where Ai is the homogenous DH matrix for the ith link, P the 4×4 tool

transformation matrix (see also Appendix A.2), Tr the 3×3 rotation matrix of the

tool frame and Tp the 3×1 position vector (x, y, z) of the tool endpoint.

Provided it is small the positional error contributed to the overall positional error

∆Tp of the robot by the ith link is estimated by the total error relation:

 ∆Tpi = ∂ò i

∂Tp∆òi + ∂ai

∂Tp∆ai + ∂di

∂Tp∆di + ∂ë i

∂Tp∆ëi
where ∆òi,∆ai,∆di and ∆ëi are small errors in the DH parameters. Since the joint

compensation algorithm assumes that the positional error is only due to joint variable

ò the following heuristic is applied:

 ∆Tpi = ∂ò i

∂Tp∆òi
which sets the error of the geometric parameters a, d and ë to zero. For a 6 DOF

industrial robot the positional error therefore is

 ∆Tp =
P
i=1

6
∆Tpi = J∆ò (4.7)

with J = [∂ò1
∂Tp, ... ∂ò6

∂Tp] being the 3×6 positional Jacobian (three positional

components and six joints) of T with respect to the joint variables. This equation

relates the joint angle error ∆ò = [∆ò1, ...,∆ò6]T to the positional error ∆Tp of the

robot end effector for a particular pose. The potential of a joint to compensate for

positional error at a particular pose using only a small change of the joint angle is

indicated by the values in the respective column of the Jacobian J evaluated at the

joint configuration corresponding to that pose. High absolute values indicate a high

error compensation potential of the particular joint (column index) at the

corresponding pose component (row index determines x, y or z value) while low

absolute values represent the need for a larger compensation to reduce the error at

this pose component. A zero value in J shows that the corresponding joint is not

capable of reducing an error in the particular pose component.

The measure of the potential of joint j to compensate for a particular error

described by a data sample (nominal joint configuration òN, corrected pose PC; see

section 4.3) has been implemented as:

Chapter 4. Static symbolic robot calibration based on genetic programming 71

4.4 The evolutionary calibration system

mj(òN,PC) :=
ììì
∂òj

∂Tp
(gj(òN))

T(PC àTp(gj(òN)))
ììì

:=
ììì
∂òj

∂Tp
(òE)

T∆Tp
ììì (4.8)

where ∆Tp = PC àTp(òE) = PC àPE is the positional error between corrected

pose (target) and currently evolved pose37. To explain the principle of the

performance measure equation 4.8 is rewritten as:

 mj(òN,PC) :=

ììì ∂ò j

∂Tpx(òE)∆Tpx + ∂ò j

∂Tpy(òE)∆Tpy + ∂ò j

∂Tpz(òE)∆Tpz

ììì . (4.9)

The measure is defined as the absolute scalar product of the derivative of the

position equation vector with respect to the j th joint (j th column of the Jacobian)

evaluated at the currently evolved joint configuration òE, and the corresponding

positional error vector ∆Tp . Each of the three terms is the product of a positional

error component and the corresponding change of the end-effector when altering the

joint angle j by a minimal value. If the absolute value of a term is large it is typically

due to a high value of the derivative, which indicates that joint j has a high potential

to compensate this particular positional error component. However, the value of a

term can be positive or negative. A positive value indicates that the particular error

component can be compensated by reducing the value of the joint variable38. A

negative value of a product term indicates that the value of the joint variable should

be increased to compensate for the error component39. Different signs of the terms in

equation 4.9 indicate that by applying a small correction to the joint variable j the

values of the terms would change contrarily. While the (absolute) error in one

component is reduced the (absolute) error in other components with opposite sign is

37 Tp(ò) is identical to the notation f(ò, þN) used in this work for nominal kinematic models since
only position measurements were considered.
38 In this case derivative and error are both either positive or negative. In the first case the positive
derivative indicates a compensation of the positive error component by reducing the value of the joint
variable. If both factors are negative the negative derivative also indicates reducing the value of the
joint variable so as to compensate for the negative error component.
39 In this case both factors have opposite signs: If the derivative is negative it indicates increasing the
value of the joint variable to compensate for the positive error component, as well as a positive
derivative does to compensate for the negative error component.

Chapter 4. Static symbolic robot calibration based on genetic programming 72

4.5 Direct learning of joint correction models

increased. A possible situation is that the terms cancel each other resulting in a zero

measure. This means that a small correction (regardless whether positive or negative)

applied to joint j would not change the summed squared error ∆TpT∆Tp of the

pose. Hence the joint j would not have potential to compensate for the whole

positional error of that particular pose.

Using equation 4.8 the measure of the error compensation potential of the j th joint

on n data samples has been implemented as

 M j :=
P
i=1

n
mj(ò

i
N,P

i
C) (4.10)

which sums the absolute measures of each data sample for this particular joint. For

all six joints of the PUMA 761 the measure of the compensation potential over n data

samples can then be written as

 M :=
P
i=1

n ìììJT(g(òiN))∆Tpi
ììì (4.11)

with M being the vector that receives the measured values for each joint. Eventually,

the joint that corresponds to the element of M with the largest value is selected for

further evolutionary refinement of its correction model. (Note again, that the

superscripted i in both previous equations is an index and does not represent

exponentiation.)

4.5 Direct learning of joint correction models

An alternative approach to the evolution of joint correction models controlled by a

distal teacher (the forward model) is the direct learning of the joint correction

models. Direct learning means that not the performance index of the whole kinematic

model as with the distal result of learning is subject to minimisation, but the direct

error between nominal and calibrated (false target) joint configurations. Therefore in

the remainder of this work the procedure of direct learning of correction models will

also be referred to as direct joint error learning. Contrary to distal supervised learning

the calibrated target joint configurations are explicitly given. The calibration data set

containing nominal and calibrated joint configurations (òN, òC) is obtained using the

nominal inverse model from the nominal and corrected poses (PN,PC)

Chapter 4. Static symbolic robot calibration based on genetic programming 73

4.6 Summary

respectively40. An advantage of this approach as opposed to distal supervised

learning is a computationally more efficient evaluation since the global performance

index (equation 4.6) involving the evaluation of the whole DH model does not need

to be computed. Instead the evolution of the ith joint correction model is driven by its

raw fitness measure

 r(i) :=
P
k=1

n
òkC[i] à hi(ò

k
N[i])

ììì ììì (4.12)

being the summed absolute error between the targeted calibrated joint configuration

and the joint configuration computed by the correction function (equation 4.1) from

the corresponding nominal joint variable for n calibration samples (Note that k in

equation 4.12 is an index and no exponent). As this objective of minimisation is

decoupled from the global performance index of the whole model, the joint

correction models can be evolved independently for each joint. Since calibration data

(òN, òC) from inverting the nominal and corrected poses is provided for all joints

simultaneously, this property enables the parallel evolution of the joint correction

models in GP systems being implemented on distributed computers.

Principally, the calibration set-up illustrated in Figure 4-5 applies to this

calibration method too. However, the fitness evaluation within the populations needs

to be implemented as measuring the raw fitness described in equation 4.12 and data

preparation procedure involves the inverse transformation of the corrected poses PC

into calibrated joint configurations òC .

4.6 Summary

This chapter presented details of a general genetic programming method for static

inverse positional calibration of industrial robots. The basic idea of this approach is

to evolve symbolic joint correction models so as to compensate for positional error of

the end-effector of the robot when sent to offline generated poses. Two symbolic

calibration methods have been proposed which basically differ in the format of the

40 In this work only positional measurements were taken from the robot tool. The calibrated joint
configuration of an end-effector pose (3 DOF) is hence computed from the nominal orientation and
corrected position using the nominal inverse kinematic model. In case of full pose measurement (6
DOF) the calibrated joint configurations of a pose are obtained from the corrected orientation and
corrected position.

Chapter 4. Static symbolic robot calibration based on genetic programming 74

4.6 Summary

calibration (or training) data and in the implementation of the fitness evaluation. The

first method evolves (more specifically co-evolves) and evaluates the correction

models in context of a nominal kinematic forward model being a distal teacher. The

underlying concept of distal supervised learning being a general approach for

learning inverse models is used to establish joint correction functions, which model

the error of the nominal inverse kinematic model. Learning of these functions (more

specifically the correction models) is performed sequentially by implementing a co-

evolutionary scenario with the objective to minimise the performance index being a

measure of the total positional error of the robot end-effector. In the second method

the evolution of the correction models is performed by direct learning. Instead of

evaluating the impact of an individual correction model on the total positional error

of a kinematic model, the evolution is driven by the direct error between nominal and

calibrated joint configurations. The implementation of a nominal inverse kinematic

model is required to obtain the calibrated joint configurations from corrected training

poses. The advantage of the direct learning method is a more efficient evaluation of

the individual fitnesses, and a potential parallel (possibly distributed) implementation

of the evolution of correction models for each joint.

Chapter 5. Implementation of the evolutionary calibration system 75

5.1 GP implementation issues

Chapter 5

Implementation of the evolutionary
calibration system

This chapter presents software implementation details of the new symbolic

calibration concept developed in Chapter 4. Object oriented concepts have been

applied to design the calibration system and the relationships between its

components. First general issues for the design of the genetic programming system

are discussed. Then the main object structures, which constitute the calibration

system, are described.

5.1 GP implementation issues

An inherent property of evolutionary computation is multiple occurrence of

genotypic material41, which implies multiple and usually redundant evaluation. For

standard genetic programming this means that several equal trees, which occur in

different or within the same individuals, have to be traversed more than once. This is

necessary for programs in which the result of the evaluation depends on the context.

For example the control strategy of an artificial ant on the “Santa Fee Trial” is coded

as a tree of motion commands [49]. The execution of those commands moves the ant

41 Equal chromosome fragments may occur in individuals across the population. This is mainly due to
the crossover operator. In genetic programming equal trees particularly small trees are often generated
during population initialisation or by subtree mutation.

Chapter 5. Implementation of the evolutionary calibration system 76

5.1 GP implementation issues

relatively to its current position in the toroidal grid. Thus evaluating the same control

strategy in a different context results in different positions. However, in symbolic

regression as used in this work the evaluation of mathematical expressions with the

same arguments will always produce the same results. Hence a multiple evaluation of

equal subtrees is very inefficient. In order to avoid this inefficiency equal subtrees

could be shared as illustrated in Figure 5-1. The subtree is evaluated only once and

the result reused for the evaluation of all trees sharing this subtree

Figure 5-1: Ways of dealing with equal subtrees in genetic programming

In the GP implementation described in this chapter equal subtrees are shared

between individuals across the population enabling them to be evaluated in parallel.

The similarity between tree generation and tree evaluation in terms of beginning

from the leaf nodes up to the root node (bottom-up tree generation, depth-first

evaluation) has been exploited by storing the nodes in linear lists. The position of

each node in the list corresponds to the order they were created with the first created

node being on the bottom and the last node on the top of the list (Reverse Polish

Notation). Thus nodes implement a dual representation as being tree nodes and list

nodes as illustrated in Figure 5-2. Two lists are used to register the nodes of a

population: one for terminals and for non-terminals i.e. functions (Note that these

lists are not the terminal and non-terminal sets used for tree generation described in

cos

*

2 x

* 2 x

*

-

x

2 x

*

Standard GP trees

2 x

*

cos

* -
GP trees with shared substructures

Chapter 5. Implementation of the evolutionary calibration system 77

5.1 GP implementation issues

section 3.3.2). Terminals are kept in a separate list since they do not change their

value depending on other nodes. In order to evaluate a population it is necessary to

specify particular values for the variable(s) in the terminal list and to evaluate each

node in the non-terminal list sequentially bottom-up beginning from the first node

created up to the last. During the evaluation each node stores its evaluated result,

which can subsequently be accessed from other nodes that have been generated past

this node. Thus the results of previous evaluations are reused which avoids multiple

evaluations of shared subtrees.

Figure 5-2: Internal dual representation of a population: to support efficient
evaluation GP tree nodes are elements in a linear list arranged corresponding to
the order of their creation (last created node on top)

The evaluation result of each tree in the population can be taken from the

respective root node in the non-terminal list shown in Figure 5-2 (Note that the

logical structure of the trees has not been changed). In this way the whole population

is linearly evaluated avoiding inefficient multiple evaluation of common subtrees.

Moreover, linear evaluation is computationally much more efficient than recursively

traversing each individual tree in the population. However, compared to standard GP

implementing individual tree evaluation the maintenance of shared substructures as

explained above also involves a higher administrative overhead. A database of nodes

currently used in all trees throughout the population must be established to enable all

tree-producing mechanisms such as initial tree generation, mutation and crossover

operator to find previously generated nodes. A garbage collection mechanism for

example based on reference counting needs to be implemented to avoid unnecessary

 Terminals Non-terminals

cos

*

-

2

x

*

Direction of
evaluating the
population

 Tree 2

 Tree 1

Chapter 5. Implementation of the evolutionary calibration system 78

5.2 Design and implementation of the main calibration system components

evaluation of unused nodes. This mechanism keeps only those tree nodes in the

database, which are either root of a tree in the population, or which are referenced by

other trees.

The programming language chosen for this project was C++ [74] although LISP

was initially considered. However, C++ was eventually selected since it exhibits

better runtime performance and offers object oriented concepts, which permit a

modular description of the very complex program and data structures used for the

application of genetic programming in this work. In contrast to C++ the modelling

and implementation of shared structures and hence the simultaneous evaluation of all

individuals in a population is more complex using LISP.

5.2 Design and implementation of the main calibration
system components

This section describes implementation details of the evolutionary calibration

system developed in this work. This system is generally applicable to symbolically

generate correction models to calibrate any manipulator. Due to the complexity of

the whole software system only the main components (C++ classes) are listed and

their structure briefly described. Also, only the main declarations (predominantly

interfaces) relevant to explaining the functionality of the C++ classes are described.

Figure 5-3 depicts the dependencies and relationships of the C++- classes for the

main components based on the illustration of the basic calibration procedure in

Figure 4-5. This graph shows the inheritance, membership and relational information

about the system classes used in the calibration system. It also shows the hierarchical

structure of the calibration system, i.e. the decomposition of the main system into

sub-components which are themselves aggregated from less complex components.

References (implemented as pointers) between class instances (also known as

objects) are used to send messages to the referenced object (by calling a

corresponding method) to trigger a certain event (for instance from the calibration

system object to a gp_system object to start the breeding process). Figure 5-3 also

depicts the inheritance hierarchy (arrows point in direction of inheritance source) of

system classes, if applicable. Furthermore the system classes are graphically grouped

into different categories to illustrate their functionality and application context. The

Chapter 5. Implementation of the evolutionary calibration system 79

5.2 Design and implementation of the main calibration system components

evolutionary calibration system is mainly divided into classes, which implement the

tree representation, the genetic programming mechanisms and the system classes

controlling the calibration.

Figure 5-3: Combined dependency digraph of main C++ classes of the
evolutionary calibration system

5.2.1 Tree implementation

The dual representation of GP tree / linear list shown in Figure 5-2 is implemented

by four classes. As can be seen in Figure 5-3, the only interface class for the genetic

programming algorithm to operate on this representation is the core class Node (see

Table 5-1). This class implements a GP tree node including the evaluation algorithm

described in section 5.1. The functionality’s of the other three tree implementation

classes are entirely transparent for the GP algorithm and are hence not described in

detail. The class nlist_type inherited by Node implements an element of a double-

chained linear list with the required list manipulation methods (insertion, deletion).

 Has instance(s) of
 Refers to object(s) of
 Inherits from

Tree implementation

nlist_type

Node

reference_type

node_manager_type

GP classes

Calibration system
calibration_system

gp_system

kinematic_type_with_derivative

kinematic_type gp_robot_chromosome gp_resource

gp_i_set
h_matrix

Chapter 5. Implementation of the evolutionary calibration system 80

5.2 Design and implementation of the main calibration system components

Hence each tree node is at the same time an element in a linear list. This

implementation establishes the dual representation illustrated in Figure 5-2. The class

nlist_type itself inherits the class reference_type, which provides a garbage collection

mechanism based on reference counting as described in section 5.1. In order to

establish shared substructures (in the case of equal subtrees) previously created equal

nodes need to be found by the tree producing mechanisms (initial tree generating,

mutation and crossover). This search is performed by the class node_manager_type,

which implements a database to register nodes in two lists as described in section 5.1

and depicted in Figure 5-2. The node database and therefore the garbage collection is

transparently operated by the class Node.

Class Node

 Data structure

 Constant Value of the node as string (only for variables, numbers and
unary functions (SIN, COS etc.); otherwise the value is
NULL.)

 Symbol Node descriptor. To identify the kind of the node: Possible
values: PLUS, MINUS, MUL, PDIV, PLOG; and in
conjunction with the value of constant: VARIABLE,
NUMBER and FUNCTION.

 node_list Pointer to the node database
 Lnext Pointer to left subtree
 Rnext Pointer to right subtree

 Methods

 Node(name,sym,l,r,
nl)

Constructor: initialises data structure: constant=name,
symbol=sym, lnext=l, rnext=r, node_list=
nl, and registers the node in database node_list.

 ~Node() Destructor: releases used resources and deletes the instance
from the node database.

 get_node(name,sym,
l,r)

Retrieves a node. First the database node_list is searched
for a node with a data structure corresponding to the
parameter values. If no node is found it will be created. In that
way the node database is operated entirely transparently. This
is the only method used to generate tree nodes.

 output_infix(

stream)

Outputs the expression rooted at the current node into the file
stream.

 calculate_list(); Bottom up evaluation (as illustrated in Figure 5-2) of the
entire expression stored in the node database.

Table 5-1: Structure of class Node

Chapter 5. Implementation of the evolutionary calibration system 81

5.2 Design and implementation of the main calibration system components

5.2.2 Calibration system structures

The actual genetic programming mechanisms are implemented in class gp_system

(Table 5-7), which encapsulates an instance of the class gp_resource (see Figure

5-3). The class gp_resource (Table 5-2) provides the terminal and function set (of

type gp_i_set) as well as the implementation of basic tree generation (GROW,

FULL) and validation (maximum tree depth etc.) methods used by the genetic

programming algorithm.

Class gp_resource

 Data structure

 node_db Pointer to node database of the population
 Terminals Set of terminals
 Functions Set of functions

 Methods

 gp_resource() Constructor, creates empty node database and initialises
terminal and function set.

 create_tree(d,

fulldepth)

Creates trees of depth d; the fulldepth parameter determines
the tree generation method:
fulldepth==false: GROW method
fulldepth==true: FULL method

 valid_tree(node) Checks if node fulfils tree generation constraints (minimal and
maximal tree depth).

 tree_depth(node) Returns the depth of the tree rooted at node.

Table 5-2: Structure of class gp_resource

Chapter 5. Implementation of the evolutionary calibration system 82

5.2 Design and implementation of the main calibration system components

As shown in Figure 5-3 the class gp_system also refers to an instance of class

kinematic_type (Table 5-5), which implements a general forward kinematic model

(geometric) required for evaluating correction models evolved using distal

supervised learning. The kinematic model equations are represented as a

homogenous matrix of symbolic expressions (GP trees), which is implemented in

class h_matrix (Table 5-3). For this representation of the model equations the class

Node has been reused due to its efficient evaluation mechanism (calculate_list()

method in Table 5-1). The model equations have been established from Denavit-

Hartenberg (DH) specifications stored in string matrices (see Table 5-4). The

elements of such a string matrix are strings representing the corresponding terms of a

DH matrix. In order to build a kinematic model DH of a particular robot the string

matrices for all links are parsed42 into matrices of symbolic expressions, which are

symbolically multiplied according to their order. By symbolic multiplication of two

trees is meant the creation of a new node representing multiplication with the two

factor trees being child (or argument) trees. Symbolic addition is performed

accordingly. Both, symbolic multiplication and addition are then used to implement

the matrix multiplication operation in method r_multiplication(…) (Table 5-3).

Class h_matrix

 Data structure

 matrix 3×4 matrix of Node pointers, represents the kinematic
equations in a homogenous matrix.

 node_set Pointer to the node set from which the equations in matrix are
constructed.

 Methods

 h_matrix(strm,set) Constructor: Creates matrix of symbolic expressions by
parsing the string matrix strm (see Table 5-4 for example) into
member matrix. The variable node_set is initialised with set.

 ~h_matrix() Destructor: Deletes the symbolic expressions in matrix.
 r_multiplication(

strm)
Parses the string matrix strm (example matrix Table 5-4) and
right-multiplies the result symbolically with the current
expressions in matrix and stores the product in matrix. This
method is used to multiply the single DH matrices when
building the overall kinematic robot model.

 add_tool(t) Adds the translation t of the tool tip relative to the tool frame.

Table 5-3: Structure of class h_matrix

42 Expression parsing has been implemented using recursive descent. See [3] for a description of
parsing principles.

Chapter 5. Implementation of the evolutionary calibration system 83

5.2 Design and implementation of the main calibration system components

String_matrix_type dh1=
{{"cos(theta1)","-cos(PI/2)*sin(theta1)","sin(PI/2)*sin(theta1)" , "0"},
 {"sin(theta1)","cos(PI/2)*cos(theta1)" ,"-sin(PI/2)*cos(theta1)", "0"},
 {"0" ,"sin(PI/2)" ,"cos(PI/2)" , "0"}
}

Table 5-4: An example of a string matrix: DH matrix for the first link of the
PUMA 761

An instance of class kinematic_type is initialised with a sequence (array) of DH

matrices represented as string matrices (see Table 5-4). All string matrices (See also

source code at page 161 in the appendix) are parsed into matrices of GP trees and,

corresponding to their order, subsequently multiplied together (calling method

r_multiplication(…) of member matrix for each string matrix) to constitute the

overall kinematic model (stored in matrix) of the particular robot. In this way the

kinematic model of any manipulator can easily be established from its DH

description.

Class kinematic_type

 Data structure

 matrix Matrix containing the kinematic equations as symbolic
expressions.

 joints List of direct accessible nodes of the joint variables (needed
for assigning the joint values when evaluating the kinematic
model).

 Methods

 kinematic_type(nod
e_db,string_matric
es[],n,tool);

Constructor: Initialises matrix with the kinematic model from
DH description stored in field string_matrices[] of length n
using node database node_db. The tool parameter determines
the dimension of the tool used for calibration. The member
variable joints is initialised with the nodes representing the
joint variables.

 ~kinematic_type() Destructor: Destroys the joint variable list joints and the trees
stored in matrix.

 compute_forward_ki
nematic(dataset[],
n)

For each of the n joint configurations in dataset[] the
corresponding end-effector position vector is computed and
assigned to the particular dataset sample.

 compute_position_e
rror(dataset[],n)

Returns the performance index (equation 4.6 on page 63) of n
samples of calibration data in dataset[] (joint configurations
and corresponding target position).

Table 5-5: Structure of class kinematic_type

The genetic programming algorithm implemented by class gp_system (Table 5-7)

operates on a population of instances of the class gp_robot_chromosome (Table 5-6)

Chapter 5. Implementation of the evolutionary calibration system 84

5.2 Design and implementation of the main calibration system components

which encapsulates a single joint correction model as a tree constructed from

instances of the class Node. Furthermore this class implements mutation and

crossover operators, which are applied to the correction model when undergoing

genetic modification.

Class gp_robot_chromosome

 Data structure

 theta_index Indicates the number of the joint the correction model is
applied to. Since each instance of this class implements the
correction model of one particular joint, this information is
required for the evaluation mechanism.

 data[] Set of calibration samples (joint configurations and target end-
effector positions (see section 4.3).

 resource Pointer to gp_resource instance that defines the terminal and
function sets linked to the population this particular
chromosome belongs to. This information is particularly
needed for mutation.

 joint Root of the GP tree representing the correction model.

 Methods

 gp_robot_chromosom
e(resource,max_dep
th,full_depth,j_in
dex)

Constructor: Links the instance to its joint j_index and to its
terminal and function set in resource (type gp_resource) and
prompts resource to create a tree using the parameters
max_depth and full_depth (see Table 5-2).

 ~gp_robot_chromoso
me()

Destructor: Destroys the GP tree rooted at the node stored in
joint.

 mutation() Performs mutation on the tree rooted at the node stored in
joint according to globally specified parameters (see Table
5-8).

 crossover(c) Performs crossover with chromosome c.
 apply_corrections(

dataset[],n)
Core method: Applies correction to each of the n data samples
in dataset[]. Corrected in each sample will be the value of the
joint specified by the member variable theta_index. This
method is used after calibration to correct offline generated
poses.

 equals(c) Returns true if this instance is equal to chromosome c.
Otherwise it returns false. This method is used during the
initialisation of the population to prevent the emergence of
equal chromosomes.

 evaluate(n,km) Returns the fitness value, which is the performance index of n
samples of the calibration data stored in member variable
data[] using the kinematic model km (type kinematic_type).

 evaluate_populatio
n(p[],pn,ds[],n,km
);

Parallel evaluation of all pn chromosomes in population p[]
using the kinematic model km on n calibration data samples
stored in ds[].

Table 5-6: Structure of class gp_robot_chromosome

Chapter 5. Implementation of the evolutionary calibration system 85

5.2 Design and implementation of the main calibration system components

The class gp_system (Table 5-7) encapsulates and implements the basic genetic

programming algorithm operating on a population of correction models. This

includes control over population administration (i.e. initialisation, evaluation) and the

actual breeding mechanism based on tournament selection. Each instance of this

class within the calibration system (implemented by class calibration_system shown

in Table 5-10) evolves a correction model for one particular joint.

Class gp_system

 Data structure

 gp_set

Function and terminal set linked to this particular genetic
programming system.

 kinematic_model List of direct accessible nodes of the joint variables (needed
for assigning the joint values when evaluating the kinematic
model).

 population Field of chromosomes of type robot_gp_chromosome
representing the population.

 new_population Population of the offspring chromosomes.
 theta_index Joint index linked to this GP system.
 kinematic_model Kinematic model of type kinematic_type required for

evaluating the correction models (in distal supervised
learning).

 Methods

 gp_system(ds[],n,k
m,ti);

Constructor: Links the GP system to the joint denoted by ti,
initialises the population with chromosomes, n calibration data
samples in ds[], and a reference to the kinematic model (of
class kinematic_type).

 ~gp_system() Destructor: Destroys the population of correction models.
 init_half_and_half

()
Initialises the population using the RAMPED HALF & HALF
method (section 3.3.3).

 already_in_populat
ion(ch,n);

Scans the first n chromosomes in member population for
occurrences of chromosome ch and returns true if one was
found. Otherwise the function returns false. This method is
used for the initialisation of the population to prevent multiple
occurrences of chromosomes.

 breed_until_improv
ement(ds[],n,f,g,
max_gen)

Breeds new populations until the performance index on n
calibration data samples in ds[] could be improved (see also
Figure 4-6) or the current generation g exceeds the maximum
number max_gen of generations. Status information (fittest
individual, current generation) will be logged into file f.

 correct(ds[],n) Calls the method apply_correction(ds[],n) (see Table 5-6)
from the best correction model in the population.

 write_statistic(f) Stores the best performing correction model in file f.

Table 5-7: Structure of class gp_system

Chapter 5. Implementation of the evolutionary calibration system 86

5.2 Design and implementation of the main calibration system components

The run of the genetic programming algorithms in the individual instances of class

gp_system is globally controlled by the parameters listed in Table 5-8:

GP Parameter Description

POPULATION_SIZE Number of chromosomes in a population
NUMBER_GENERATIONS Number of populations initially generated. This is

a parameter, that can be increased interactivly by
the user in order to continue the evolution.

TOURNAMENT_SIZE Number of chromosomes competing in the
tournament .

INITIAL_MAX_TREE_DEPTH1 Initialisation of a population is performed using
the RAMPED HALF&HALF method. This
parameter describes the maximal tree depth at the
beginning of the ramp.

INITIAL_MAX_TREE_DEPTH2 Maximal tree depth at the end of the ramp
MAX_TREE_DEPTH All tree producing operators (initial tree

generations, crossover, mutation) are constrained
not to generate a tree with a larger depth than
described with this parameter.

MIN_TREE_DEPTH The tree generation of the GROW method and
mutation operator is constraint to produce trees of
a minimum depth in order to prevent the
populations from occurrences of short trees or
terminals which may not have the potential to
sufficiently model the joint error.

INVALID_ATTEMPTS This parameter controls the number of attempts to
create a valid tree by crossover and mutation. If
this number is exceeded the respective parent(s)
will be reproduced for the next generation.

CROSSOVER_RATE Probability of applying crossover.
MUTATION_RATE Probability of applying mutation.
TERMINAL_CROSSOVER_RATE This parameter determines the probability of

terminals being crossover points (A small value
characterises a preference for subtree crossover
which has the potential to introduce larger
changes to the offspring).

TERMINAL_MUTATION_RATE Probability of mutating terminal nodes.
SHRINK_MUTATION_RATE The probability of mutating trees by replacing

selected subtrees with randomly generated trees
of lower depth.

Table 5-8 : GP parameters used by the calibration system

The overall calibration system is implemented by class calibration_system (Table

5-10), which encapsulates 6 autonomous instances of class gp_system (one for each

joint of the PUMA 761 robot (see also Figure 4-5)) and an instance of class

kinematic_type_with_derivative (Table 5-9). The class calibration_system also

implements the joint selection mechanism used by the distal supervised learning

Chapter 5. Implementation of the evolutionary calibration system 87

5.2 Design and implementation of the main calibration system components

method described in section 4.4.2. The required measure of the compensation

potential of each joint (equation 4.11) is implemented by the class

kinematic_type_with_derivative.

Class kinematic_type_with_derivative

 Data structure

 der1,der2,der3,
der4,der5,der6

Homogenous matrices of type h_matrix (node matrix)
representing the derivatives of the kinematic model matrix
with respect to joint 1-6.

 Methods

 kinematic_type_wit
h_derivative(node_
db,string_matrices
[],n,tool)

Constructor: Parameters are passed on to the constructor of the
inherited class kinematic_type (same parameter list) to
initialise the kinematic model used throughout the calibration
system.
Initialises the matrices der1 - der6 with the derivatives the
kinematic equations according equation 5.1. These matrices
are established by reusing the symbolic multiplication
mechanism inherited from class kinematic_type. The
parameter tool expresses the translation of the tool end point
to the origin of the tool frame.

 get_joint_with_mos
t_p(ds[],n,f);

Returns the number of the joint with the most potential for
error compensation (described in section 4.4.2) based on n
data samples in ds[]. A data sample in ds[] consist of the
currently evolved joint and corrected end-effector position
(target). The result of the computation is logged into file f.

Table 5-9: Structure of class kinematic_type_with_derivative

The necessary derivatives of the kinematic model equations with respect to each

joint are obtained from

 D j =
ð Q

i=1

6
Kij

ñ
P with Kij = ∂ò j

∂Ai ; i=j

Ai ; else

(
 (5.1)

where Dj is the matrix derivation of the homogenous overall kinematic model matrix

with respect the jth joint, where P is the 4×4 tool transformation matrix and Ai the

DH matrix of the ith link (see also appendix section A.2). Computation of the model

derivatives according to equation 5.1 is performed symbolically by class

kinematic_type_with_derivative (Table 5-9). That is the mechanisms inherited (see

class graph in Figure 5-3) from class kinematic_type (Table 5-5) for constructing a

kinematic model from an array of string matrices have been reused to initialise the

member matrices der1-der6 (Table 5-9). For each joint j the required matrix

Chapter 5. Implementation of the evolutionary calibration system 88

5.2 Design and implementation of the main calibration system components

derivative ∂òj

∂A i = ∂òj

∂R i

∂òj

∂X i

0T 0

" #
 (Ri is the 3×3 rotation matrix and Xi the 3×1 position

vector of the ith link) in equation 5.1 is provided by a string matrix (see Table 5-4).

The elements of such a string matrix are the derivatives (with respect to òj) of the

elements of the ith DH matrix represented as strings. The model derivative Dj is then

generated according to equation 5.1 using the model generation mechanisms

(equation parsing and symbolic matrix multiplication) inherited from class

kinematic_type. Again, this design enables an easy adaptation of the calibration

system to robots with different kinematics, as only the kinematic parameters in the

string matrices (see Table 5-4 for example) need to be textually edited prior to

calibration.

Class calibration_system

 Data structure

 gp1,gp2,gp3,gp4,
gp5,gp6

6 instances of class gp_system, one for each joint.

 der Instance of class kinematic_type_with_derivative.

 Methods

 Calibration_system
(ds[],n,km)

Constructor: Initialises the six genetic programming systems
for each joint. Parameters ds[], n und km are passed on to the
constructor method of gp_system for each instance (see Table
5-7).

 ga(ds[],n,f) Main method: calling this method starts the calibration
procedure. Parameters are the n calibration data samples in
ds[] and the descriptor for the logfile f, which receives
information about the calibration process. The implementation
essentially corresponds to the algorithm in Figure 4-6.

 correct(ds[],n) When calibration has been performed, correction is applied by
calling this method for n joint configurations in data set ds[].
This method subsequently calls the correct() method of each
of the six GP systems to correct the respective joint value in
each of the n data samples (provided a correction model has
been evolved).

 write_statistic(f) Calls the write_statistic() of all 6 GP system instances.

Table 5-10: Structure of class calibration_system

Using the C++ class definitions described in this section the entire calibration

process is performed by the compact C++ procedure shown in Table 5-11.

First, a kinematic model object (type kinematic_type) is created, which will be

used for the preparation of calibration data and the evaluation of correction models

Chapter 5. Implementation of the evolutionary calibration system 89

5.2 Design and implementation of the main calibration system components

throughout the calibration using distal supervised learning. The parameter

PUMA_parametric contains an array of string matrices (see Table 5-4), which

describe the 6 DH matrices of the PUMA 761 industrial robot used for the calibration

experiments in this work. The parameter tool describes the dimension of the tool

used as being the translation of the tool endpoint from the origin of the tool frame.

Having initialised the kinematic model the calibration data set is prepared using

the algorithm shown in Figure 4-3 and a file receiving information about calibration

process (e.g. joint selection status and performance index) and results is opened.

Subsequently, the main calibration system (c_system) is instantiated.

void main_gp(Node node_db)
{
 kinematic_type kinematic_model(node_db,PUMA_parametric,6,tool);
 dataset_type data[100];
 int data_samples=prepare_calibration_data(data,&kinematic_model);
 if (data_samples==-1) throw int(0);
 //if data preparation was in error throw exception
 file_manager logfile(“gp_logfile.txt","w+");
 calibration_system c_system(data,data_samples,kinematic_model);
 c_system.ga(data,data_samples,logfile.file);
 alter_joint_angles("t1.v2","updated_t1.v2",&c_system);
 alter_joint_angles("t2.v2","updated_t2.v2",&c_system);
 c_system.write_statistic(logfile.file);
}

Table 5-11: C++ implementation of the calibration procedure

The calibration is started by calling the ga() method of the calibration system

(c_system) with the calibration data set, the number of data samples in the data set

and the log file descriptor being the arguments. When the calibration has succeeded

the evolved joint correction models within the GP systems in c_system are used to

alter joint configurations stored in offline generated robot program files. For this the

procedure alter_joint_angles is called for two VAL II files (t1.v2 and t2.v2 in the

example) to apply corrections to the joint configurations stored in these files. The

corrected joint configurations are then stored in the files updated_t1.v2 and

updated_t2.v2 respectively, which are eventually uploaded into the robot controller.

Finally, the results of the calibration procedure namely the evolved correction

models are stored in the file logfile.

Chapter 5. Implementation of the evolutionary calibration system 90

5.3 Summary

5.3 Summary

This chapter described software design and implementation issues of the

evolutionary calibration method presented in Chapter 4. An evolutionary calibration

software system has been developed, which is generally applicable to symbolically

generate joint corrections to calibrate any manipulator. The structure of this

calibration system and its main components has been outlined in this chapter. The

representation of symbolic expressions is based on shared substructures implemented

to improve the runtime performance of the calibration system. The application of this

software to the positional calibration of a PUMA 761 manipulator is described in

Chapter 6.

Chapter 6. Results from calibration experiments on a PUMA 761 manipulator 91

6.1 Calibration set-up

Chapter 6

Results from calibration experiments
on a PUMA 761 manipulator

This chapter presents the experimental results of the evolutionary calibration

method described in Chapter 4. The experiments were carried out on a 6 DOF

Unimation PUMA 761 industrial robot. First the general context is explained i.e. the

data measurement procedure, GP system set-up etc. Symbolic calibration is then

performed on a set of measured data using both variants of the genetic programming

method and the resulting joint correction models are presented.

6.1 Calibration set-up

First a calibration area within the workspace of the robot has to be established. In

the experiments described in this chapter a calibration area of the form of a cuboid

has been defined the edges of which are parallel to the axes of robot base frame. The

dimension of this cuboid was defined to be (x, y, z) = (844 mm, 582 mm, 1151

mm). The location of its corner, which is the closest to the origin of the robot base

frame, has been defined in robot base frame co-ordinates as (x, y, z) = (432 mm,

490 mm, -675 mm). The actual robot tool used for the experiments is displayed in

Figure 6-1 and has been accurately measured using a 3 co-ordinate measurement

machine. The position of the tool endpoint is described relative to the tool frame as

the translation (∆x,∆y,∆z) = (150.25 mm, 1.63 mm, 55.69 mm). As generally

Chapter 6. Results from calibration experiments on a PUMA 761 manipulator 92

6.1 Calibration set-up

stated for model-based calibration, all kinematic parameters may be identified using

only position measurements if the measured points are not located along the tool axis

[25]. This requirement is met by the tool shown in Figure 6-1 and also applies to the

symbolic calibration method described in this work if correction models are to be

generated for all joints. If a tool was used for which the endpoints were located along

the local tool axis only (x = 0, y = 0) no error could have been attributed to the last

joint. In that case the partial derivatives of all components in the position vector with

respect to joint 6 (used in the error Jacobian in equation 4.7) were zero resulting in a

zero measure for all calibration poses. Hence no correction model would be

generated for this joint.

Figure 6-1: Robot tool used for experiments

6.1.1 Calibration data

For the calibration experiment a data sample set consisting of thirty 30 random

poses within that the calibration area defined in section 6.1 was generated. In order to

guarantee observability of the error in each joint it was made sure that all joints were

involved when moving through these poses43. At a speed of 16% (of full speed, see

equipment manual [75]) the robot was sent to these calibration poses and

measurements of the actual positions of the tool endpoint were taken using the

43 However, the full possible range of each joint was not considered since the calibration was
performed local to the defined calibration area and restrictions in the tool orientation were imposed by
the Robotrak measurement system.

Chapter 6. Results from calibration experiments on a PUMA 761 manipulator 93

6.1 Calibration set-up

Robotrak measurement device (see section A.1). The corresponding joint

configurations of these poses were obtained directly from the VAL II system during

the measurement procedure. Therefore there is no need to implement a nominal

inverse kinematic function to convert the poses into joint configurations required for

calibration. Each time the robot settles for a pose the corresponding joint

configuration can be obtained by issuing the VAL II command HERE #p which

stores the current pose as a precision point (6 joint angles) in variable p. The small

program in Figure 6-2 was used to drive the robot to the calibration poses and to

obtain the joint angles, while Robotrak took the positional measurements. Storing

this program after its execution into a file automatically attaches all used variables

and therewith the array #cp[] of generated joint configurations [72].

 .PROGRAM t1
 FOR l = 1 TO 30
 MOVE mcp[l]
 DELAY 3
 HERE #cp[l]
 END
 .END

Figure 6-2: VAL II program used to obtain measurements and joint
configurations

Following the measurements of the calibration poses the three local frame points

needed for the data transformation (see section A.1.1) were manually taught and

subsequently measured by Robotrak.

Figure 6-3: Positional error of the robot tool end point in X, Y and Z on the
calibration data set prior to calibration

-3.5

-2.5

-1.5

-0.5

0.5

1.5

2.5

0 5 10 15 20 25 30

Data Samples

To
ol

 E
rro

r (
m

m
)

X
Y
Z

Chapter 6. Results from calibration experiments on a PUMA 761 manipulator 94

6.1 Calibration set-up

The positional error of the robot tool end point in X, Y and Z direction at the 30

calibration poses prior to calibration is shown in Figure 6-3. The absolute tool error

(or tool deviation) being ∆x2 +∆y2 +∆z2
p

 at these poses is shown in Figure 6-4.

Figure 6-4: Absolute positional error of robot tool end point on the calibration
data set prior to calibration

6.1.2 Validation data

In order to evaluate the generalisation capabilities of the evolved joint correction

models another set of 30 random end-effector poses has been generated within the

calibration area defined in section 6.1. The measured positional error of the tool

endpoint at these poses prior to calibration is illustrated in Figure 6-5.

Figure 6-5: Positional error of the robot tool end point in X, Y and Z on the
validation data set prior to calibration

0

1

2

3

4

5

0 5 10 15 20 25 30

Data Samples

Ab
so

lu
te

 T
oo

l E
rro

r (
m

m
)

-4

-3

-2

-1

0

1

2

0 5 10 15 20 25 30

Data Samples

To
ol

 E
rro

r (
m

m
)

X
Y
Z

Chapter 6. Results from calibration experiments on a PUMA 761 manipulator 95

6.2 Experimental symbolic calibration using Distal Supervised Learning

Figure 6-6: Absolute positional error of robot tool end point on the validation
data set prior to calibration

6.2 Experimental symbolic calibration using Distal
Supervised Learning

In this section the results are presented obtained from a symbolic calibration

experiment using the distal supervised learning approach described in section 4.3.

The GP system instances within the evolutionary calibration system (see Figure 4-5

and Figure 5-3) implement the generational evolutionary algorithm and tournament

selection with elitism. The genetic programming parameters, which have been used

in the experiments, are shown in Table 6-1 (see also Table 5-8 for description).

GP Parameter Value

POPULATION_SIZE 300
NUMBER_GENERATIONS 1000
TOURNAMENT_SIZE 5
INITIAL_MAX_TREE_DEPTH1 3
INITIAL_MAX_TREE_DEPTH2 5
MAX_TREE_DEPTH 9
MIN_TREE_DEPTH 3
INVALID_ATTEMPTS 21
CROSSOVER_RATE 0.8
MUTATION_RATE 0.2
TERMINAL_CROSSOVER_RATE 0.2
TERMINAL_MUTATION_RATE 0.3
SHRINK_MUTATION_RATE 0.2

Table 6-1: GP parameters used in the calibration experiment using distal
supervised learning

0

1

2

3

4

5

0 5 10 15 20 25 30

Data Samples

Ab
so

lu
te

 T
oo

l E
rro

r (
m

m
)

Chapter 6. Results from calibration experiments on a PUMA 761 manipulator 96

6.2 Experimental symbolic calibration using Distal Supervised Learning

The terminal set T and the non-terminal set F were defined as:

T = {ò,<}

F = {+ ,à , ã ,%, SIN,COS, SIGN, SQRTp}

with ò being the joint variable, < ∈ [0, 1] a random ephemeral constant, with

addition, subtraction, multiplication, the protected division % , sine, cosine, the sign

function and the protected square root (see section 3.3.1).

6.2.1 The calibration process

The process of evolving joint correction models was limited to 1000 generations

(see other parameters in Table 6-1), the computation of which took about 15 minutes

on a PC with an Intel Celeron™ processor running at 500Mhz (The time required to

complete a calibration varies between different trials due to different structural

complexity of the evolved expressions). The reduction of the performance index

(equation 4.6) as being the fitness measure during the entire evolutionary process is

shown in Figure 6-7. This figure also illustrates the discontinuity of the evolutionary

progress. By evolving more accurate correction models the algorithm rapidly reduces

the performance index within the first 50 generations followed by a long phase with

minor improvements, and from generation 815 with a further significant reduction.

Figure 6-7: Performance index of the kinematic model during the evolution of
the joint correction models

The individual components of the performance index during the entire

evolutionary process are shown in Figure 6-8 documenting the contribution of the

summed squared error in X, Y and Z direction over all data samples. The number of

10

30

50

70

90

110

0 200 400 600 800 1000

Generations

Pe
rfo

rm
an

ce
 In

de
x

Chapter 6. Results from calibration experiments on a PUMA 761 manipulator 97

6.2 Experimental symbolic calibration using Distal Supervised Learning

a joint for which a correction model is being evolved at a particular generation is

shown in Figure 6-9. The selection of a currently evolved joint correction model

during the evolution is based on the current error correction potential of the joints

shown in Figure 6-10 and Figure 6-11. It can be seen from these figures that rapid

improvements of the performance index occur particularly after the algorithm

switched to another joint to proceed refining its correction model.

Figure 6-8: Components of the performance index (summed squared error in X,
Y and Z between target pose and evolved pose over all 30 data samples) during
the evolution of the joint correction models

Figure 6-9: Joint selection performed by the calibration system during the
evolution

Figure 6-9 shows the behaviour of the joint selection mechanism (see also section

4.4.2) used by the calibration system and the generations spent to evolve correction

models for particular joints. The selection of a particular joint, for which a correction

1

2

3

4

5

6

0 200 400 600 800 1000

Generations

Jo
in

t n
um

be
r

0

2 0

4 0

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0

G e n e ra t io n s

su
m

m
ed

 s
qu

ar
ed

 e
rro

r (
m

m
2)

X
Y
Z

Chapter 6. Results from calibration experiments on a PUMA 761 manipulator 98

6.2 Experimental symbolic calibration using Distal Supervised Learning

model is to be evolved, is based on the current error correction potential (see

equation 4.11) shown in Figure 6-10 and Figure 6-11. As it can be seen from these

figures, only the joints 1-3 have been selected during the evolution. This suggests

that based on the particular calibration poses used in this experiment and by

neglecting the small changes in tool orientation, the positional error of the robot tool

end point could be reduced by evolving correction models for joint 1-3 only.

Figure 6-10: Error correction potential of joint 1-3 based on equation 4.11
during the evolution of correction models

Figure 6-11: Error correction potential of joint 4-6 based on equation 4.11
during the evolution of correction models

5

1 0

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0

G e n e r a t io n s

Er
ro

r c
om

pe
ns

at
io

n
po

te
nt

ia
l (

%
)

J o in t 4
J o in t 5
J o in t 6

1 5

2 5

3 5

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0

G e n e ra t io n s

Er
ro

r c
om

pe
ns

at
io

n
po

te
nt

ia
l (

%
)

J o in t 1
J o in t 2
J o in t 3

Chapter 6. Results from calibration experiments on a PUMA 761 manipulator 99

6.2 Experimental symbolic calibration using Distal Supervised Learning

6.2.2 Calibration results

In this section the results of correcting the positional error of the robot tool

endpoint by the evolved joint correction models are documented. Figure 6-12

graphically depicts the absolute error of the tool endpoint on the calibration data set

prior to calibration and using the correction models for joint 1-3 (see Table 6-2).

Figure 6-12: Comparison of the absolute positional error of the robot tool end
point on the calibration data set prior and after calibration

The error reduction property of the evolved correction models on poses not

included in the calibration is illustrated in Figure 6-13. This figure shows the

reduction of the absolute positional error of the poses from the validation data set in

comparison to the uncalibrated manipulator.

Figure 6-13: Comparison of the absolute positional error of the robot tool end
point on the validation data set prior and after calibration

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

0 5 10 15 20 25 30

Data Sam ples

Ab
so

lu
te

 T
oo

l E
rro

r (
m

m
)

p rior to calibration
after calibration

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

0 5 10 15 20 25 30

Data Samples

Ab
so

lu
te

 T
oo

l E
rro

r (
m

m
)

prior to calibration
after calibration

Chapter 6. Results from calibration experiments on a PUMA 761 manipulator 100

6.2 Experimental symbolic calibration using Distal Supervised Learning

Joint

Evolved symbolic expression

1 (SIGN(COS((0.05885035248878445%theta*COS(0.0585776238288522))-theta%COS
(SIN(0.0585776238288522))))*COS(COS((COS(theta) %theta*theta%theta)-theta%
COS(0.2788446302682577*theta)))*(COS (theta)*COS(SIN(0.05852710043641468)
)*0.9934800561540573-COS (theta))%(COS(COS(COS(theta)-0.2787233039338359
*theta-theta% (0.07754042176580096%0.6930728629413739))) %COS(COS((COS
(0.9036369823297831)%theta*COS(0.9041817529831843)%theta)))))

2 SIN((COS(theta)*(0.0004272591326639607%theta)%0.5609912411877804))
3 (((0.9522924588763085-0.7845088045899838%0.8250679036835841) *COS(SIN

((SIGN(0.8828394421216468)%SIN(theta)*0.1264239631336405))))%(((SIN(theta)*th
eta*0.1264239631336405)%(0.391308328501236%SIN(theta))+theta+(0.3767509994
811853*0.3541520584734641)%(0.1264239631336405%SIN(theta)-(theta-
0.271553697317423)))*0.1264239631336405))%(SIN(0.6908403881954406)*(SIN(SI
N(0.5986205633716849)%SIN(theta)-theta)+SIN(SIN(0.6535240180669576))+ SIN(
theta)+theta+SIN(theta)%0.3541520584734641))

Table 6-2: Evolved symbolic expressions of joint correction models for joint 1-3
established using distal supervised learning

In Table 6-2 the joint correction models represented as symbolic expressions

generated by the calibration system using distal supervised learning are listed. The

results from the calibration procedure (the performance index reduction of the

calibration model during the evolution) and the actual positional measurements taken

from the robot tool prior and after calibration are summarised in Table 6-3.

 Prior to calibration After calibration

Performance index (on calibration
data)

106.203676 21.185473

Mean positional tool end point error on
calibration data set (mm)

1.730961 0.776642

Mean positional tool end point error on
validation data set (mm)

1.850646 0.770033

Table 6-3: Calibration results using the correction models (Table 6-2) evolved
by distal supervised learning

Figure 6-14 shows the graphs of the evolved correction models Table 6-2 across

the calibration range (limited by the calibration area) of their respective joints. It

illustrates the quality of the symbolic expressions in modelling the targeted

correction values for the sets of calibration and validation data. The reader may recall

that these target values of the calibration data set were not explicitly provided in this

method. Instead the distal performance of the kinematic model including all three

correction models has driven the evolution (see section 4.3). Particularly interesting

is the graph of the correction model evolved for joint three. The joint values

Chapter 6. Results from calibration experiments on a PUMA 761 manipulator 101

6.3 Experimental direct learning of joint correction models

computed by VAL II from the nominal (used for the calibration) and corrected end-

effector positions are expressed as positive numbers for quadrant 1-2 and as negative

numbers 3-4. As the joint values of the calibration data set are located on both sides

of the transition point from the second to the third quadrant, the calibration was

performed for two separate intervals [à ù . . .a] and [b. . .ù] . In the interval [a. . .b] ,

which was not included in the calibration, the correction model evolved in this

particular experiment shows undesired behaviour by starting to oscillate and to

produce large potentially inappropriate corrections.

Figure 6-14: Evolved correction models for joint 1-3 plotted across the
respective joint range along with calibrated joint angles (implicit targets) of the
calibration set (boxes) and validation set (diamonds)

6.3 Experimental direct learning of joint correction
models

As outlined in section 4.5 the second symbolic calibration method evolves the

correction models for each joint independently based on the local error between

nominal and calibrated joint configurations (see equation 4.12 on page 73). To

implement this fitness measure the fitness evaluation (method evaluate(…) of class

gp_robot_chromosome described in Table 5-6) has been appropriately adjusted. The

Chapter 6. Results from calibration experiments on a PUMA 761 manipulator 102

6.3 Experimental direct learning of joint correction models

evolution of correction models for each joint within the corresponding GP system

was controlled by the same parameters as in the experiments using distal supervised

learning (see Table 6-1). However, the number of generations was limited to 200.

The evolutionary model induction process was carried out sequentially44 for each of

the six joints. The reduction of the summed absolute joint error (see equation 4.12 on

page 73) during a typical run of the calibration is illustrated in Figure 6-15.

Figure 6-15: Summed absolute joint error being the fitness during the evolution
of each individual correction model

The correction models evolved for each joint are listed in Table 6-4. Table 6-5

shows the results of the local joint error reduction for each joint and the resulting

improvement of the absolute positional error of the robot tool.

44 The evolution of the joint correction models could have been performed in parallel as indicated in
section 4.5. The implementation of this concept however is beyond the scope of this research.

Joint 6

0

0.01

0.02

0.03

0.04

0.05

0.06

0 50 100 150 200

Generations

Su
mm

ed
 ab

so
lut

e e
rro

r (
ra

d)

Joint 4

0

0.01

0 50 100 150 200

Generations

Su
mm

ed
 ab

so
lut

e e
rro

r (
ra

d)

Joint 5

0

0.01

0.02

0.03

0.04

0 50 100 150 200

Generations

Su
mm

ed
 ab

so
lut

e e
rro

r (
ra

d)

Joint 3

0

0.01

0.02

0.03

0.04

0.05

0.06

0 50 100 150 200

Generations

Su
mm

ed
 ab

so
lut

e e
rro

r (
ra

d)

Joint 2

0

0.01

0.02

0.03

0.04

0 50 100 150 200

Generations

Su
mm

ed
 ab

so
lut

e e
rro

r (
ra

d)

Joint 1

0

0.01

0.02

0.03

0.04

0.05

0 50 100 150 200

Generations

Su
mm

ed
 ab

so
lut

e e
rro

r (
ra

d)

Chapter 6. Results from calibration experiments on a PUMA 761 manipulator 103

6.3 Experimental direct learning of joint correction models

Joint

Evolved symbolic expression

1 SIN(0.8284485152745139*0.5474638508255257%theta*SIGN(0.2529984435560167)
*(theta*theta*theta%SIGN(theta)-SIGN(COS(theta))*SIGN(theta))*(0.17336198
00408948*0.01056904812768944)%theta-SIN(SIN(SIN((0.1751177251503037* 0.010
74251533555101)%SIGN(0.4726706747642445))))*SIGN(0.9204992828150274))

2 (0.0490704367198706*COS((theta*theta*theta)%0.3623189642017884))%(SIN(SIN(th
eta))*COS(theta)*SIN(0.545290505691702+theta)*(0.6641098513748589+theta)+0.26
94361857966857*0.03566191595202491%(0.6644795068208869+theta)+0.00489925
8400219733*0.84789574877163+SIN(theta))*0.3054859920041505*0.049348200933
8664*COS(theta%(COS(theta)*SQRTp(theta)*SQRTp(0.2692107150486771))*(SIN(0.
545290505691702+theta)*0.6639894253364665*0.6657387768181402)%(theta*theta
*theta+SIN(0.6641098513748589+theta)))

3 SQRTp(SQRTp(0.543200460829493%(0.135572740867336%0.1914965361491745))
)*0.135572740867336%(0.7125958891567735-SIGN(SIN(theta%0.48246711 63060
396)))* 0.1370563524277474*(0.7133252052369761-0.6703979155858028)
%((SIN(SIN(0.7124685659352397-0.6691388286996063))-(0.7131533402508621-
SIN(0.4481232490005188%0.7135958891567735)))%(theta*SIN(0.448103274636066
8%0.1914965361491745)*SIN(theta))-SIGN(SIN(theta%0.4824671163060396)))

4 (theta-(theta-0.03497595141453291)*(theta-0.03397595141453291)-SIN(theta)*theta-
0.03318218024231696*COS((SIN(0.1224331492049928)+theta)* (0.0635253
1510361034%theta)%theta)-((0.03292576372569964*0.06352531510361034%theta-
0.03440845973082675)%(0.2691939909054842-0.03497595141453291)-COS(COS
(0.03424846644489883-theta)*0.7089775688955351%theta))* (0.1209600665303507
+theta)*COS(0.06152531510361034%theta*(0.06252531510361034%theta)%theta))*(
theta-(theta-theta-0.03440845973082675)*SIGN(0.5189672536393323)-(SIN(0.122
0226142155217)+SIN(SIN(theta)))*COS(0.06152531510361034%theta*(0.062525315
10361034%theta)%theta))*theta

5 0.02016710409863582*(SQRTp(theta%(theta-theta)-theta*theta*theta)
*0.8962777184362316*SIGN(theta)*0.3594566179387799-SQRTp(SQRTp(
0.9496652729880674*theta-COS(theta))))*0.08997350993377484

6 SIN((theta+theta)*COS(0.3231803338724936-(theta-theta)))*COS(SQRTp(theta
%0.6247010254219184-SIN(0.3126316110721152)))*((theta-(theta-theta)-0.306131
1685537279+0.3032620319223609-theta)%theta)%(COS(SIN((SIN(theta)+theta)
theta %0.6246228064821314(0.3038389690847499-theta)))+SQRTp(SIN((theta-
theta+SIN(theta))*SIN(COS(0.8384830011902219)))))

Table 6-4: Evolved symbolic expressions of joint correction models for joint 1-3
established using direct learning

 Prior to calibration After calibration

Joint 1 1.54578E-03 5.81827E-04
Joint 2 1.06465E-03 4.58385E-04
Joint 3 1.73486E-03 8.22065E-04
Joint 4 2.10844E-04 1.00212E-04
Joint 5 1.09374E-03 5.38923E-04

Absolute mean
joint error (rad)

Joint 6 1.60570E-03 6.38020E-04
Mean positional tool end point error on
calibration data set (mm)

1.730961 0.939094

Mean positional tool end point error on
validation data set (mm)

1.850646 0.891515

Table 6-5: Calibration results using the correction models evolved by direct
learning

Chapter 6. Results from calibration experiments on a PUMA 761 manipulator 104

6.3 Experimental direct learning of joint correction models

Figure 6-16 and Figure 6-17 illustrate the improvement of the absolute positional

error of the robot tool using the six joint correction models in Table 6-4 on poses

from the calibration and validation data set respectively.

Figure 6-16: Comparison of the absolute positional error of the robot tool end
point on the calibration data set prior and after calibration (direct learning)

Figure 6-17: Comparison of the absolute positional error of the robot tool end
point on the validation data set prior and after calibration (direct learning

The graphs of the six evolved correction models in Table 6-4 plotted across the

range of their respective joints are shown in Figure 6-18. It is particularly worth

noting that the plots of the symbolic expressions evolved for Joint 2 and 4 show a

very close match between targeted and modelled corrections over a wide range.

However, as with the results using distal supervised learning described in the

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

0 5 10 15 20 25 30

Data Samples

Ab
so

lu
te

 T
oo

l E
rro

r (
m

m
)

prior to calibration
after calibration

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

0 5 10 15 20 25 30

Data Samples

Ab
so

lu
te

 T
oo

l E
rro

r (
m

m
)

prior to calibration
after calibration

Chapter 6. Results from calibration experiments on a PUMA 761 manipulator 105

6.3 Experimental direct learning of joint correction models

previous section, the GP algorithm evolved correction terms introducing

discontinuities, which need to be evaluated in order to avoid undesired corrections.

Since the same calibration data set was used as for the distal supervised learning

experiment, the correction model for joint 3 was evolved based on data from two

separate intervals as described in section 6.2.2.

Figure 6-18: Evolved correction models (Table 6-4) for all six joint plotted
across the respective joint range along with calibrated joint angles (explicit
targets) of the calibration set (boxes) and validation set (diamonds)

Chapter 6. Results from calibration experiments on a PUMA 761 manipulator 106

6.4 Discussion

6.4 Discussion

The results of the symbolic calibration of a PUMA 761 robot using both distal

supervised learning and direct learning of correction models were taken from typical

average runs of the calibration system developed in this research. That is, by using

the GP parameters adopted for the experiments (Table 6-1) described in this chapter,

similar reductions of the positional error of the robot tool may be produced, despite

the stochastic search characteristic of genetic programming. From a set of terminals

and primitive functions both methods generated complex correction models, which

significantly reduced the absolute mean positional tool error by about 50% (see

Table 6-3 and Table 6-5). Based on the calibration data used, the distal supervised

learning method achieved this error reduction by inducing correction models for the

joints 1-3 only. The direct joint error learning method enabled the induction of

individual corrections for each of the 6 joints.

The quality of the evolved correction models depends among others on the chosen

terminal and function set and the restrictions imposed by the GP parameters (Table

5-8). Many degrees of freedom are left to the experimentator to determine these GP

parameters. The terminal and function set have both been chosen to contain

components generally occurring in models capturing non-geometric effects (see

section 2.2.2 for examples of non-geometric models). By introducing different,

perhaps more complex functions to the function set than those used, the evolution

could be accelerated or the accuracy of the corrections improved further. The GP

parameters used for the experiments (see Table 6-1) have been accommodated to

compromise structural complexity of the correction models, computation time

required for calibration and evolutionary progress. Structural complexity is in this

context related to the number of nodes in a symbolic expression and is limited by tree

depth- related parameters. With a maximum tree depth of 9 (which yields maximal

29+1 à 1 nodes to be evaluated for a balanced tree) and using the terminal/function

sets shown in section 6.2 it is possible to generate symbolic expressions of any non-

geometric model introduced in section 2.2.2 (except infinite Fourier series).

Allowing more structural complexity by increasing the tree-depth parameter to 12

and 13 extremely degraded the evaluation performance but could not produce any

better results in trials conducted. The size of a population of symbolic expressions

Chapter 6. Results from calibration experiments on a PUMA 761 manipulator 107

6.4 Discussion

was in the experiments with both methods set to 300 as this number offers a large

diversity of individuals and a reasonably efficient computation. Increasing the

population size further to 500 and 1000 in evolutionary trials did not lead to better

correction models but to significant losses of the calibration performance. The

number of generations was limited to 1000 for distal supervised learning and to 200

for each of the 6 GP system instances in the calibration system when evolving

correction models by direct learning. These numbers were chosen since average runs

of a calibration conducted in the experiments using either method did not produce

significant reduction of performance index (using distal supervised learning)

respectively joint error (using direct joint error learning) beyond these generation

limits. This finding however does not exclude the general potential of the calibration

method to generate better performing correction models since the convergence speed

in genetic programming as with all evolutionary computation methods is entirely

unpredictable. An example for this unpredictability of the convergence speed is a

calibration experiment conducted in this research using distal supervised learning in

which the evolution was set to run over 10000 generations only to produce

eventually a performance index of 49.39002. A reason for the little progress during a

comparatively long evolutionary period in this particular example could have been

code bloat (see e.g. [53]). This is a serious problem in GP and occurs particularly in

later generation hampering the evolutionary progress by impairing the applicability

of the evolutionary operators particularly subtree crossover but also subtree mutation.

As illustrated in Figure 6-7 and Figure 6-15 genetic programming usually

progresses quickly in initial populations and slows down the convergence speed in

the later course of evolution. This suggests that it is relatively easy for genetic

programming to rapidly establish new populations that produce better performing

individuals after a new fitness measure is applied (This is the case at initialisation

where a ‘new’ fitness measure is applied assigning different values to randomly

generated individuals). This suggestion is particularly supported by Figure 6-7,

Figure 6-8 and Figure 6-9 documenting the evolutionary progress in the distal

supervised learning approach. The progress in generating fitter individuals is much

quicker after the calibration algorithm (Figure 4-6) switched to another joint (see

Figure 6-9) to evolve its correction model. Due to the interdependence of the

correction models in this co-evolutionary calibration scenario the fitnesses of the

Chapter 6. Results from calibration experiments on a PUMA 761 manipulator 108

6.4 Discussion

models in the suspended populations change whenever a better performing correction

model occurs in the active population. When the calibration algorithm switches to

another joint (due to the higher potential of correcting the remaining error; see

equation 4.11) its population becomes active. The fitness values of the correction

models in this population will have changed compared to the time before this

population has been suspended. Hence by evolving the calibration model in the

active population the fitness measure for the suspended populations is implicitly

redefined. For example at generation 336 the calibration algorithm switches from

joint 1 to joint 3 (Figure 6-9). The last generation in which the population of joint 3

was active is generation 108. By evolving the correction model for joint 1 until

generation 336 the fitness of the correction models in the suspended populations 2-5

is subject to change. When the algorithm switches to joint 1 at generation 336 the

correction models in the population for joint 1 have different fitness values than in

generation 108. Shortly after this “context switch” the GP system for this joint

evolves a correction model that reduces the performance index. This behaviour of

rapid performance index reductions after joint switches could be observed

throughout the evolution (see Figure 6-7 and Figure 6-9). This property of the

calibration could principally be exploited to increase the convergence speed of the

performance index by introducing additional joint switches in periods with little

evolutionary progress. However, this would mean to evolve correction models for

joints with lower correction potential, which is generally possible as long as the

measure (see equation 4.11) does not return a zero value for this particular joint (no

correction of this joint would reduce the tool error). Eventually, the evolved joint

correction models are more likely to cover errors that can be attributed to different

joints. The potential of introducing additional joint switches and the effect it may

have on the evolved correction models has not been investigated in the experiments

carried out in this research and may be subject to further work.

An important issue for the calibration method presented in this work is the

subsequent analysis of the evolved symbolic expressions to prevent undesired

corrections being performed. Since symbolic regression constructs the correction

models from a limited number of calibration samples (snap shot view) the validity of

these models needs to be evaluated throughout the joint range defined by the

calibration area. Fortunately, due to the protected definition of hazardous functions

Chapter 6. Results from calibration experiments on a PUMA 761 manipulator 109

6.4 Discussion

(see section 3.3.1) used for symbolic regression it is guaranteed that corrections will

be well defined throughout, even though perhaps not continuously (discontinuities

were introduced by e.g. the SIGN function, which is used to model effects such as

gear backlash). Undesired effects such as local oscillatory behaviour of the

correction model potentially producing large values (as shown in Figure 6-14) need

to be accounted for by introducing local damping or scaling, for example. The same

applies to large corrections produced by divisions involving small denominator

values.

Chapter 7. Conclusion and Outlook 110

Chapter 7

Conclusion and Outlook

In this work a novel technique for generating a robot calibration model for use in

off-line programming was developed: the symbolic calibration method. This method

is based on genetic programming or more specifically symbolic regression, which

evolves joint correction models. These joint correction models are then used to

reduce the positional error of the robot tool. Thus positional calibration of the robot

is performed in joint space by modelling the error of the nominal inverse kinematic

model, which is implemented in the robot controller.

The advantage of the developed method is the automatic generation of the

correction models without presumptions about model structure or parameter values.

In contrast, classical calibration methods (see [12][27][37][43][70]) require human

involvement to establish a calibration model (model based or approximation), which

is subsequently fitted to calibration data employing methods from numerical

analysis. As outlined in Chapter 2 indirect numerical methods such as gradient search

can cause problems if the calibration model has parameter redundancies, parameter

discontinuities etc. Also, the convergence against a globally optimal solution is with

these conventional methods not guaranteed.

The symbolic calibration method developed in this work was implemented using

both distal supervised learning (co-evolutionary approach), and direct joint error

learning approaches. It combines the processes of automatically generating and

evaluating correction models in a direct evolutionary search method based on

Chapter 7. Conclusion and Outlook 111

7.1 Suggestions for further work

symbolic regression. By utilising the underlying concept of stochastic inference45,

symbolic regression has the potential to solve the calibration problem by finding a

suitable or even the true structure and parameter values of a calibration model. Since

the method is not confined to fixed model structures the proposed calibration method

is more flexible than classical numerical calibration techniques.

The experimental implementation of the method developed in this work has

demonstrated the potential genetic programming has to solve the static kinematic

calibration problem. The results of calibration trials in Chapter 6 show that genetic

programming in both developed methods described in Chapter 4 is capable of

reducing the positional mean absolute error of the robot tool by about 50% (55% for

distal supervised learning). These error reductions were obtained from average runs

of the calibration system and are, despite the stochastic property of the method,

reproducible (using the same GP parameter configuration), even though the evolved

correction models in different calibrations may vary in structural complexity.

However, the calibration method is currently limited by the intrinsic problems

inherited from the genetic programming paradigm, which mainly are the

consumption of computational resources particularly computation time due to the

general tendency of GP to reduce the convergence speed in later generations, and the

unpredictability of the evolutionary progress. Due to these limitations a wider range

of values of parameters that control the GP run could not be exploited in the scope of

this work and remains subject to further investigation.

7.1 Suggestions for further work

The symbolic calibration approach developed in this work offers many

opportunities for further investigations. The following suggestions are given:

(i) Enhancing speed of evolution by introducing parallel processing

(ii) Implementation of advanced evolutionary principles

(iii) Further mathematical analysis of the evolved correction models

45 As John Koza [49] puts it: “knowledge derived logically from known facts is not new and therefore
not patentable”. Stochastic implies unpredictability, which is both, potential and limitation of
evolutionary computation.

Chapter 7. Conclusion and Outlook 112

7.1 Suggestions for further work

(iv) Enhancing GP parameter study

(v) Subsequent numerical optimisation of the correction models

(i) On the technical side performance issues need to be discussed further to enable

a more comprehensive parameter study and include more data samples for

calibration. For example the calibration system used in this work could be enhanced

in future experiments by implementing parallel distributed evolution of correction

models for each joint using the direct joint error learning method described in section

4.5.

(ii) Even though the distal supervised learning method does not directly permit

parallel evolution of the correction models due to their interdependence (see section

4.4.1), implicit parallel processing within a population could be performed (for one

joint at the time) by introducing concepts of niching or demetic grouping (see e.g.

[49]). This would split a population into demes (“islands”), which independently

evolve their correction models (for the same joint!) based on a possible different GP

parameterisation. An advantage of this isolation of individuals is that evolution can

specialise in several areas in the search space. Unlike niching, demetic grouping

introduces the migration concept, which allows fit individuals to move into other

demes, where they might contribute useful genetic material. In fact, migration of

correction models could also be introduced between the populations (between

different joints) of the calibration system. This concept would enable population

interaction by sharing genetic material from good performing correction models

between otherwise isolated populations. For example non-geometric effects

occurring in the joints may be described by similar correction terms (i.e. same

structure using different coefficients). Therefore advanced GP concepts such as

automatic defined functions (ADF) (see [50]) could be investigated in this context.

(iii) Making genetic material of good performing individuals available for sharing

between other individuals across the population also relates to the building block

hypothesis, which is controversially discussed in the GP community (see e.g.

[16][53]). Investigations could be carried out to find and examine expressions

commonly used in good performing individuals. The foundation for those future

experiments is laid by the shared GP tree implementation described in Chapter 5 (and

Chapter 7. Conclusion and Outlook 113

7.1 Suggestions for further work

illustrated in Figure 5-1) as this representation of the symbolic expression enables the

identification of commonly used sub expressions.

(iv) The GP parameter study could be extended by including different, perhaps

more complex functions in the non-terminal set. In addition the calibration could be

performed using different values for GP parameters (e.g. population size, or

permitting more structural complexity by increasing the GP tree depth) to further

explore the potential of the calibration method.

(v) Furthermore the evolution could be enhanced by numerically fitting the

generated correction models (i.e. fine-tuning of the values of the constant nodes).

During the evolution a number of selected models could be numerically fitted to the

calibration data set in an attempt to increase their accuracy. Those fitted individuals

could then be directly carried over to the following generation (Lamarckian learning

[5][52]). Alternatively, the by numerical fitting reduced performance index

respectively joint error could be used as the new fitness value for the original model

(prior numerical fitting). In this way the learning capability (capability to

numerically fit to calibration data) of that model would be propagated rather than the

fitted expression (Baldwin effect [5]). Technically, the assumption for numerical

optimisation would be that the nodes generated by the ephemeral constant are treated

as parameter nodes with the node value being the start value for the optimisation.

However, prior to numerical optimisation the evolved models may have to be

algebraically simplified/normalised. This is in most cases necessary since genetic

programming typically tends to generate over-specified correction models. These

models may become structurally very complex and contain an unnecessary large

number of constant nodes. When treated as parameter nodes there are likely to occur

redundancies or dependencies between these nodes, which would make fine-tuning

of their numerical values difficult or impossible. Therefore using symbolic algebra

and compiler methods such as constant folding [3] (replacement of constant

expression by their value), constant propagation or term collection the structural

complexity of the evolved expressions may be significantly reduced enabling

subsequent numerical fitting. However, numerical fitting is suggested to be

performed using direct methods (such as the Nelder-Mead simplex method [2])

rather than indirect gradient based methods, as the evolved expressions will most

likely contain discontinuities (as encountered in the experiments), which will cause

Chapter 7. Conclusion and Outlook 114

7.1 Suggestions for further work

gradient methods to fail. As algebraic simplification and both, direct and indirect

optimisation methods are, however, computationally very time consuming the

examination of Baldwin effect and Lamarckian learning will either be confined to a

limited number of correction models in a population, or remains to be carried out

with more powerful computer hardware becoming available.

Appendix A 115

A.1 The Robotrak measurement system

Appendix A

A.1 The Robotrak measurement
system

Robotrak is a cable driven measurement system capable of recording robot end-

effector positions. It consists of three measurement units A, B and C arranged in a

planar triangle as illustrated in Figure A-1. Each unit provides a cord one end of

which is attached to the robot tool R the other wrapped around a drum within the

unit. The length of each chord (distance from the respective measurement unit: ra, rb

and rc to the robot tool) is measured by the respective measurement unit based on

incremental encoders, which generate pulses on rotation changes of the drum.

Figure A-1: Robotrak geometry

 B

 R

 A

 C

 X Y

 Z

rb rc
ra

lca
lbc

lab

Appendix A 116

A.1 The Robotrak measurement system

The cord measurements from the tree units are transformed into a Cartesian frame

using data from the geometry of the measurement system. The origin of the Robotrak

co-ordinate system is chosen to be located at point A with the local X- Axis being

aligned to lab and the local Z- Axis being perpendicular to the plane defined by the

points A, B and C. The points A, B and C are thought to be centre points of spheres

with the radii ra, rb and rc respectively, for which the following relations hold:

 ra2 = x2 + y2 + z2 , (A.1)
 rb2 = (lab à x)2 + y2 + z2 , (A.2)
 rc2 = (x à g)2 + (h à y)2 + z2 . (A.3)

Solving the trigonometric identity ra2 à x2 = rb2 à (lab à x)2 for x yields:

x = 2lab

ra2àrb2+lab
2

.
Similarly, for the triangle ABC

 g = 2lab

lca
2à l bc

2+ lab
2

,

 h = lca
2 à g2

q
.

Eliminating z2 in (A.3) using (A.1) and solving the obtained equation for y gives:

y = 2h
ra

2àr c
2à2gx+g2+h 2

,

finally z = ra2 à x2 à y2
p

.

The encoders of the three measurement units were connected to a MITC 12

interface card plugged into a PC. The contents of the actual encoder count registers

(measure for the cord length) on the card could then be read by computer

applications. Initially, Workspace [82] was used to gather measurement data. The

usage of Workspace however proved difficult particularly when recording large

amounts of data in several sets since the module for automatic data collection

appeared to have programming errors (in version 4.0 used). The manual recording of

data was not an option due to the amount of measurements taken and potential errors

that might have been introduced (waiting for the robot to settle and confirm

measurement). Therefore an application has been developed (and made available)

Appendix A 117

A.1 The Robotrak measurement system

that enables an easy set-up of Robotrak and permits a convenient automatic data

collection (Figure A-2). This application implements the transformation algorithm

described in this section and outputs measured poses (x, y, z) listed in a file to be

processed by the calibration system.

Figure A-2: Developed data collection application

Figure A-3: Laboratory arrangements

The set-up procedure for the Robotrak device is described as follows: First the

cords need to be exercised in order to guarantee a good repeatability (cords must be

tightly wrapped around the drums within the measurement units). This is performed

Appendix A 118

A.1 The Robotrak measurement system

by repeatedly pulling out each cord for approximately two meters from the encoder

base. The second step is the calibration of each encoder. A calibration bar is used to

determine the number of encoder counts for a defined length. After this calibration

the encoders are used to measure the distances between them: A for distance AB, B

for distance BC, and C for distance CA. Then the lengths of the top cords (see Figure

6-1) attached the tool are to be measured. The cords of the measurement units are

attached to the corresponding top cord together constituting the effective length from

the robot tool to the respective measurement unit (ra , rb and rc respectively).

The accuracy of the particular Robotrak system used in this work was estimated in

previous experiments at 0.27 ± 0.21 mm [45].

A.1.1 Local frames

For the evaluation of accuracy both nominal robot poses and measured data

delivered by the Robotrak measurement system must be expressed relative to the

same co-ordinate frame. However, the transformation from Robotrak frame to robot

base frame is usually not given exactly, in fact, it is generally identified

simultaneously with the other kinematic parameters during calibration [12].

Alternatively this transformation may be accomplished by establishing a local frame

that is used to transform data from the Robotrak system frame to the robot base

frame. This method has been adopted in this work and in [45].

Figure A-4: Local frame transformations

A local frame is defined within the robot workspace by 3 end-effector poses (L1,

L2 and L3) the positional co-ordinates (x, y, z) of which are recorded relatively to

the robot base frame and the Robotrak frame.

Robot Base Frame Local Frame Robotrak Frame

TRL TCL

Appendix A 119

A.1 The Robotrak measurement system

Figure A-5: Local frame definition

The local x-axis passes through L1, and L2. The local y- axis is defined by being

perpendicular to the x-axis and passing through L3. The origin of the local frame lies

in L1. This local co-ordinate frame is represented by a homogenous matrix

R L1

0T 1

ô õ
 with R being the rotation matrix the normalised column vectors of

which represent the local frame axes (X,Y,Z).

Having established the local frame matrix TRL relative to robot base, robot poses

PRF can be represented in local frame co-ordinates by:

 PLF := TRL
à1PRF .

Analogously, measurement data PCF relative to the Robotrak frame can

represented relatively to the local frame as PCLF by:

 PCLF := TCL
à1PCF

where TCL is the local frame matrix relative to the Robotrak frame.

Hence measurement data relative to the Robotrak frame can be represented in

terms of robot base frame co-ordinates by:

 PRF := TRLTCL
à1PCF .

L3

L1 L2 x

y

z

Appendix A 120

A.2 Denavit- Hartenberg parameters

A.2 Denavit- Hartenberg parameters

The Denavit- Hartenberg parameterisation describes the relative displacement of

two consecutive link frames using 4 parameters for the ith link.

Figure A-6: Denavit-Hartenberg parameters

The parameter ëi is the angle between joint axis zi-1 to zi about xi, òi the angle

between xi-1 to xi about joint axis zi-1 (òi joint variable for rotary joints), ai is the

distance from joint axis zi to zi-1 along xi and di the distance from xi to xi-1 along

joint axis zi-1 (di is joint variable for prismatic joints).

The displacement of the ith link frame to the previous link frame in terms of

orientation and position is the product of consecutive elementary homogenous

rotation and translation matrices resulting in the following homogenous matrix:

Ai = Rotz(òi)Transz(di)Transx(ai)Rotx(ëi)

=

cos(òi) à sin(òi) á cos(ëi) sin(òi) á sin(ëi) ai á cos(òi)
sin(òi) cos(òi) á cos(ëi) à cos(òi) á sin(ëi) ai á sin(òi)

0 sin(ëi) cos(ëi) di

0 0 0 1




The co-ordinate frame of the tool of a 6-link manipulator relative to the robot base

frame can then be expressed as:

TA =
Q
i=1

6
Ai =

Tr Tp
0T 1

ô õ

xi-1

 zi-1 ai
di xi

 zi αi

θ i

Appendix A 121

A.2 Denavit- Hartenberg parameters

with Tr being the 3×3 rotation matrix expressing tool orientation and Tp the 3×1

position vector. In order to obtain the position of the tool tip the matrix TA is

multiplied with the tool transformation matrix I X
0T 1

ô õ
 where I is the 3×3

identity matrix and X the 3×1 vector which expresses the translation from the origin

of the tool frame to the tool tip.

The Denavit-Hartenberg parameters of the PUMA 761 manipulator used in this

work are given by [75] as:

Table A-1: DH parameters of the PUMA 761 manipulator

Link α α α α a (mm) d (mm)
1 à ù/2 0 0
2 0 650 191
3 ù/2 0 0
4 à ù/2 0 600
5 ù/2 0 0
6 0 0 125

Appendix B 122

B.1 Publications

Appendix B

B.1 Publications

Dolinsky J.-U., G. J. Colquhoun and I. D. Jenkinson. (1998). A comparison of
techniques for modelling robot dynamics: Proceedings of the 14th national conference
on manufacturing research, University of Derby, UK.

Dolinsky J.-U., G. J. Colquhoun and I. D. Jenkinson. (2000). Structural identification
and calibration of kinematic robot models by genetic search. Proceedings of the 33rd
international MATADOR conference, University of Manchester, Institute for
Science and Technology (UMIST), UK.

Appendix B 123

B.1 Publications

Structural identification and calibration of kinematic robot models
by genetic search

Jens- Uwe Dolinsky, I.D.Jenkinson, G.J. Colquhoun

Liverpool John Moores University, School of Engineering,
Byrom Street, Liverpool L3 3AF
Email: {engjdoli, I.D.Jenkinson, G.J.Colquhoun}@livjm.ac.uk

Abstract: Accurate robot modelling is of great importance to the application of enhanced robot programming
tools such as Offline Programming systems. This paper describes a prototype of an automated kinematic
modelling environment, which is primarily based on evolutionary computation. A genetic algorithm herein
attempts to find an optimal model structure of the forward kinematic of an industrial robot based on
measurements reflecting individual characteristics. Finally it will be reported on results obtained from simulation
experiments.

1 Introduction

Modern robot programming methods such as Offline Programming require accurate robot models
sufficiently capturing the robot kinematics. Since every robot, even within the same series, has
individual deviations of kinematic properties which is due to e.g. manufacturing tolerances and tear,
the controller model has to be updated e.g. by calibrating its kinematic parameters with measurement
data taken from that specific robot. In Offline Programming robot programs are developed and
validated within a simulated environment assuming an accurate match of robot and workcell models
with their physical counterparts.

Joint
angles

3D
positions

OLP Controller
Mathematical Model

Robot

Figure 1: Relations OLP ↔↔↔↔ physical robot

Since information about the robot controller model is usually not available (the black box in Figure
1) and in order to create portable programs the common approach of an Offline Programming System
(OLP) such as Workspace [5] to achieve higher absolute accuracy of a particular robot is to employ
path error compensation. A calibrated kinematic model acts as a filter, which alters target positions in
the robot program to direct the robot to the desired targets.

Kinematic Calibration in robotics is a well-established field of research that has delivered several
models and calibration methods addressing special types of robots and numerical stability issues of
the parameter identification procedure [2]. Some approaches utilise black box models based on
artificial neural networks (ANN) with little or no relation of the connection weights used to physical
robot parameter. In general the approach has been to determine a fixed model structure and to
subsequently fit its parameters using measurement data.

This paper presents a new automated general hybrid modelling method to generate a forward
kinematic robot model based primarily on evolutionary computation and gradient search. The genetic
algorithm proposed has the task to create an appropriate model structure whose parameter will be
numerically identified by subsequent gradient search. Unlike other hybrid search heuristics, e.g.
genetic algorithms on artificial neural networks, the objective of this approach is not to derive a black
box model. Instead knowledge of the nominal kinematic model, e.g. the serial links and their order,
will be integrated and preserved.

Appendix B 124

B.1 Publications

2 Genetic modelling of robot kinematics

Genetic Algorithms (GA) are search procedures inspired by concepts of natural evolution. In
principle a population of potential solutions (termed individuals) is searched or explored for the best
performing or fittest individuals. To keep and exploit their characteristics those individuals will be
selected for reproduction or recombination in further generations eventually undergoing mutational
changes. In that way over a number of generations the algorithm attempts to gradually breed highly fit
solutions to a problem. An introduction to GA’s can be found in [1]. Genetic Algorithms have been
found to be useful for solving many different types of problems across different disciplines. This
independence from the actual problem domain and the underlying concepts, which are relatively easy
to implement in computer programs, has contributed to their success.

2.1 Model representation

Kinematic Modelling of robots can be divided into geometric and non-geometric modelling. Pure
geometric models such as the Denavit-Hartenberg (DH) (see e.g. [3]) model, merely cover the
geometric properties e.g. link lengths and angles between neighbouring axes. Non-geometric
properties e.g. gear compliance and gear backlash however contribute considerably to the accuracy of
a robot and need to be taken into account (see e.g. [4]).

In this approach a genetic algorithm attempts to model the influence of non-geometric properties by
inserting additional co-ordinate transformations into a DH model. The fact that forward kinematic
models can be built from sequences of elementary homogenous transformations makes them an
appealing representation for genetic algorithms permitting effective application of genetic operations
such as crossover or mutation. The principle idea is to view the entire kinematic robot model as an
ordered sequential concatenation of fundamental homogenous transformations (DH- transformations
with nominal parameter values provided by the robot manufacturer) together with additional co-
ordinate transformations (such as translations along and rotations about the x, y and z-axis) inserted
by the genetic algorithm. Those sequences make up the kinematic genome46 on which the genetic
algorithm operates. Figure 2 shows the genome of the 6-link PUMA 762 robot used in our
experiments.

 Intermediate Transformations

Fundamental Transformations

 T1 T2 T3 T4 T5 T6

Figure 2: Kinematic Genome

The initial population of genomes is seeded with each genome containing the fundamental
transformations (T1 to T6) in the order according to the links of the robot. The genome of the
kinematic model in Figure 2 consists of 12 gene sections, 6 of which (the fundamental
transformations) must not be altered. This creates a primary schema, which expresses the initial
knowledge (that of the provided serial link design and specifications) which is to be preserved.
Random numbers of different additional transformations will be placed between these fundamental
transformations by the genetic algorithm. The inserted transformations can be single translations,
rotations or composed transformations (e.g. building blocks).

46 Genome or chromosome (string of genes) in this context means the entire information required to
construct a kinematic model

Appendix B 125

B.1 Publications

Decoding

Population of individuals

Parameter identification

Fitness calculation

Selection, recombination
Figure 3: Genetic Algorithm

Thus the genetic algorithm explores the space of sequential homogenous transformations for the
optimal kinematic design of a particular robot. It evaluates, selects and recombines the transformation
strings (genomes) within a population of a given size.

2.2 Decoding and evaluation

In order to evaluate a population of models, all genomes have to be decoded and prepared for
evaluation. For each genome the corresponding homogenous transformation matrix (phenotype) is
created. Each gene in the section of intermediate transformations represents one single transformation
for which a parameter needs to be generated. Finally all transformation matrices are multiplied
symbolically to form the computational model represented by its homogenous transformation matrix
(Figure 3). The internal representation of this transformation matrix is an array of symbolic
expressions (binary trees) instantiating the equations for position and orientation. Note that since all
transformations are homogenous the genetic algorithm, although performing drastic structure changes,
cannot violate the orthonormality constraint of the rotation matrices. Also, the application of an
analogous crossover technique prevents the genetic algorithm from changing the order of the
fundamental transformations, which preserves the predefined serial link design. This means only
genes within the same gene section can be exchanged.

It is possible during the course of evolution that the algorithm creates gene sections with several
consecutive equal transformations e.g. 2 translations along the x- axis. This would obviously cause a
parameter redundancy, which is avoided immediately during decoding by ignoring those multiple
equal transformations. However, those redundancies are kept in the genome in order to preserve a
diversity of genetic material for further generations.

2.3 Parameter identification

Once the model has been instantiated, its parameters need to be identified using measurement data.
The forward kinematic model can be written as:
 y = f(ò, þ) , (2.1)

where f returns the position and orientation of the end-effector tool depending on the given joint
angle set ò and parameter configuration þ . Identification is carried out by minimising:
 P

i=1
n k yi à f(òi, þ) k2 (2.2)

with subject to þ , where yi is the ith measurement and n is the number of measurements. Since the
model equations are nonlinear in rotational parameters the identification has to be carried out
iteratively e.g. by nonlinear least squares. For this the model equations have to linearised by first order
Taylor expansion around the current parameter estimate. The functional (2.2) to be minimised can
then be rewritten as:

 k 4y à C4þ k2 with C =
C1...
Cn

" #
 and 4y =

4y1...
4yn

" #
 (2.3)

Appendix B 126

B.1 Publications

subject to 4þ and C being the Jacobian of f approximated by finite differences at the current
parameter estimate. To solve this linear minimisation problem for the parameter update (Gauss-
Newton update) vector yields:
 4þ = (CTC)à1CT4y (2.4)

Hence the parameter values are iteratively obtained by:
 þk+1 = þk + 4þk (2.5)

The Moore-Penrose generalised inverse (CTC)à1CT is not formed explicitly in order to avoid
numerical instabilities e.g. due to round-off errors. Instead orthogonal decomposition is applied to C
in (2.3) by Householder Transformations. However CTC may become singular and hence not
invertible. In that case the algorithm uses the Levenberg-Marquardt update
4þ = (õI +CTC)à1CT4y with õ being a positive scalar constant to be determined and I being
the identity matrix.

2.4 Fitness calculation

The fitness value of an identified model is the residual error (2.2) computed on a second set of
measurements. Thus the fitness is a function of the evolved kinematic structure and the identified
parameters. The genetic algorithm exploits the Baldwin effect e.g. the learned information (identified
parameter values) only affects the fitness function and is not backcoded or retained in the genetic
description of an individual model.

3 Experiment

For our experiments we implemented a steady state GA47. Individuals (kinematic models) are
selected from the population by Tournament Selection (see [1]). This type of selection was chosen
because it is easy to implement, and by setting an appropriate tournament size it allows convenient
adjustment of the selective pressure and thus the convergence property of the genetic algorithm. To
create a new model, two tournaments were run and the best performing model of each was chosen to
be parents for the new model.

The initial population was seeded with genomes with each intermediate gene section containing up
to 5 random elementary transformations. Fundamental transformations were initialised with the
nominal DH parameters of the PUMA 762 robot. The parameters of elementary transformations in the
intermediate gene sections were initialised with the value of 0.01 (translational and rotational
parameter). The number of measurements used for identification and evaluation was 50. The
probability of applying crossover was 0.8 and mutation 0.3. The evaluation of 50 generations
(population size was 15) took about 20 min on a PC (with a 500 Mhz Intel Celeron processor) running
Linux. The results of a typical run of the genetic algorithm are shown in Figure 4.

1E-23
1E-20
1E-17
1E-14
1E-11
1E-08
1E-05

0.01
10

Generations

Fi
tn

es
s

(re
si

du
al

 e
rro

r)

Average Fitness
Fittest Individual

Figure 4: Results obtained from a GA run over 50 generations (population size: 15)

As the evolution progresses, fitter individuals appear in the population, the fitness of individuals
improved almost gradually. However, because of the limited population size of 15 individuals the GA
settles relatively quickly. To keep the evolution going i.e. to explore other genome configurations
additional mutation was applied to some individuals in generations, the spikes in the average fitness
curve (Figure 4) illustrate this effect. This method proved useful because this perturbed genetic
material contributed to slightly fitter individuals.

47 Offspring created by the GA replaces bad or worst performing individual in a population.

Appendix B 127

B.1 Publications

4 Conclusion

The genetic algorithm presented appeared to be well capable of fitting a kinematic robot model
(structure and parameter) to measured data. Despite compromises made with the choice of the genetic
algorithm parameter (e.g. number of generations and population size) due to the high computational
complexity, it performed robustly and delivered parametric models, which performed even better on
our measured data than an ordinary DH model calibrated with these data. The algorithm works with
simple mechanisms (e.g. estimation of parameter values), which need to be refined for further support
of the results. Further work planned in this context is to reduce the number of parameters to be
estimated by applying variable projection, which requires an initial estimate for nonlinear parameters
only.

References

[1] Beasley, D., D.R. Bull and R.R. Martin, (1993), An Overview Of Genetic Algorithms. University Computing,
Part 1 "Fundamentals", 15(2) 58-69, Part 2 "Research Topics", 15(4) 170-181.

[2] Bernhardt, R. and S.L. Albright, editors. (1993). Robot Calibration. Chapman & Hall, London.
[3] Hollerbach, J.M., (1999), Introduction to Robotics, Lecture Notes CS 5310/6310 & ME 5220/6220, Chapter

4, University of Utah.
[4] Whitney, D.E., Lozinski, C.A. and Rourke, J.M., (1986), Industrial Robot Forward Calibration Method and

Results, ASME Journal of Dynamic Systems, Measurement and Control, Vol. 108, No.1.
[5] Workspace 4, (1998), User Manual Robot Simulations Ltd, Newcastle Upon Tyne, UK.

Appendix B 128

B.1 Publications

A comparison of techniques for modelling
robot dynamics

J.U.Dolinsky, G.Colquhoun, and I.D.Jenkinson

School of Engineering
Liverpool John Moores University
Byrom Street, Liverpool L3 3AF

Tel. 0151 231 2081

An industrial robot can be programmed in two ways either, by writing the program
online using teach programming or by generating the program off-line with the aid of
a CAD based Off- Line Programming system (OLP).
An OLP uses simulation to imitate the robot activities. This simulation is based on a
model (for computing a mathematical model) which sufficiently describes the robot
kinematics, dynamics and the controller strategy. In general, analytic models are
used. However, some investigators have proposed models based on neural networks.

In this paper the advantages and disadvantages of neural network based models are
explained and compared with general analytical modelling methods.
Furthermore possibilities for the refinement and adaptation of the analytical model of
the respective robot are discussed. This includes investigations regarding the
applicability of automatic mechanisms for parameter identification etc. in order to
automate model generation.

1 Introduction

Offline Programming Systems allow the development and test of robot programs
without seizing the physical robot. With a CAD system a sequence of tasks is
designed (3D data) and thereafter applied to a simulator, which bases on kinematic,
dynamic as well as the controller model of the respective robot.

In general the problem a controller of an industrial robot has to solve, may be
simplified and expressed by the following formal notation:

()TargetStart XXfT ,=

Between two given points StartX and TargetX , which are vectors in the 3 dimensional
cartesian space, a trajectory T (a series of configurations Æ end effector positions or
joint angle vectors) has to be found, which models the special kinematic and
dynamic properties of a robot. Therefore the controller f has to realise a mapping

Appendix B 129

B.1 Publications

between the 3D data of the end effector position and the joint angle configurations of
the robot. Such a mapping lacks from accuracy due to manufacturing tolerances of
the robot components and wear (like other mechanical systems).

It is essential to identify the individual physical robot parameters as well as the
strategy the controller uses for determining trajectories in order to build accurate
controller models. It is obvious that both procedures are learning processes, which
have the potential to be implemented e.g. using Artificial Neural Networks.

2 Artificial Neural Networks

In the recent years various types of artificial neural networks (ANN) have been
developed, studied and thereafter applied to practical and theoretical research fields
related to the computational learning of natural systems like pattern and speech
recognition, machine learning etc.
The success of ANN’s may be explained by the fact, that they can be simply
implemented either in software or hardware.

A neural network provides a method of mapping between high dimensional
input/output spaces. The information held in the ANN (In this context knowledge
about mapping joint angle- and Cartesian space) is stored in the form of weighted
connections between artificial neurons, which are generally organised in layers [4].
Adjusting the values of the weights during what is known as the training process
configures the ANN.

During the training process the network is fed with example pairs of joint angle- and
respective Cartesian end effector vectors. In order to provide a proper mapping, the
weights of the net have to be adjusted using an appropriate learning rule. Learning
rules vary according to the type of network and learning strategy examples are:
i. The Hebbian rule is applied to unsupervised learning in for example single layer

perceptrons;
ii. The Backpropagation rule used in supervised learning of multi-layer

perceptrons.

After finishing the training process the ANN is be able to classify incoming patterns
(joint angles vectors) and to provide the proper mapping. The ability of ANN to give
reasonable output for inputs not contained in the training set is known as
generalisation.
This property makes an ANN in general a useful approximation tool [12] e.g. for
learning the behaviour and modelling of highly non-linear mechanisms [5][8] such as
robot arms [13].

Nevertheless, neural models are pure numerical computational models. To convert
the information contained in the weight matrices of the net into a readable symbolic
form, in order to extract information about the learning state of the network, is a
difficult task [11].
However, the key problem a designer of an ANN has, is in selecting an appropriate
net structure for the mechanism to be learned. This means the right choice of the
network type (either a feed forward or a recurrent network), the number of the

Appendix B 130

B.1 Publications

neurons, layers, suitable activation functions e.g. hyperbolic tangent or sigmoidal
within the neurons, all have to be determined empirically [15]. Another problem is
the initialisation of the weight matrices of the ANN. Tests have shown that non-
optimal weight configurations lead to a considerable longer training time especially
when applying backpropagation [10].
Furthermore during the training of the net with pairs of example patterns, which is an
iterative optimisation process, the algorithm may run into a local minimum [9]. This
means, that the weight values of the ANN have not been optimally adjusted to the
new example. The example has then not been correctly learned by the ANN. In this
context a point of concern is also the capacity of the ANN, which has to be analysed
in order to avoid over-training errors [1].
Another well-known fact is, that ANN provide an undetermined mapping beyond the
range they have been taught (locality). For the application it means, that a possible
critical value that exceeds the admissible range of mapping has to be considered and
the ANN to be taught with respective examples.

3 Analytical Models

The more traditional engineering approach is to build analytical models of the robot
using system equations. The precondition therefore is the knowledge of the
respective kinematic, dynamic and controller parameters. Whereas the kinematic
(length and twist of links etc.) and dynamic (mass of links etc.) parameters are
mostly supplied by the manufacturer of the robot, the controller algorithms are in
general not documented. This makes it generally difficult to find a closed analytical
description for the entire mechanism.

However, using the kinematic parameters (pref. in Denavit- Hartenberg (DH)
notation) a direct forward kinematic model (coarse geometric model) can normally
be generated. To work towards more accuracy the manufacturing tolerances of the
physical parameters of the individual robot have to be integrated into the model as
parameters that have to be identified experimentally. Therefore new models or
refinements of the DH model have been proposed [14][16]. To cover non-linearity's
like joint boundaries etc. respective constraints have also to be added to the model.
The growing number of parameters raises model complexity and may impair the
solvability of the inverse transformations48 of the model to compute end effector
positions into the joint angle vector space.

Nevertheless, a complete or partial analytical model (provided it exists) offers many
advantages. The generation of the nominal kinematic models can be conveniently
performed with the aid of computer algebra systems like Maple or Mathematica [17].
Using such tools the equations can be manipulated exclusively symbolically, which
allows flexible modelling49 and guarantees maximal stability and minimises the
overhead of a subsequent numerical computation.

Several software toolboxes like robotica [7] provide predefined methods for
calculating dynamics e.g. Euler- Lagrange equations of motion of the model.

48 mostly iterative solution of non-linear equations
49 system equations can be dynamically expanded with parameter terms

Appendix B 131

B.1 Publications

However, in general these packages are straight- forward implementations (based on
matrix algebra) of the standard robot modelling concepts without really taking
advantage of the possibilities of dynamic structuring and programming combined
with symbolic representation and computation provided by the computer algebra
system.

4 Conclusion

In this paper the advantages and disadvantages of analytical and artificial neural
robot model are discussed. The essential features of both approaches may be
summarised in the following table:

 Analytic Model Neural Model

Limitations of
modelling
methodology

- many non-linearities
- high complexity in general

- training examples must
be provided

- extrapolation
Effort involved in
Model generation

- initially relative simple:
generation of a nominal
kinematic model with DH-
parameters

- a suitable architecture
(numbers of neurons and
layers) has to be chosen
empirically

- high training effort
Task variability - covers all modelled

(described with the
equations) situations

- models only trained
tasks

Complexity

- mostly high: many kinds
of model configurations
like singularities have to
be considered

- complexity raises with
complexity of the robot
(non- linearities, Degrees
of Freedom) and the
number of parameters to
be identified

- only connectionist
comp-lexity (between
neurons)

computer internal
representation

- symbolic descriptive - numerical

accuracy - depends on accuracy of
the model

- depends on number of
training examples

learning capacity - dynamic growing

- in general restricted,
except by referring an
architecture like in [2]

Table 1 : Summarise of analytic and neural models

In general analytic modelling of robot mechanisms is more difficult because of the
necessity of a mathematical description of complex non-linearities. The quality of a
neural model depends on the choice of the network architecture and the number and
quality of trained examples.

Appendix B 132

B.1 Publications

Although artificial neural nets have been widely studied and successfully applied to
numerous specialised research projects, until now they have been in more empirical
disciplines.
But with better computing facilities and the aid of dynamic programming and
computer algebra techniques it has become worthwhile to investigate in general
analytical models rather then separated solutions of subtasks modelled by artificial
neural nets.

5 References

[1] S. Amari, N. Murata, K.-R. Müller, M. Finke, H. Yang
Asymptotic Statistical Theory of Overtraining and Cross-Validation
METR 95-06 August 1995

[2] Fritzke, Bernd, Growing Cell Structures - A Self-organizing Network for
Unsupervised and Supervised Learning. TR-93-026, May 1993, International
Computer Science Institute Berkeley, California

[3] Hsinchun Chen. Machine Learning for Information Retrieval: Neural Networks,
Symbolic Learning, and Genetic Algorithms
Journal of the American Society for Information Science, 1994, in press.

[4] Kröse, B.J.A. and Smagt, P.P. van der. An Introduction to Neural Networks.
University of Amsterdam, Amsterdam, The Netherlands, 1994.

[5] F. Lange and G. Hirzinger, Learning to Improve the Path Accuracy of Position
Controlled Robots, IEEE/RSJ/GI Int. Conference on Intelligent Robots and Systems
IROS'94, München, Germany, Sept. 1994

[6] Lippmann, R.P., An introduction to computing with neural networks. IEEE
Acoustics Speech and Signal Processing Magazine, 4(2):4-22, April 1987.

[7] J. F. Nethery, Robotica: A structured environment for computer aided design and
analysis of robots, Master's thesis, University of Illinois, Urbana, IL, 1993.
Department of Electrical and Computer Engineering.

[8] Poggio, T. & Girosi, F. (1989), A theory of networks for approximation and
learning, Technical Report AIM-1140, Artificial Intelligence Laboratory and Center
for Biological Information Processing, Whitaker College, Massachusetts Institute of
Technology.

[9] T. Poston, C. Lee, Y. Choie, and Y. Kwon. Local minima and backpropagation,
in International Joint Conference on Neural Networks, vol.2, (Seattle, (WA)), pp.
173-176, IEEE Press, July 1991

Appendix B 133

B.1 Publications

[10] Shavlik Jude W., Raymond J. Mooney, Geoffrey G. Towell. Symbolic and
Neural Learning Algorithms: An Experimental Comparison. TR 857, Computer
Sciences Department, University of Wisconsin-Madison, June 1989.

[11] Shavlik Jude W. A Framework for Combining Symbolic and Neural Learning.
TR 1123, Computer Sciences Department, University of Wisconsin-Madison, WI,
November 1992.

[12] Smagt P. van der, and F. Groen. Approximation with neural networks: Between
local and global approximation. In Proceedings of the 1995 International Conference
on Neural Networks, pages II:1060-II:1064, 1995. (Invited paper).

[13] Smagt, P. van der and Schulten, K. Control of pneumatic robot arm dynamics
by a neural network. In World congress on neural networks pg III/180--183.
Lawrence Erlbaum Associates, Inc., Hillsdale, NJ, Portland, OR, USA, 1993.

[14] Stone, Henry W. Kinematic modelling, identification, and control of robotic
manipulators. Dissertation. Carnegie Mellon University, 1986

[15] Vysniauskas, V. and Groen, F.C.A. and Kröse, B.J.A. The optimal number of
learning samples and hidden units in function approximation with a feedforward
network. CS-93-15, 1993.

[16] Whitney, D. E. and Lozinski, C.A. Industrial Robot Calibration Methods and
Results. In the Proceedings of the international Computers in Engineering
Conference, pages 92-100. ASME, New York, August, 1984. Las Vegas, NV.

[17] S. Wolfram, Mathematica: A System for Doing Mathematics by Computer.
New York, NY: Addison-Wesley Publishing Company, Inc, 1991.

Appendix C 134

C++ Sources: Symbol definitions

Appendix C

C++ Source code

Symbol definitions

/**
 toolunit.h
 Jens- Uwe Dolinsky
 07.03. 2001
***/
#ifndef _TOOLUNIT
#define _TOOLUNIT

#define bool unsigned short
#define true 1
#define false 0
#define max_token_length 200

typedef char symbolstringtyp[max_token_length]; // for Scanner

enum Tsymbole {BEGINNING, ENDTOKEN,
 IDENTIFIER,
 DOT,
 INVALID, OPEN_PARAN, CLOSE_PARAN,
 DOUBLECROSS,
 FUNC_TOKEN, VARIABLE, STRING_CONST,
 NUM_TOKEN, FLOATNUMBER,
 GP_DIVISION,
 MULTIP_TOKEN, DIV_TOKEN, ADD_TOKEN,
 SUB_TOKEN,
 };

#define dash_operator(c) ((c==SUB_TOKEN)||(c==ADD_TOKEN))
#ifdef MATRIX_GA
#define dot_operator(c) ((c==MULTIP_TOKEN)||(c==DIV_TOKEN)||(c==GP_DIVISION))
#else
#define dot_operator(c) ((c==MULTIP_TOKEN)||(c==DIV_TOKEN))
#endif

#endif

GP tree implementation

/**
 knot_tab.h

**/
#include <string.h>

#ifndef _KNOTTAB
#define _KNOTTAB

Appendix C 135

C++ Sources: GP tree implementation

#ifdef NO_STRING_CLASS
#define STRING_TO_CHARPT get_local_string()
class String
{ private:
 int mem_size,length;
 char* ptr;
 void append(const char *);
 int my_strlen(const char*s)
 { if (s==NULL) return 0;
 return strlen(s);
 }
 void init();
 public:
 const char* get_local_string()
 { return ptr; }
 String(String &);
 String(const char*);
 String();

 String& operator+=(const char*);
 String& operator=(String&);
 ~String();
};

typedef String string_class;
#else
#ifdef COMPILE_FOR_LINUX
#include <string>
typedef string string_class;
#define STRING_TO_CHARPT c_str()

#else //Watcom
#include <string.hpp>
typedef String string_class;
#define STRING_TO_CHARPT operator char const*()
#endif
#endif

#include <stdio.h>
#include "toolunit.h"

class referenztyp //smart pointer management
{private:
 signed long references;
 protected:
 virtual ~referenztyp(){}
 referenztyp() { references = 0;}
 public:
 inline void create_reference() {references++;}
 static void remove_one_reference(referenztyp*);
};

class Node;
typedef Node *PNode;

class klisttyp : public referenztyp
{ friend class node_managertype;
 protected:
 void set_pred(klisttyp *p) {Predecessor=p;}
 void set_succ(PNode s) {Successor=s;}
 public:
 klisttyp *linlist_predecessor;
 PNode linlist_successor;
 klisttyp *Predecessor;
 PNode Successor;
 inline klisttyp(klisttyp*);
 inline klisttyp();
 virtual ~klisttyp();
};

class Node_page: public klisttyp
{ public:
 int breite,hoehe;
 PNode lnext,rnext;
 PNode aequivalent;
 double double_value;
 int number_of_nodes;
 void init_aequivalences();
 inline Node_page(PNode,PNode,klisttyp*);
 virtual ~Node_page();
};

class node_managertype: public referenztyp
{ private: klisttyp vars_,numbers_,stringconst_,floats_,
 funcs_,mult_,div_,add_,sub_,else_;
 public:
 klisttyp linear_list;
 klisttyp *linear_last_element;

Appendix C 136

C++ Sources: GP tree implementation

 node_managertype()
 { linear_last_element=&linear_list;
 }
 public:
 virtual ~node_managertype(){}
 PNode searchNode(const char*,const Tsymbole,const PNode,const PNode);
 PNode getFunctionNode(const char*,const PNode);
};

#ifdef COMPILE_FOR_LINUX
#define STRING_COMPARE(a,b) strcasecmp(a,b)
#else
#define STRING_COMPARE(a,b) strcmpi(a,b)
#endif

class Node :public Node_page
{ friend class node_managertype;
 private:
 char *constant;
 node_managertype *node_list;
 Node(const Tsymbole,Node*,Node*,node_managertype*,klisttyp*);
 Node(const char*,const Tsymbole,node_managertype*,klisttyp*);
 Node(const char*,PNode,node_managertype*,klisttyp*);
 virtual ~Node();

 public:
 static PNode createNode(const char*,const Tsymbole,const PNode,const
PNode);//constructs new nodes

 PNode getFunctionNode(const char* name,const PNode args)
 { return node_list->getFunctionNode(name,args);
 }
 PNode get_node(const PNode h)
 { return get_node(h->wert(),h->symbol,h->lnext,h->rnext);
 }
 PNode get_node(const char* symbolstring,
 const Tsymbole scannersymbol,
 const PNode next_left,
 const PNode next_right)
 { return node_list->searchNode(symbolstring,scannersymbol,next_left,next_right);
 }

 int compare_identifiers(const char* s) {return
STRING_COMPARE(wert(),s);}
 static int compare_identifiers(const char*s1,const char*s2){return
STRING_COMPARE(s1,s2);}
 const char *get_Nodevalue();
 const Tsymbole symbol;
 const char *wert() {return constant;}
 static PNode get_float_node(PNode);
 void output_infix__(string_class*,Tsymbole=ENDTOKEN,bool=false);
 void output_infix(FILE*);
 void calculate_list();
 };//Node

typedef class Node_class //aquisition control
{ public:
 PNode n;
 Node_class(PNode h)
 { n=h;
 n->create_reference();
 }
 Node_class(char *s,Tsymbole sym)
 { n = Node::createNode(s,sym,NULL,NULL);
 }
 ~Node_class()
 { Node::remove_one_reference(n);
 }
} Node_wrapper;

#endif

//knot_tab.cpp
#include "knot_tab.h"

klisttyp::klisttyp(klisttyp *liste)
{ Predecessor=liste;
 { Successor=liste->Successor;
 if (liste->Successor != NULL)
 liste->Successor->Predecessor=this;
 liste->Successor=(PNode)this;
 }
}

klisttyp::klisttyp()
{ Predecessor=NULL;
 Successor=NULL;
 linlist_predecessor=NULL;
 linlist_successor=NULL;
}

klisttyp::~klisttyp()
{

Appendix C 137

C++ Sources: GP tree implementation

 if (Predecessor!=NULL) Predecessor->set_succ(Successor);
 if (Successor!=NULL) Successor->set_pred(Predecessor);
}

Node_page::Node_page(PNode left,PNode right,klisttyp *liste)
 :klisttyp(liste)
{ lnext=left;
 rnext=right;
 aequivalent=NULL;
 number_of_nodes=1;
 if (lnext!=NULL)
 number_of_nodes+=lnext->number_of_nodes;
 if (rnext!=NULL)
 number_of_nodes+=rnext->number_of_nodes;
}

Node_page::~Node_page()
 { remove_one_reference(lnext);
 remove_one_reference(rnext);
 remove_one_reference(aequivalent);
 }

void Node_page::init_aequivalences()
{
 if (lnext!=NULL) lnext->init_aequivalences();
 if (rnext!=NULL) rnext->init_aequivalences();
 remove_one_reference(aequivalent);
}

void referenztyp::remove_one_reference(referenztyp* h)
{ if (h!=NULL)
 {
 if (--h->references == 0)
 delete h;
 }
}

#include <stdlib.h>//fuer atof in matrix_ga mode

//Constructor for Leaf node
Node::Node(const char* s,
 const Tsymbole sym,
 node_managertype *node_liste,
 klisttyp *last_element)
 :Node_page(NULL,NULL,last_element),symbol(sym)

{
 constant = new char[strlen(s)+1];
 strcpy(constant,s);

 node_list=node_liste;
 node_list->create_reference();
 if ((sym==NUM_TOKEN)||(sym==FLOATNUMBER)) double_value=atof(s);
 linlist_predecessor=NULL;
 linlist_successor=NULL;
}

//constructor for function node
Node::Node(const char* s,
 PNode argument,
 node_managertype *node_liste,
 klisttyp *last_element)
 :Node_page(NULL,argument,last_element),symbol(FUNC_TOKEN)
{
 constant = new char[strlen(s)+1];
 strcpy(constant,s);

 node_list=node_liste;
 node_list->create_reference();
 linlist_predecessor=node_list->linear_last_element;
 linlist_predecessor->linlist_successor = this;
 linlist_successor=NULL;
 node_list->linear_last_element=this;
}//constructor

Node::Node(const Tsymbole sym,Node *links,Node *rechts,
 node_managertype *node_liste,klisttyp *last_element)
 :Node_page(links,rechts,last_element),symbol(sym)
{
 constant=NULL;
 node_list=node_liste;
 node_list->create_reference();
 linlist_predecessor=node_list->linear_last_element;
 linlist_predecessor->linlist_successor = this;
 linlist_successor=NULL;
 node_list->linear_last_element=this;
}

Node::~Node()
{

Appendix C 138

C++ Sources: GP tree implementation

 if (constant!=NULL) delete[] constant;

 if (node_list->linear_last_element==this)
 { if (linlist_predecessor==NULL)
 { printf("\nAbnormal termination");
 throw int(200);
 }
 node_list->linear_last_element=linlist_predecessor;
 }
 if (linlist_predecessor!=NULL)
 linlist_predecessor->linlist_successor = linlist_successor;
 if (linlist_successor!=NULL)
 linlist_successor->linlist_predecessor = linlist_predecessor;
 referenztyp::remove_one_reference(node_list);
}

/**/
#include <math.h>
#include <float.h> //for _fpreset

#include <signal.h>

#define MATH_NOT_EVALUABLE 9
#define ACCESS_VIOLATION 10

int matherr(struct _exception*/* er*/)
{
#ifdef DEBUG_VALUES
/*switch (er->type)
{ case DOMAIN: printf("\nA domain error has occurred , such as sqrt(-1e0)"); break;
 case SING: printf("\nA singularity will result, such as pow(0e0,-2)");break;
 case OVERFLOW:printf("\nAn overflow will result, such as pow(10e0,100)");break;
 case UNDERFLOW:printf("\nAn underflow will result, such as pow(10e0,-100)");break;
 case TLOSS: printf("\nTotal loss of significance will result, such as
exp(1000)");break;
 case PLOSS: printf("\nPartial loss of significance will result, such as
sin(10e70)");break;
 default :printf("\nunknown math exception");
}*/
#endif
 _fpreset();
 throw int(MATH_NOT_EVALUABLE);
}

void matherr_(int)
{
#ifndef COMPILE_FOR_LINUX
 _fpreset();
#endif
 signal(SIGFPE,matherr_);//needs to be reinstalled, otherwise default handling is
used
 throw int(ACCESS_VIOLATION);
}

class error_treatment
{public:
 error_treatment()
 {
#ifndef COMPILE_FOR_LINUX
 _fpreset();
#endif
 signal(SIGFPE,matherr_);
 // _set_matherr(&my_matherr);
 }
};
static error_treatment er;

/*
static int my_int()
{
 _set_matherr(&matherr);
 return 0;
}

static int iopu=my_int();
*/

#ifdef MATRIX_GA
void Node::calculate_list()
{int l=0;
 // PNode h;
 //_fpreset();
 /*try{*/
 for (PNode h=node_list->linear_list.linlist_successor;
 h!=NULL;
 h=h->linlist_successor,l++)
 {
 switch(h->symbol)
 { case ADD_TOKEN: h->double_value = h->lnext->double_value + h->rnext-
>double_value;continue;
 case SUB_TOKEN:h->double_value = h->lnext->double_value - h->rnext-
>double_value;continue;
 case MULTIP_TOKEN:h->double_value = h->lnext->double_value * h->rnext-
>double_value;continue;
 case GP_DIVISION: if (h->rnext->double_value == 0)

Appendix C 139

C++ Sources: GP tree implementation

 { h->double_value = 1;//closure condition
 continue;
 }//else perform a normal division
 case DIV_TOKEN:h->double_value = h->lnext->double_value / h->rnext-
>double_value;continue;
 case FUNC_TOKEN: if (h->compare_identifiers("SIN")==0)
 { h->double_value = sin(h->rnext->double_value);
 continue;
 }
 if (h->compare_identifiers("COS")==0)
 { h->double_value = cos(h->rnext->double_value);
 continue;
 }
 if (h->compare_identifiers("SQRTp")==0)
 { if (h->rnext->double_value<0)
 h->double_value = sqrt(-h->rnext->double_value);
 else h->double_value = sqrt(h->rnext->double_value);
 continue;
 }
 if (h->compare_identifiers("SIGN")==0)
 { if (h->rnext->double_value>0)
 h->double_value = 1;
 else if (h->rnext->double_value<0)
 h->double_value = -1;
 else h->double_value = 0;

 continue;
 }
 if (h->compare_identifiers("LOG")==0)
 { if (h->rnext->double_value==0)
 h->double_value = 1;
 else if (h->rnext->double_value<0)
 h->double_value = log(-h->rnext->double_value);
 else h->double_value = log(h->rnext->double_value);
 continue;
 }

 printf("\nFunction <%s> not implemented",h->wert());
 default: printf("\nnot implemented math function");
 throw int(MATH_NOT_EVALUABLE);
 }
 }
}
#endif

PNode node_managertype::getFunctionNode(const char* name,const PNode args)
{ klisttyp *h=&funcs_;
 int k;
 while (h->Successor!=NULL)
 { k=h->Successor->compare_identifiers(name);
 if (k==0) //descriptor must match
 { if (h->Successor->rnext > args)
 break;
 else if (h->Successor->rnext == args) //and the argument as well
 return h->Successor;
 }
 if (k>0) //weitersuchen nicht mehr notwendig
 break;//while
 h=h->Successor;
 }
 args->create_reference();
 return new Node(name,args,this,h);
}

PNode node_managertype::searchNode(const char* s,const Tsymbole sym,const PNode
l,const PNode r)
{ klisttyp *h;
 int k;
 if (sym==VARIABLE) h=&vars_; else
 if (sym==NUM_TOKEN) h=&numbers_; else
 if (sym==FLOATNUMBER) h=&floats_; else
 if (sym==STRING_CONST) h=&stringconst_; else
 if (sym==FUNC_TOKEN)
 { return getFunctionNode(s,r);
 } else //binary operations
 { switch(sym)
 {case MULTIP_TOKEN: h=&mult_; break;
 case DIV_TOKEN: h=&div_; break;
 case ADD_TOKEN: h=&add_; break;
 case SUB_TOKEN: h=&sub_; break;
 default: h=&else_; //all other operations
 while (h->Successor!=NULL)
 { if (h->Successor->symbol == sym)
 if (h->Successor->lnext == l)
 if (h->Successor->rnext == r)
 return h->Successor;
 h=h->Successor;
 }
 l->create_reference();

Appendix C 140

C++ Sources: GP tree implementation

 r->create_reference();
 return new Node(sym,l,r,this,h);
 }
 while (h->Successor!=NULL)//+-/* operations
 { if (h->Successor->lnext > l)
 break; else
 if (h->Successor->lnext == l)
 if (h->Successor->rnext == r)
 return h->Successor;
 h=h->Successor;
 }
 r->create_reference();
 l->create_reference();
 return new Node(sym,l,r,this,h);
 }//else
 while (h->Successor!=NULL)
 { k=h->Successor->compare_identifiers(s);
 if (k==0) return h->Successor;
 if (k>0)
 return new Node(s,sym,this,h);
 h=h->Successor;
 }
 return new Node(s,sym,this,h);

}

PNode Node::createNode(const char* s,const Tsymbole sym,const PNode l,const PNode r)
//constructs new nodes
{ node_managertype* node_list_= new node_managertype();
 PNode h=node_list_->searchNode(s,sym,l,r);
 h->create_reference();
 return h;
}

const char *Node::get_Nodevalue()
{ switch (symbol)
 { case MULTIP_TOKEN : return "*";
 case DIV_TOKEN : return "/";
 case ADD_TOKEN : return "+";
 case SUB_TOKEN : return "-";
#ifdef MATRIX_GA
 case GP_DIVISION : return "%";
#endif
 default : return wert();
 }
}

void Node::output_infix(FILE *stream)
{ string_class s="";
 output_infix__(&s);
 fprintf(stream,
#ifdef GP_SYSTEM
 "%s"
#else
 "\n%s"
#endif
 ,s.STRING_TO_CHARPT);
}

void Node::output_infix__(string_class* str,Tsymbole op_vater,bool right_branch)
{ bool with_brackets=false;
 switch(symbol)
 { case NUM_TOKEN:
 case STRING_CONST:
 if ((compare_identifiers("0")==0)&&(dash_operator(op_vater)))
 return;
 case VARIABLE: *str+=get_Nodevalue();return;
 case FUNC_TOKEN: *str+=get_Nodevalue();
 *str+="(";
 rnext->output_infix__(str);
 *str+=")";
 return;
 case MULTIP_TOKEN:
 if ((lnext->symbol==GP_DIVISION)||(rnext->symbol==GP_DIVISION))
 { with_brackets=true; break;}
 case GP_DIVISION:
 case DIV_TOKEN: if (op_vater==DIV_TOKEN) { with_brackets=true; break;}
 if (op_vater==GP_DIVISION) { with_brackets=true; break;}
 break;
 case SUB_TOKEN:
 case ADD_TOKEN: if (dot_operator(op_vater)) with_brackets=true;
 if ((op_vater==SUB_TOKEN)&&(right_branch)) with_brackets=true;
 }
 if (with_brackets) *str+="(";
 if (lnext!=NULL) lnext->output_infix__(str,symbol);
 *str+=get_Nodevalue();
 if (rnext!=NULL) rnext->output_infix__(str,symbol,true);
 if (with_brackets) *str+=")";
}

#ifdef NO_STRING_CLASS

Appendix C 141

C++ Sources: GP type definitions

 void String::append(const char*s)
 { if (s==NULL) return;
 int l=my_strlen(s);
 if (l!=0) //string contains something
 { char *ch_ptr;
 if ((length+l)>mem_size)
 { do mem_size+=1000;
 while ((length+l) > mem_size);
 ch_ptr=new char[mem_size];
 if (ptr==NULL) //if current string empty
 ch_ptr[0]=0;
 else { strcpy(ch_ptr,ptr);//copy old string
 delete []ptr;} //delete old memory
 ptr=ch_ptr;
 }
 strcat(ptr,s); //concatenate string
 length+=l;
 }
 }

 void String::init()
 { ptr=NULL;
 mem_size=length=0;
 }
//3 constructors
 String::String(const char*s)
 { init();
 append(s);
 }
 String::String(String &h)
 { init();
 append(h.get_local_string());
 }
 String::String()
 { init();
 }
//operators
 String& String::operator+=(const char* s)
 { append(s);
 return *this;
 }
 String& String::operator=(String& h)
 { if (ptr!=NULL)
 delete []ptr;
 init();
 append(h.get_local_string());
 return *this;
 }
 String::~String()
 { if (ptr!=NULL)
 delete[] ptr;
 }
#endif

GP type definitions

#ifndef GA_TYPES__
#define GA_TYPES__
#include "matrix.h"

enum var_type {NONLINEAR,LINEAR};
typedef struct { char* name;
 double value;
 var_type type;
 } variable_type;

class parameter_generator_type
//generates a new parameter (string) for further processing
{ char prefix[30]; //all parameter names starts with <prefix>
 public:
 int parameter_number; //number of parameters generated
 char actual_parameter[10];

 parameter_generator_type(char* name_prefix)
 { parameter_number=0;
 strcpy(prefix,name_prefix);
 }
 const char *generate_parameter()
 { sprintf(actual_parameter,"%s%i",prefix,++parameter_number);
 return actual_parameter;
 }
};

#include "my_templates.h"
#include <math.h>
class double_vector: public m_vector<double>
{public:
 double_vector(int d):m_vector<double>(d){}
 double sum_of_squares()
 { double z=0;
 for (int l=0; l<dimension; l++)

Appendix C 142

C++ Sources: GP type definitions

 z+=(data[l]*data[l]);
 return z;
 }
 double norm()
 { return sqrt(sum_of_squares());
 }
 void dump(char*);
};

class nodelist_type
{
 protected:
 PNode node_db;
 public :
 PNode *list;
 int count;

 void list_add(const char*name,double value)
 { list[count]=node_db->get_node(name,VARIABLE,NULL,NULL);
 list[count]->create_reference();
 list[count]->double_value=value;
 count++;
 }
 void add(const double_vector& v)
 {
 for (int l=0; l<count; l++)
 list[l]->double_value += v.data[l];
 }
 void backup_in(double_vector &v)
 { for (int l=0;l<count; l++)
 v.data[l]=list[l]->double_value;
 }
 void assign(const double v[])
 { for (int l=0; l<count; l++)
 list[l]->double_value=v[l];
 }
 void assign(const double_vector &v)
 { for (int l=0; l<count; l++)
 list[l]->double_value=v.data[l];
 }
 void print(FILE *ostr)
 { for (int l=0; l<count; l++)
 fprintf(ostr,"\n%s ,%lf",list[l]->wert(),list[l]->double_value);
 fflush(ostr);
 }
 nodelist_type(int size__,PNode node_base)
 { list=new PNode[size__];
 count=0;
 node_db=node_base;
 }
 ~nodelist_type()
 { while (count--)
 referenztyp::remove_one_reference(list[count]);
 delete []list;
 }
};

class parameterlist_type :public nodelist_type
{
 public:
 nodelist_type linear,nonlinear;
 parameterlist_type(int size__,PNode node_base):
 nodelist_type(size__,node_base),
 linear(size__,node_base),nonlinear(size__,node_base)
 {}
 void add_to_list(const char*name,var_type type,double value)
 { list_add(name,value);
 if (type==LINEAR)
 linear.list_add(name,value);
 else nonlinear.list_add(name,value);

 }
 void initialise(const variable_type vars[],int count_)
 { for (int l=0; l<count_; l++)
 add_to_list(vars[l].name,vars[l].type,vars[l].value);
 }
};

class chromosome_type
{
 public:
 static double random();
 static int random(int);
};// *p_chromosome_type;

enum F_status {EVALUATED,NOT_EVALUATED};

class abstract_chromosome
{
public:
 F_status status;
 double fitness;
 abstract_chromosome()

Appendix C 143

C++ Sources: GP resources

 { status=NOT_EVALUATED;
 }
};

typedef struct dataset_type//data format for calibration
{ double theta[6]; //set of joint angles
 double p[6]; //position measured by robotrak
} *p_dataset_type;

#endif

#include "ga_types.h"
#include <stdlib.h>

double chromosome_type::random()
{ double z= rand();
 z/=RAND_MAX;
 return z;
}

int chromosome_type::random(int range)
{ double z=range*rand();
 z/=RAND_MAX;
 z+=0.5;
 return (int)z;
}

GP resources

#ifndef __GP_RESOURCE__
#define __GP_RESOURCE__
static const MAX_SET_ELEMENTS=50;
enum gp_symbols {ADDITION,
 MULTIPLICATION,
 DIVISION,
 SUBTRACTION,
 VARIABLE_,
 EPHEMERAL,
 FUNCTION};

#include "ga_types.h"
class gp_i_set //parameters for GP system
{ public:
 struct
 { gp_symbols symbol;
 char *s;
 } elements[MAX_SET_ELEMENTS];
 int number;
 gp_i_set()
 { number=0;}
 void add(gp_symbols sym,char *str)
 { elements[number].symbol=sym;
 elements[number].s=str;
 number++;
 }
 int get_element_randomly(/*PNode db*/)
 { return chromosome_type::random(number-1);
 }
};

class gp_resource
{ Node_wrapper node_db;
 public:
 PNode create_random_terminal();
 gp_i_set terminals,
 functions;
 //gp_resource(PNode node_):node_db(node_)
 //{}
 double get_value() {return node_db.n->double_value;}
 void set_theta_value_and_compute_models(double v) const
 { node_db.n->double_value = v;
 node_db.n->calculate_list();
 }
 gp_resource(): node_db("theta",VARIABLE)
 {}
 const PNode get_nodeset() {return node_db.n;}
 PNode create_tree(int,const bool=false);
 static bool valid_tree(const PNode);
 static int tree_depth(const PNode);
 static PNode create_floatconst(PNode,double);

};

class gp_robot_chromosome_functions
{
 public:
 static int get_number_of_next_const_node(const PNode,const int);
 protected:

Appendix C 144

C++ Sources: GP resources

 static bool crossover(const PNode,const PNode,PNode[]);
 static PNode swap(const PNode,int,PNode);
 static PNode get_node(const PNode,int);
 static PNode create_tree(gp_resource&,int,bool);

};

class joint_section : private gp_robot_chromosome_functions
{ gp_resource *sys;
 PNode tree;
 PNode replace_random_leaf(const PNode);

 public:
 joint_section(gp_resource &s,int max_depth,bool full_depth)
 { tree = create_tree(s,max_depth,full_depth);
 sys=&s;
 }
 joint_section(gp_resource &s)
 { sys = &s;
 const PNode h = s.get_nodeset();
 tree = h->get_node(NULL,SUB_TOKEN,h->get_node("theta",VARIABLE,NULL,NULL),
 h->get_node("theta",VARIABLE,NULL,NULL));
 tree->create_reference();
 }
 joint_section(joint_section &s)//copy constructor; only used by GP
 { tree = s.tree;
 sys = s.sys;
 tree->create_reference();
 }
 ~joint_section()
 { Node::remove_one_reference(tree);
 }
 const gp_resource* get_resource() const {return sys;}
 const PNode get_tree() const {return tree;}
 double tree_value() const {return tree->double_value+sys->get_value();}
 bool crossover(joint_section*);
 bool mutation();
 joint_section* create_copy()
 { return new joint_section(*this);
 }
 void print(FILE *f)
 { tree->output_infix(f);
 }
 bool equals(const joint_section *h)
 { return (h->tree==tree);
 }
 void mutate_constant(int,double);
 int number_of_next_const_node(const int number) const
 { return get_number_of_next_const_node(tree,number);
 }
};

#endif

#include "gp_resource.h"
#include "gp_parameter.h"

PNode gp_robot_chromosome_functions::create_tree(gp_resource &gp_sets,int
max_depth,bool full_depth)
{ PNode temp;
 for(;;)
 { temp=gp_sets.create_tree(max_depth,full_depth);
 temp->create_reference();
 if (gp_resource::tree_depth(temp)>=MIN_TREE_DEPTH)
 if (gp_resource::valid_tree(temp))
 return temp;
 Node::remove_one_reference(temp);
 }
}

int gp_robot_chromosome_functions::get_number_of_next_const_node
 (const PNode tree,const int from_node)
{ for (int l=from_node; l<=tree->number_of_nodes; l++)
 if (get_node(tree,l)->symbol==FLOATNUMBER)//very inefficient
 return l;
 return 0;
}

PNode gp_robot_chromosome_functions::get_node(const PNode node,int node_number)
{ if (--node_number ==0)
 return node;
 if (node->lnext!=NULL)
 { if (node->lnext->number_of_nodes >= node_number)
 return get_node(node->lnext,node_number);
 node_number -=node->lnext->number_of_nodes;
 }
 return get_node(node->rnext,node_number);
}

Appendix C 145

C++ Sources: GP resources

PNode gp_robot_chromosome_functions::swap(const PNode node,int node_number,PNode
new_node)
{ if (--node_number ==0)
 return new_node;
 if (node->lnext!=NULL)
 { if (node->lnext->number_of_nodes >= node_number)
 return node->get_node(node->wert(),
 node->symbol,
 swap(node->lnext,node_number,new_node),
 node->rnext);
 node_number -=node->lnext->number_of_nodes;
 }
 return node->get_node(node->wert(),
 node->symbol,
 node->lnext,
 swap(node->rnext,node_number,new_node));
}

static inline bool leafnode(const PNode h)
{ return ((h->lnext==NULL) && (h->rnext==NULL));
}

bool gp_robot_chromosome_functions::crossover(const PNode el_1,const PNode el_2,PNode
new_nodes[])
{ int c1,c2;
 if (chromosome_type::random()< POINT_CROSSOVER_RATE)
 for(int l=0;l<INVALID_ATTEMPTS;l++)
 { c2=chromosome_type::random(el_2->number_of_nodes-1)+1;
 c1=chromosome_type::random(el_1->number_of_nodes-1)+1;
 new_nodes[0]=swap(el_1,c1,get_node(el_2,c2)); new_nodes[0]-
>create_reference();
 new_nodes[1]=swap(el_2,c2,get_node(el_1,c1)); new_nodes[1]-
>create_reference();
 if
(gp_resource::valid_tree(new_nodes[0])&&gp_resource::valid_tree(new_nodes[1]))
 return true;
 Node::remove_one_reference(new_nodes[0]);
 Node::remove_one_reference(new_nodes[1]);
 }
 else //no point mutation permitted
 {PNode k1,k2;
 for(int l=0;l<INVALID_ATTEMPTS;l++)
 { c2=chromosome_type::random(el_2->number_of_nodes-1)+1;
 c1=chromosome_type::random(el_1->number_of_nodes-1)+1;
 k1 = get_node(el_1,c1);
 k2 = get_node(el_2,c2);
 if (leafnode(k1) && (leafnode(k2))) continue;
 new_nodes[0]=swap(el_1,c1,k2); new_nodes[0]->create_reference();
 new_nodes[1]=swap(el_2,c2,k1); new_nodes[1]->create_reference();
 if
(gp_resource::valid_tree(new_nodes[0])&&gp_resource::valid_tree(new_nodes[1]))
 return true;
 Node::remove_one_reference(new_nodes[0]);
 Node::remove_one_reference(new_nodes[1]);
 }
 }
 fputchar('C');
 return false;
}

PNode gp_resource::create_floatconst(PNode node_db,double val)
{ char buffer[30];
 sprintf(buffer,"%0.16G",val);
 PNode h = node_db->get_node(buffer,FLOATNUMBER,NULL,NULL);
 h->double_value = val;
 return h;
}

PNode gp_resource::create_random_terminal()
{ int l = terminals.get_element_randomly();
 switch(terminals.elements[l].symbol)
 { case VARIABLE_: return node_db.n-
>get_node(terminals.elements[l].s,VARIABLE,NULL,NULL);
 //case NUMBER : return node_db.n-
>get_node(terminals.elements[l].s,NUM_TOKEN,NULL,NULL);
 case EPHEMERAL: return create_floatconst(node_db.n,chromosome_type::random());
 }
 throw int(0);
}

PNode gp_resource::create_tree(int depth,const bool full_depth_required)
{ if (--depth == 0)
 return create_random_terminal();
 if (!full_depth_required)
 if (chromosome_type::random(1)==1)
 return create_random_terminal();
 int l = functions.get_element_randomly();
 switch(functions.elements[l].symbol)
 { case ADDITION: return node_db.n->get_node(NULL,ADD_TOKEN,
create_tree(depth,full_depth_required),create_tree(depth,full_depth_required));
 case MULTIPLICATION:return node_db.n-
>get_node(NULL,MULTIP_TOKEN,create_tree(depth,full_depth_required),create_tree(depth,
full_depth_required));

Appendix C 146

C++ Sources: GP resources

 case DIVISION: return node_db.n-
>get_node(NULL,GP_DIVISION,create_tree(depth,full_depth_required),create_tree(depth,f
ull_depth_required));
 case SUBTRACTION: return node_db.n-
>get_node(NULL,SUB_TOKEN,create_tree(depth,full_depth_required),create_tree(depth,ful
l_depth_required));
 case FUNCTION: return node_db.n-
>get_node(functions.elements[l].s,FUNC_TOKEN,NULL,create_tree(depth,full_depth_requir
ed));
 }
 printf("Illegal element called from create_tree");
 throw int(0);
 //return NULL;
}

int gp_resource::tree_depth(const PNode h)
{ if (h==NULL) return 0;
 int l=tree_depth(h->lnext);
 int r=tree_depth(h->rnext);
 return 1+(r>l?r:l);
}

bool gp_resource::valid_tree(const PNode h)
{ int depth=tree_depth(h);
 if (depth > MAX_TREE_DEPTH)
 return false;
 if (depth < MIN_TREE_DEPTH)
 return false;
 if (h->symbol==FUNC_TOKEN)
 if (h->rnext->wert()!=NULL)
 if (strcmp(h->rnext->wert(),"SIGN")==0)
 return false;
 return true;
}

bool joint_section::crossover(joint_section *rc)
{ PNode new_trees[2];
 if (gp_robot_chromosome_functions::crossover(rc->tree,tree,new_trees)==false)
 return false;
 Node::remove_one_reference(tree); //deleting old trees
 Node::remove_one_reference(rc->tree);
 tree = new_trees[0];
 rc->tree = new_trees[1];
 return true;
}

PNode joint_section::replace_random_leaf(const PNode h)
{ switch(h->symbol)
 { case VARIABLE:
 case FLOATNUMBER:
 case NUM_TOKEN: { PNode h2;
 for (int l=0;l<INVALID_ATTEMPTS;l++)
 { h2 = sys->create_random_terminal();
 if (h2!=h)
 return h2;
 }
 return sys->create_random_terminal();
 }
 case FUNC_TOKEN: return h->get_node(h-
>wert(),FUNC_TOKEN,NULL,replace_random_leaf(h->rnext));
 }
 if (chromosome_type::random(1)==0)
 return h->get_node(h->wert(),h->symbol,replace_random_leaf(h->lnext),h->rnext);
 return h->get_node(h->wert(),h->symbol,h->lnext,replace_random_leaf(h->rnext));
}

void joint_section::mutate_constant(int number,double step)
{
 PNode h = get_node(tree,number);
 double val = h->double_value + step;
 h = swap(tree,number,gp_resource::create_floatconst(tree,val));
 h->create_reference();
 Node::remove_one_reference(tree);
 tree = h;
}

bool joint_section::mutation()//point or subtree mutation (Macro mutation))
{ int co_point;
 PNode h;
 double mut=chromosome_type::random();
 if (mut < POINT_MUTATION_RATE)
 { for (int l=0;l<INVALID_ATTEMPTS;l++)
 {
 co_point=chromosome_type::random(tree->number_of_nodes-1)+1;
 h = swap(tree,co_point,replace_random_leaf(get_node(tree,co_point)));
 h->create_reference();
 if (sys->valid_tree(h))
 { Node::remove_one_reference(tree);
 tree = h;
 //status=NOT_EVALUATED;
 return true;//successful mutation
 }
 Node::remove_one_reference(h);
 }
 }

Appendix C 147

C++ Sources: GP chromosome

 else if (mut < POINT_MUTATION_RATE+SHRINK_MUTATION_RATE)
 { co_point=chromosome_type::random(tree->number_of_nodes-1)+1;
 int depth = gp_resource::tree_depth(get_node(tree,co_point));
 if (depth==1)
 for (int l=0;l<INVALID_ATTEMPTS;l++)
 { h = swap(tree,co_point,sys->create_random_terminal());
 h->create_reference();
 if (h!=tree)
 { Node::remove_one_reference(tree);
 tree = h;
 return true;//successful mutation
 }
 Node::remove_one_reference(h);
 }
 else
 { h = swap(tree,co_point,sys->create_tree(chromosome_type::random(depth-
2)+1,false));
 h->create_reference();
 Node::remove_one_reference(tree);
 tree = h;
 return true;
 }
 }
 else for (int l=0;l<INVALID_ATTEMPTS;l++) //ordinary crossover
 { co_point=chromosome_type::random(tree->number_of_nodes-1)+1;
 h = swap(tree,co_point,sys->create_tree(INITIAL_MAX_TREE_DEPTH1,false));
 h->create_reference();
 if (sys->valid_tree(h))
 { Node::remove_one_reference(tree);
 tree = h;
 //status=NOT_EVALUATED;
 return true;//successful mutation
 }
 Node::remove_one_reference(h);
 }
 fputchar('M');
 return false;
}

GP chromosome

#ifndef __GP_CHROMOSOME__
#define __GP_CHROMOSOME__

#include "gp_resource.h"
#include "individual.h"

enum S_STAT_TYPE {MARKED,MODIFIED,UNMODIFIED};

class univariate_searcher:public abstract_chromosome
{ int const_number;
 double rate;
 double fitness_before_change;
 S_STAT_TYPE s_status;
 virtual void mutate_constant(int,double)=0;
 virtual int number_of_next_const_node(int) const =0;
 void modify_rate();
 protected:
 void init__()
 { status=NOT_EVALUATED;
 s_status=UNMODIFIED;
 }
 public:
 int number_of_constants() const;
 void change(int,double);
 univariate_searcher()
 { init__();
 rate=0.0;
 modify_rate();
 }
 virtual ~univariate_searcher(){}
 void mark();
};

class gp_robot_chromosome: public univariate_searcher
 // public abstract_chromosome
{ //instance properties
 dataset_type data[35];
 joint_section joint;
 const int theta_index_;

 void assign_theta(int l,int j) { data[l].theta[j]=joint.tree_value();}

 public:
 void add_joint_error(const double,const long);
 gp_robot_chromosome(gp_resource &s,int max_depth,bool full_depth,int _ind):
 joint(s,max_depth,full_depth),
 theta_index_(_ind)
 {}
 gp_robot_chromosome(gp_resource &s,int _ind)://creates one nominal instance 1*theta
 joint(s),
 theta_index_(_ind)

Appendix C 148

C++ Sources: GP chromosome

 {}
 virtual ~gp_robot_chromosome(){}
 const joint_section * get_joint() const {return &joint;}
 const dataset_type* get_local_data() const {return data;}
 double evaluate(long,kinematic_type*);
 void assign_points(const dataset_type[],const long);
 void replicate_thetavalues(const dataset_type[],const long,const int);
 double evaluate_m(const dataset_type[],long,kinematic_type*);
 static void evaluate_population(gp_robot_chromosome*population[],int
population_size,
 const dataset_type ds[],const long samples,
 kinematic_type* ind);
 void apply_corrections(dataset_type[],const int/*,const int*/) const;

 void crossover(gp_robot_chromosome *);
 void mutation();
 gp_robot_chromosome* create_copy()
 { return new gp_robot_chromosome(*this);
 }
 void print(FILE *f)
 { joint.print(f); }
 bool equals(const gp_robot_chromosome *);
private:
 virtual void mutate_constant(int number,double step)
 { joint.mutate_constant(number,step);
 }
public:
 virtual int number_of_next_const_node(int n) const
 { return joint.number_of_next_const_node(n);
 }
//next constant must be called

};
#endif

#include "gp_chromosome.h"
#include "gp_parameter.h"

#ifdef PARALLEL_MODELLING
#define FROM_VALUE 0
#define TARGET_VALUE 1
#define CURRENT_VALUE 2
#endif

double gp_robot_chromosome::evaluate(long rf_count,
 kinematic_type *ptr_kinematic_model)
{ status = EVALUATED;
 try
 {
#ifdef PARALLEL_MODELLING
 fitness = 0.0;
 for (int l=0; l<rf_count; l++)
 fitness+= fabs(data[l].theta[TARGET_VALUE]-data[l].theta[CURRENT_VALUE]);
#else
 fitness = ptr_kinematic_model->compute_position_error(data,rf_count);
#endif
 }
 catch(...)
 { printf(" FP ERROR");
 fitness= 100000000;//penalty
 }
 putchar('#');fflush(stdout);
 return fitness;
}

void gp_robot_chromosome::add_joint_error(const double delta_theta,const long
samples)
{ for (int l=0; l<samples; l++)
 data[l].theta[theta_index_]+=delta_theta;
}

void gp_robot_chromosome::evaluate_population(gp_robot_chromosome *population[],
 int
population_size,
 const dataset_type ds[],
 const long samples,
 kinematic_type *ind)
 { const gp_resource *gpr = population[0]->joint.get_resource();
#ifdef ID_ONE_FITS_ALL
 for (int l=0; l<samples; l++)
 for (int j=ID_FROM_JOINT-1; j<ID_UP_TO_JOINT; j++)
 { gpr->set_theta_value_and_compute_models(ds[l].theta[j]);

 for (int p=0; p<population_size; p++)
 population[p]->assign_theta(l,j);
 }
#else
 const int _t_index = population[0]->theta_index_;
 for (int l=0; l<samples; l++)
#ifdef PARALLEL_MODELLING
 { gpr->set_theta_value_and_compute_models(ds[l].theta[_t_index]);
 for (int p=0; p<population_size; p++)
 population[p]->assign_theta(l,CURRENT_VALUE);
 }
#else

Appendix C 149

C++ Sources: GP chromosome

 { gpr->set_theta_value_and_compute_models(ds[l].theta[_t_index]);
 for (int p=0; p<population_size; p++)
 population[p]->assign_theta(l,_t_index);
 }
#endif
#endif
 for (int p=0; p<population_size; p++)
 population[p]->evaluate(samples,ind);
 }

void gp_robot_chromosome::apply_corrections(dataset_type data_samples[],
 const int samples/*,
 const int __theta_index*/)
const
{ const gp_resource *gpr = joint.get_resource();

 for (int l=0; l<samples; l++)
 { gpr->set_theta_value_and_compute_models(data_samples[l].theta[theta_index_]);//
theta.list[0]->double_value = data[l].theta[j];
 data_samples[l].theta[theta_index_] = joint.tree_value();//tree[0]-
>double_value;
 }
}

void gp_robot_chromosome::replicate_thetavalues(const dataset_type data_samples[],
 const long samples,
 const int theta_index)
{ for (int l=0; l<samples; l++)
 data[l].theta[theta_index] = data_samples[l].theta[theta_index];
}

void gp_robot_chromosome::crossover(gp_robot_chromosome *rc)
{
 if (joint.crossover(&rc->joint)==true)
 { rc->init__();
 init__();
 }
}

void gp_robot_chromosome::mutation()//point or subtree mutation (Macro mutation))
{
 if (joint.mutation()==true)
 init__();
}

void univariate_searcher::modify_rate()
{
 rate = (.5-chromosome_type::random())*.001;
}

int univariate_searcher::number_of_constants() const
{ int counter = 0;
 for (int l=number_of_next_const_node(1);l!=0;l=number_of_next_const_node(l+1))
 counter++;
 return counter;
}

void univariate_searcher::mark()
{ if (s_status==UNMODIFIED)
 { s_status = MARKED;
 rate=0.0;
 }
}

void univariate_searcher::change(int number,double val)
{
 switch(s_status)
 { case MARKED: fitness_before_change=fitness;
 const_number = number;
 modify_rate();
 mutate_constant(const_number,rate);
 s_status=MODIFIED;
 return;
 case UNMODIFIED: fitness_before_change=fitness;
 rate = val;
 const_number = number;
 mutate_constant(number,val);
 s_status=MODIFIED;
 return;
 case MODIFIED: if (fitness_before_change >= fitness)//carry on if
 { if (number!=const_number)
 { const_number = number;
 modify_rate();
 }
 fitness_before_change=fitness;
 mutate_constant(const_number,rate);
 return;
 }
 modify_rate();
 mutate_constant(const_number,rate);
 }
}

Appendix C 150

C++ Sources: GP parameter

void gp_robot_chromosome::assign_points(const dataset_type ds[],const long samples)
{
#ifdef PARALLEL_MODELLING
 for (int l=0; l<samples; l++)
 { data[l].theta[TARGET_VALUE] = ds[l+samples].theta[theta_index_];
 data[l].theta[FROM_VALUE] = ds[l].theta[theta_index_];
 }
#else
 for (int l=0; l<samples; l++)
 { for (int p=0; p<3; p++)
 data[l].p[p] = ds[l].p[p];
 for (int j=0; j<6; j++)
 data[l].theta[j] = ds[l].theta[j];
 }
#endif
}

bool gp_robot_chromosome::equals(const gp_robot_chromosome *h)
{
 return joint.equals(&h->joint);
}

GP parameter

#ifndef __GP_PARAMETER
#define __GP_PARAMETER

#define INITIAL_MAX_TREE_DEPTH1 3 //initialisation of initial population : beginning
of ramp
#define INITIAL_MAX_TREE_DEPTH2 6 //depth at end of ramp
#define MAX_TREE_DEPTH 9
#define MIN_TREE_DEPTH 2
#define INVALID_ATTEMPTS 19 //how many attempts to create a offspring before
giving up
 //for crossover and mutation
#define POPULATION_SIZE 200 //GA
#define NUMBER_GENERATIONS 30
#define TOURNAMENT_SIZE 5
#define CROSSOVER_RATE 0.7 //0.8
#define MUTATION_RATE 0.3 //0.2

#define POINT_CROSSOVER_RATE 0.2

#define POINT_MUTATION_RATE 0.3
#define SHRINK_MUTATION_RATE 0.2

#define ELITIST__
#define PARALLEL_MODELLING

/**
 End of parameter declaration

***/

#ifdef ID_ONE_FITS_ALL
#define WITH_FITTING
#define ID_FROM_JOINT 1
#define ID_UP_TO_JOINT LAST_JOINT
#endif

#endif

GP system and calibration system

#ifndef __GP_SYSTEM
#define __GP_SYSTEM

#include "dataset.h"
#include "gp_chromosome.h"
#include "gp_parameter.h"

class abstract_gp_system
{
 public:
 virtual void correct(dataset_type[],const long)=0;
 virtual void ga(const dataset_type[],const long,FILE*)=0;
};

class gp_system:public abstract_gp_system
{ gp_resource gp_set;
 kinematic_type &kinematic_model;
 double nominal_fitness;
 gp_robot_chromosome *population[POPULATION_SIZE];
 gp_robot_chromosome *new_population[POPULATION_SIZE];
 const int theta_index;
#ifdef WITH_FITTING
 PNode joint_models[6];
#endif

Appendix C 151

C++ Sources: GP system and calibration system

 void init(int,int,int,bool);
 void init_half_and_half();
 bool already_in_population(const gp_robot_chromosome*,const int);
 void copy_populations(double);
 void breed_population(double);
 void apply_mutation_to_elements_having_fitness(double);
 void mutate_population();
 void reinitialise();
 public:
 int get_index_of_fittest();
 int breed_until_improvement(const dataset_type[],const
long,FILE*,int&,int);
 void replicate_thetavalues(const int,const long,const int);
 void replicate_thetavalues(const dataset_type[],const long,const int);
 public:

 void print(FILE*);
 gp_system(const dataset_type[],const long,kinematic_type&,int);
 ~gp_system();

 virtual void ga(const dataset_type[],const long,FILE*); //main function
 const gp_robot_chromosome* get_individual(int l) const {return population[l];}
 virtual void correct(dataset_type[],const long);
 void write_statistic(FILE *f);
};

class calibration_system :public abstract_gp_system
{ gp_system gp1,gp2,gp3,gp4,gp5;
#if LAST_JOINT==6
 gp_system gp6;
#endif
 gp_system *gp_systems[LAST_JOINT];
 int best_index[LAST_JOINT];
 Node_wrapper node_db;
 kinematic_type_with_derivative der;
 //double fitness;
 public:
 calibration_system(const dataset_type[],const long,kinematic_type&);
 virtual void ga(const dataset_type[],const long,FILE*); //main function
 virtual void correct(dataset_type[],const long);
 void write_statistic(FILE *f);
};
#endif

#include "gp_system.h"

calibration_system::calibration_system(const dataset_type ds[],const long
n,kinematic_type& i_)
 :gp1(ds,n,i_,0),
 gp2(ds,n,i_,1),
 gp3(ds,n,i_,2),
 gp4(ds,n,i_,3),
 gp5(ds,n,i_,4),
#if LAST_JOINT==6
 gp6(ds,n,i_,5),
#endif
 node_db("theta",VARIABLE),
 der(node_db.n,PUMA_parametric,6,tool)
 { gp_systems[0]=&gp1;
 gp_systems[1]=&gp2;
 gp_systems[2]=&gp3;
 gp_systems[3]=&gp4;
 gp_systems[4]=&gp5;
#if LAST_JOINT==6
 gp_systems[5]=&gp6;
#endif
 for (int l=0; l<LAST_JOINT; l++)
 best_index[l]=-1;
 }

#ifdef PARALLEL_MODELLING
 #define SEQUENTIAL_
#endif

void calibration_system::ga(const dataset_type poses[],const long samples,FILE*
logfile)
{
#ifdef SEQUENTIAL_
 int joint = 0;
#else
 int joint = der.select_joint(poses,samples,logfile);
#endif
 int number_of_generations=NUMBER_GENERATIONS;
 int i=-1;
 int hjoint;
 for (int g=0;; g++)
 {
 if (g>=number_of_generations)
 {
#ifdef SEQUENTIAL_
 if ((joint+1)<LAST_JOINT)
 { joint++;
 g=0;
 continue;

Appendix C 152

C++ Sources: GP system and calibration system

 }
#endif
 int gh = kinematic_type::get_integer_from_stdin("\nHow many generations: ");
 if (gh>0) number_of_generations+=gh;
 else break;
#ifdef SEQUENTIAL_
 hjoint = kinematic_type::get_integer_from_stdin("\nWhich joint 0-5: ");
 if (hjoint!=joint)
 { i = gp_systems[joint]->get_index_of_fittest(); //i is the index of the best
individual
#ifndef PARALLEL_MODELLING
 if (i!=-1)
 { const dataset_type *ds=gp_systems[joint]->get_individual(i)-
>get_local_data();
 for (int p=0; p<LAST_JOINT; p++)
 if (p==joint) gp_systems[p]->replicate_thetavalues(i,samples,joint);
 else gp_systems[p]->replicate_thetavalues(ds,samples,joint);
 }
#endif
 joint=hjoint;
 printf("\nSwitch to joint %i",joint);
 }
 }
 i = gp_systems[joint]-
>breed_until_improvement(poses,samples,logfile,g,number_of_generations);
 if (i != -1) best_index[joint] = i; //i is the index of the best individual
#else
 }
 i = gp_systems[joint]-
>breed_until_improvement(poses,samples,logfile,g,number_of_generations);
 if (i != -1)
 { best_index[joint] = i; //i is the index of the best individual
 const dataset_type *ds=gp_systems[joint]->get_individual(i)->get_local_data();
 hjoint = der.select_joint(ds,samples,logfile);
 // hjoint = kinematic_type::get_integer_from_stdin("\nWhich joint 0-5: ");

 if (hjoint!=joint)
 { for (int p=0; p<LAST_JOINT; p++)
 if (p==joint) gp_systems[p]->replicate_thetavalues(i,samples,joint);
 else gp_systems[p]->replicate_thetavalues(ds,samples,joint);
 joint=hjoint;
 //fprintf(logfile,"\nSwitch to joint %i",joint);
 printf("\nSwitch to joint %i",joint);
 }
 }
#endif
 }
} //main function

int gp_system::get_index_of_fittest()
{ int index=0;
 for (int l=1; l<POPULATION_SIZE; l++)
 if (population[l]->fitness < population[index]->fitness)
 index = l;
 return index;
}

void gp_system::correct(dataset_type ds[],const long samples) //one model fits all
{
 const gp_robot_chromosome *best =population[get_index_of_fittest()];
 // for (int j=0; j<LAST_JOINT; j++)
 best->apply_corrections(ds,samples/*,j*/);
 // double fitness=kinematic_model.compute_position_error(ds,samples);
}

void calibration_system::correct(dataset_type ds[],const long samples)//individual
models
{
 for (int j=0; j<LAST_JOINT; j++)
 if (best_index[j]!=-1)
 gp_systems[j]->correct(ds,samples);
}

gp_system::gp_system(const dataset_type teachpoints[],
 const long REF_SAMPLES,kinematic_type& m,
 int _index)
 :kinematic_model(m)
 ,theta_index(_index)
{
 gp_set.terminals.add(EPHEMERAL,NULL);
 gp_set.terminals.add(VARIABLE_,"theta");

 gp_set.functions.add(ADDITION,NULL);
 gp_set.functions.add(SUBTRACTION,NULL);
 gp_set.functions.add(MULTIPLICATION,NULL);
 gp_set.functions.add(DIVISION,NULL);

 gp_set.functions.add(FUNCTION,"SIN");
 gp_set.functions.add(FUNCTION,"COS");
 gp_set.functions.add(FUNCTION,"SIGN");
 gp_set.functions.add(FUNCTION,"SQRTp");

 init_half_and_half();

Appendix C 153

C++ Sources: GP system and calibration system

 for (int p=0; (p<POPULATION_SIZE); p++)
 population[p]->assign_points(teachpoints,REF_SAMPLES);
 gp_robot_chromosome::evaluate_population(population,POPULATION_SIZE,
 teachpoints,REF_SAMPLES,&kinematic_model);
 nominal_fitness =
kinematic_model.compute_position_error(teachpoints,REF_SAMPLES);
 printf("\nnominal fitness: %0.16G, best fitness %0.16G"
 ,nominal_fitness,population[get_index_of_fittest()]->fitness);

}

gp_system::~gp_system()
 { for (int l=0; l<POPULATION_SIZE; l++)
 delete population[l];
 }

void gp_system::print(FILE*f)
 { for (int l=0; l<POPULATION_SIZE; l++)
 population[l]->print(f);
 }

void gp_system::replicate_thetavalues(const dataset_type ds[],
 const long samples,
 const int theta_index)
{ for (int l=0; l<POPULATION_SIZE; l++)
 population[l]->replicate_thetavalues(ds,samples,theta_index);
}

void gp_system::replicate_thetavalues(const int index,
 const long samples,
 const int theta_index)
{ const dataset_type *ds = population[index]->get_local_data();
 for (int l=0; l<POPULATION_SIZE; l++)
 if (l!=index)
 population[l]->replicate_thetavalues(ds,samples,theta_index);
}

bool gp_system::already_in_population(const gp_robot_chromosome *h,const int index)
{
 for (int l=0; l<index; l++)
 if (population[l]->equals(h))
 return true;
 return false;
}

void gp_system::init(int i1,int i2,int max_depth,bool full_depth)
{ gp_robot_chromosome *temp;
 for (int l=i1; l<i2; l++) //creating individuals in the intervall i1-i2
 { for(;;)
 { temp=new gp_robot_chromosome(gp_set,max_depth,full_depth,theta_index);
 if (already_in_population(temp,l))
 { delete temp;
 continue;
 }
 break;
 }
 population[l]= temp;
 }
}

#ifndef ID_ONE_FITS_ALL
#define WITH_ONE_NONRANDOM
#endif

void gp_system::init_half_and_half()
{ int interval_size = (POPULATION_SIZE
#ifdef WITH_ONE_NONRANDOM
 -1
#endif
)/(INITIAL_MAX_TREE_DEPTH2-INITIAL_MAX_TREE_DEPTH1+1);
 int interval_half = interval_size/2;
 //for (int li=0
 int interval_start=
#ifdef WITH_ONE_NONRANDOM
 1;
 population[0]=new gp_robot_chromosome(gp_set,theta_index);
#else
 0;
#endif
 int interval_middle,interval_end;
 for (int depth=INITIAL_MAX_TREE_DEPTH1; depth<=INITIAL_MAX_TREE_DEPTH2; depth++)
 { interval_middle = interval_start + interval_half;
 interval_end = interval_start + interval_size;

 init(interval_start ,interval_middle,depth,true);//full sized trees
 init(interval_middle,interval_end ,depth,false);//arbitrarily sized trees
 interval_start +=interval_size;
 }
 init(interval_start,POPULATION_SIZE,INITIAL_MAX_TREE_DEPTH2,true);
}

void gp_system::copy_populations(double fittest)

Appendix C 154

C++ Sources: GP system and calibration system

{ int counter=0;
 for (int l=0;l<POPULATION_SIZE; l++)
 { delete population[l];
 population[l]=new_population[l];
 if (population[l]->fitness == fittest)
 if (counter++ > 0)
 population[l]->mutation();
 }
}

void tournament_pick(gp_robot_chromosome *population[],
 gp_robot_chromosome *tournament[],
 const int tournament_size,
 const int population_size)
{ long number;
 for (int l=0; l<tournament_size; l++)
 { number=chromosome_type::random(population_size-1);
 for (int k=0; k<l; k++) //picking different individuals
 if (tournament[k]==population[number])
 { number=chromosome_type::random(population_size-1);
 k=-1;
 }
 tournament[l] = population[number];
 }
}

static gp_robot_chromosome
 *get_fittest(gp_robot_chromosome *tournament[],const int tournament_size)
{ int index =0;
 for (int l=1; l<tournament_size; l++)
 if (tournament[l]->fitness < tournament[index]->fitness)
 index = l;
 return tournament[index];
}

#include <float.h>
//static FILE *logfile;

double print_fittest(FILE *stream,gp_robot_chromosome *population[],
 int population_size,
 bool show_individual,
 const int theta_index)
{ double z=population[0]->fitness;
 double average=z;
 int index=0;
 _fpreset();
 for (int l=1; l<population_size; l++)
 {if (population[l]->fitness < z)
 { z=population[l]->fitness;
 index=l;
 }
 average+=population[l]->fitness;
 }
 average/=population_size;
 fprintf(stdout,"\njoint %i Average: %0.16G Best_performance: %0.16G
",theta_index,average,z);
 fprintf(stream,"\njoint %i Average: %0.16G Best_performance: %0.16G
",theta_index,average,z);
 if (show_individual==true)
 population[index]->print(stream);
 population[index]->print(stdout);

 fflush(stdout);
 return z;
}

void calibration_system::write_statistic(FILE *f)
{
 for (int l=0; l<LAST_JOINT; l++)
 { fprintf(f,"\nJoint %i\n",l+1);
 gp_systems[l]->write_statistic(f);
 }
}

void gp_system::write_statistic(FILE *f)
{
 print_fittest(f,population,POPULATION_SIZE,true,theta_index);
}

int get_index_of_worst(gp_robot_chromosome *population[],int population_size)
{ int worst_index=0;
 for (int l=1;l<population_size;l++) //searching worst individual; function to be
tuned
 if (population[l]->fitness > population[worst_index]->fitness)
 worst_index=l;
 return worst_index;
}

gp_robot_chromosome* create_copy_of_fittest(gp_robot_chromosome *population[],int
length)
{ gp_robot_chromosome *fittest=population[0];
 for (int l=1; l<length; l++)
 if (population[l]->fitness < fittest->fitness)
 fittest = population[l];

Appendix C 155

C++ Sources: GP system and calibration system

 return fittest->create_copy();
}

int evaluate_pick(gp_robot_chromosome *parent1,//best individual from
tournament 1
 gp_robot_chromosome *parent2,//best individual from
tournament 1
 //dataset_type training[], long tr_count,
 // const dataset_type reference[],long rf_count,
 //PNode knode_db,
 gp_robot_chromosome *new_creations[])
{
 gp_robot_chromosome *p1= parent1->create_copy();
 gp_robot_chromosome *p2= parent2->create_copy(); //create local copies
 // of both parents
 new_creations[0]=p1;
 new_creations[1]=p2;
 double rate_ = chromosome_type::random();
 if (rate_< CROSSOVER_RATE)
 { p1->crossover(p2);
 return 2;
 }
 else if (rate_ < CROSSOVER_RATE+MUTATION_RATE)
 { p1->mutation();
 delete p2;
 return 1;
 }
 delete p2;
 return 1;
}

int comp_const_mutations(const gp_robot_chromosome *fittest,gp_robot_chromosome
*new_population[])
{ int cnum = fittest->number_of_constants();
 if (cnum < (POPULATION_SIZE-10))
 { int cind = new_population[0]->number_of_next_const_node(1);
 for (int l=1; l<=cnum; l++)
 { new_population[l]=new_population[0]->create_copy();
 new_population[l]->change(cind,0.001);
 cind = new_population[0]->number_of_next_const_node(cind+1);
 }
 return cnum;
 }
 return 0;
}

void gp_system::breed_population(double fittest)
{ gp_robot_chromosome *tournament1[TOURNAMENT_SIZE];
 gp_robot_chromosome *tournament2[TOURNAMENT_SIZE];
 gp_robot_chromosome *new_creations[2];
 int creations;
#ifdef ELITIST__
 new_population[0]=create_copy_of_fittest(population,POPULATION_SIZE);
 int cnum = comp_const_mutations(new_population[0],new_population);
 new_population[0]->mark();
 for (int p=1+cnum; (p<(POPULATION_SIZE)); p++)
#else
 for (int p=0; (p<(POPULATION_SIZE)); p++)
#endif
 {
tournament_pick(population,tournament1,TOURNAMENT_SIZE,POPULATION_SIZE);//selection

tournament_pick(population,tournament2,TOURNAMENT_SIZE,POPULATION_SIZE);//selection
 creations = evaluate_pick(get_fittest(tournament1,TOURNAMENT_SIZE),
 get_fittest(tournament2,TOURNAMENT_SIZE),
 new_creations);
 new_population[p]=new_creations[0];
 if (creations==2)
 { if (++p < (POPULATION_SIZE))
 new_population[p]=new_creations[1];
 else delete new_creations[1];
 }
 }
 copy_populations(fittest);
}

void gp_system::mutate_population()
{ printf("mutate population");
 int i=get_index_of_fittest();
 for (int l=0; l<POPULATION_SIZE; l++)
 if (l!=i)
 if (chromosome_type::random(1)==0)
 population[l]->mutation();

}

void gp_system::reinitialise()
{ printf("reinit population");
 gp_robot_chromosome *best=create_copy_of_fittest(population,POPULATION_SIZE);
 for (int l=0; l<POPULATION_SIZE; l++)
 delete population[l];
 init_half_and_half();
 delete population[0];
 population[0] = best;

Appendix C 156

C++ Sources: Homogenous Node matrix used by kinematic model

}

int gp_system::breed_until_improvement(const dataset_type teachpoints[],
 const long REF_SAMPLES,
 FILE *log_file_,
 int& generation,
 int number_of_generations)
{ double fittest=population[get_index_of_fittest()]->fitness;
 double tempf;
 gp_robot_chromosome::evaluate_population(population,POPULATION_SIZE,
 teachpoints,REF_SAMPLES,&kinematic_model);

 for (int counter=0; generation<number_of_generations; generation++)
 { printf("\ngeneration %i",generation);fflush(stdout);
 breed_population(fittest);
 gp_robot_chromosome::evaluate_population(population,POPULATION_SIZE,
 teachpoints,REF_SAMPLES,&kinematic_model);
 tempf=print_fittest(log_file_,population,POPULATION_SIZE,false,theta_index);
 if (fittest>tempf)
 { int index = get_index_of_fittest();
 population[index]->print(log_file_);
 return index;
 }
 if (++counter == 40) //if no better individuals occurred within 40 generations
 { //mutate_population();
 reinitialise(); //reinitialise the population to introduce new genetic
material
 counter=0;
 gp_robot_chromosome::evaluate_population(population,POPULATION_SIZE,
 teachpoints,REF_SAMPLES,&kinematic_model);
 tempf=print_fittest(log_file_,population,POPULATION_SIZE,false,theta_index);
 }
 }
 return -1;
}

void gp_system::ga(const dataset_type teachpoints[],const long REF_SAMPLES,
 FILE *log_file_/*,const double minimum_fitness*/)
{ double fittest=10000,tempf;
 int number_of_generations=NUMBER_GENERATIONS;
 printf("\nNumber of generations: %u\nPopulationsize: %u\nTournamentsize:
%u\n",NUMBER_GENERATIONS,POPULATION_SIZE,TOURNAMENT_SIZE);
#ifdef ELITIST__
 printf("Elitist mode\n");
#endif
 for (int g=0;; g++)
 {
 if (g==number_of_generations)
 { int gh = kinematic_type::get_integer_from_stdin("\nHow many generations: ");
 if (gh>0) number_of_generations+=gh;
 else break;
 }
 printf("\ngeneration %i",g);fflush(stdout);
 breed_population(fittest);
 gp_robot_chromosome::evaluate_population(population,POPULATION_SIZE,
 teachpoints,REF_SAMPLES,&kinematic_model);
 tempf=print_fittest(log_file_,population,POPULATION_SIZE,false,theta_index);
 if (fittest!=tempf)
 fittest=tempf;
 }

 tempf=print_fittest(log_file_,population,POPULATION_SIZE,true,theta_index);
}

Homogenous Node matrix used by kinematic model

#ifndef MATRIX__
#define MATRIX__
#include "parser.h"

typedef char *string_matrix_type[3][4];
typedef PNode node_matrix_type[3][4];
typedef double double_matrix_struct[4][4];
typedef double double_hmatrix[3][4];

/*
 xx, yx, zx, px;
 xy, yy, zy, py;
 xz, yz, zz, pz;
 0 0 0 1
 PNode xx, yx, zx, px;
 PNode xy, yy, zy, py;
 PNode xz, yz, zz, pz;
 0 0 0 1
*/
typedef class parameter_type
{public:
 char* name;
 Tsymbole type;
// parameter_type(){}
 parameter_type(char *n,const Tsymbole t)

Appendix C 157

C++ Sources: Homogenous Node matrix used by kinematic model

 { name=n;
 type=t;
 }
} *p_parameter_type;

class plain_nodelist_type
{ public :
 PNode *list;
 int count;

 void list_add_element(PNode new_node)
 { list[count]= new_node;
 list[count]->create_reference();
 count++;
 }
 plain_nodelist_type(int size__)
 { list=new PNode[size__];
 count=0;
 }
 ~plain_nodelist_type()
 { while (count--)
 referenztyp::remove_one_reference(list[count]);
 delete []list;
 }
};

class h_matrix //homogenous matrix
{
 private:
 PNode zero,one;
 void initialise(node_matrix_type,const string_matrix_type);
 static void create_references(node_matrix_type);
 static void delete_matrix(node_matrix_type);
 PNode mult(PNode,PNode);
 PNode add(PNode,PNode);
 void translate(p_parameter_type,const int);
 void multiplication(node_matrix_type,node_matrix_type,bool=false);
 void r_multiplication(h_matrix&);
 void multiplication(node_matrix_type,const node_matrix_type,const
node_matrix_type,bool=false);
 void translate_x(p_parameter_type);
 void translate_y(p_parameter_type);
 void translate_z(p_parameter_type);
 void delete_rotation_matrix();
 public://for gp
 node_matrix_type matrix;
 public:
 void _add_tool(const double[]);
 const PNode node_set;
 h_matrix(const string_matrix_type,PNode);
 ~h_matrix();
 void r_multiplication(const string_matrix_type,bool=false);
};

extern const string_matrix_type ROTX,ROTY,ROTZ,IDENTITY_M;

#endif

#include "matrix.h"

void h_matrix::_add_tool(const double tool_[])
{
 char buffer[20];
 for (int l=0; l<3; l++)
 if (tool_[l]!=0.0)
 { parameter_type p(buffer,FLOATNUMBER);
 sprintf(buffer,"%6.6f",tool_[l]);
 switch (l)
 { case 0: translate_x(&p); break;
 case 1: translate_y(&p); break;
 case 2: translate_z(&p); break;
 }
 }
}

void h_matrix::translate(p_parameter_type p,const int pos_component)
{ PNode parameter=node_set->get_node(p->name,p->type,NULL,NULL);
// transl_derivatives.list_add_element(parameter); //add parameter name
 PNode h;
 for (int l=0; l<3; l++)
 { h=mult(matrix[l][pos_component],parameter);
 h=add(matrix[l][3],h);
 h->create_reference();
 referenztyp::remove_one_reference(matrix[l][3]);
 matrix[l][3]=h;
 }
}

void h_matrix::translate_x(p_parameter_type p)
{ translate(p,0);
}

void h_matrix::translate_y(p_parameter_type p)
{ translate(p,1);
}

Appendix C 158

C++ Sources: Homogenous Node matrix used by kinematic model

void h_matrix::translate_z(p_parameter_type p)
{ translate(p,2);
}

void h_matrix::delete_matrix(node_matrix_type m)
{ for (int row=0; row<3; row++)
 for (int column=0; column<4; column++)
 if (m[row][column]!=NULL)
 referenztyp::remove_one_reference(m[row][column]);
}

void h_matrix::delete_rotation_matrix()
{ for (int row=0; row<3; row++)
 for (int column=0; column<3; column++)
 if (matrix[row][column]!=NULL)
 {
 referenztyp::remove_one_reference(matrix[row][column]);
 matrix[row][column]=NULL;
 }
}

void h_matrix::create_references(node_matrix_type m)
{ for (int row=0; row<3; row++)
 for (int column=0; column<4; column++)
 m[row][column]->create_reference();
}
//***************************************
h_matrix::h_matrix(const string_matrix_type strings,PNode _node_set)
 :node_set(_node_set)
{ //node_set=_node_set; //set of nodes making the matrix up
 zero=node_set->get_node("0",NUM_TOKEN,NULL,NULL);
 zero->create_reference();
 one=node_set->get_node("1",NUM_TOKEN,NULL,NULL);
 one->create_reference();
 initialise(matrix,strings);//nodes are already referenced
}

h_matrix::~h_matrix()
{ referenztyp::remove_one_reference(zero);
 referenztyp::remove_one_reference(one);
 delete_matrix(matrix);
}

void h_matrix::initialise(node_matrix_type m,
 const string_matrix_type strings)
{ Parsertyp parser;
 for (int row=0; row<3; row++)
 for (int column=0; column<4; column++)
 m[row][column]=
 parser.read_expression(strings[row][column],node_set);
 //only one variable expected
}
//***

inline PNode h_matrix::mult(PNode left,PNode right)
{ if ((left==zero)||(right==zero)) return zero;
 if (left==one) return right;
 if (right==one) return left;
 return one->get_node(NULL,MULTIP_TOKEN,left,right);
}

inline PNode h_matrix::add(PNode left,PNode right)
{ if (left==zero) return right;
 if (right==zero) return left;
 return one->get_node(NULL,ADD_TOKEN,left,right);
}

void h_matrix::multiplication(node_matrix_type result,
 const node_matrix_type left,
 const node_matrix_type right,
 bool zero_scaling)
//main function performes mult. of homogenous matricies
{ PNode set=left[1][1],h; //node set vom anderen Node
 for (int r=0; r<3; r++)
 { for (int c=0; c<4; c++)
 { //element with first product
 result[r][c]=mult(left[r][0],right[0][c]);
 for (int l=1;l<3;l++)//adding all products
 { h=mult(left[r][l],right[l][c]);
 if (h==zero) continue;
 result[r][c]=add(result[r][c],h);
 }
 }
 if (!zero_scaling) //m[3][3]!=0
 if (left[r][3]!=zero)
 result[r][3]=add(result[r][3],left[r][3]);
 //adding last element to column vector
 }
}

Appendix C 159

C++ Sources: Kinematic forward model

void h_matrix::multiplication(node_matrix_type m1,node_matrix_type m2,bool
zero_scaling)
{ node_matrix_type res;
 multiplication(res,m1,m2,zero_scaling); //result <res> without references
 create_references(res);
 delete_matrix(matrix); //delete old matrix
 memcpy(matrix,res,sizeof(res)); //copy new matrix
}

void h_matrix::r_multiplication(h_matrix &ns)
{ multiplication(matrix,ns.matrix);
}

void h_matrix::r_multiplication(const string_matrix_type s,bool zero_scaling)
{ node_matrix_type h;
 initialise(h,s); //konvert
 multiplication(matrix,h,zero_scaling);
 delete_matrix(h);
}

const string_matrix_type
 ROTX={{"1", "0" ,"0" ,"0"},
 {"0", "COS(#1)" ,"-SIN(#1)","0"},
 {"0", "SIN(#1)" ,"COS(#1)" ,"0"}},
 ROTY={{"COS(#1)", "0" ,"SIN(#1)" ,"0"},
 {"0", "1" ,"0" ,"0"},
 {"-SIN(#1)","0" ,"COS(#1)" ,"0"}},
 ROTZ={{"COS(#1)" ,"-SIN(#1)","0" ,"0"},
 {"SIN(#1)" ,"COS(#1)" ,"0" ,"0"},
 {"0" ,"0" ,"1" ,"0"}},
 IDENTITY_M={{"1" ,"0" ,"0" ,"0"},
 {"0" ,"1" ,"0" ,"0"},
 {"0" ,"0" ,"1" ,"0"}};

Kinematic forward model

#ifndef INDIVIDUAL__
#define INDIVIDUAL__
#include "ga_types.h"

#include "my_templates.h"
#include "robot_parameter.h"

class kinematic_type //represents a forward kinematic robot model
{
public:
 h_matrix matrix; //matrix containing the symbolic expressions
 parameterlist_type joints; //direct accessable knodes of joint variables
private:
 parameterlist_type parameter;//,linear,nonlinear;//list of free parameters
 void joint_init();

public:
 static int get_integer_from_stdin(char*);
 void init_nominal_parameter();
 kinematic_type(PNode,const string_matrix_type[],int,const tool_type);
 virtual ~kinematic_type();

 double compute_position_error(const dataset_type[],long);
 void compute_forward_kinematic(dataset_type[],long);
 void print() {parameter.print(stdout);}
};

class kinematic_type_with_derivative: public kinematic_type
{ h_matrix der1,der2,der3,der4,der5;
#if LAST_JOINT==6
 h_matrix der6;
#endif
 h_matrix *derivative[LAST_JOINT];
 int get_joint_with_most_error_m1(const dataset_type[],long,FILE*);
 public:

 kinematic_type_with_derivative(PNode,const string_matrix_type[],int,const
tool_type);
 virtual ~kinematic_type_with_derivative(){}
 int select_joint(const dataset_type[],long,FILE*);
};
#endif

#include "individual.h"
//#include "..\kernel.ok\darstell.h"

//#define WITH_ORIENTATION

#ifdef WITH_ORIENTATION
#define MEASUREMENTS_PER_POSE 6
#else
#define MEASUREMENTS_PER_POSE 3

Appendix C 160

C++ Sources: Kinematic forward model

#endif

//experimental constructor;
kinematic_type::kinematic_type(PNode knode_db,
 const string_matrix_type robot_link[],
 int link_count,
 const tool_type tool)
 :matrix(IDENTITY_M,knode_db),//matrix is initialised with identity
 parameter(100,knode_db),
 joints(6,knode_db)
{ joint_init();
 for (int l=/*1*/0; l<link_count ;l++)
 matrix.r_multiplication(robot_link[l]);
 init_nominal_parameter();
 matrix._add_tool(tool);
}

kinematic_type_with_derivative::kinematic_type_with_derivative(PNode node_db,
 const string_matrix_type DH_links[],
 int link_number,const tool_type tool_)
 :kinematic_type(node_db,DH_links,link_number,tool_),
 //gradient(MEASUREMENTS_PER_POSE*NUMBER_OF_SAMPLES,LAST_JOINT),
 //error(MEASUREMENTS_PER_POSE*NUMBER_OF_SAMPLES), //vector of samples of
x,y,z errors
 //delta_theta(LAST_JOINT),
 der1(IDENTITY_M,node_db),
 der2(IDENTITY_M,node_db),
 der3(IDENTITY_M,node_db),
 der4(IDENTITY_M,node_db),
 der5(IDENTITY_M,node_db)
#if LAST_JOINT==6
 ,der6(IDENTITY_M,node_db)
#endif
 { derivative[0]=&der1;
 derivative[1]=&der2;
 derivative[2]=&der3;
 derivative[3]=&der4;
 derivative[4]=&der5;
#if LAST_JOINT==6
 derivative[5]=&der6;
#endif
 for (int j=0; j<LAST_JOINT; j++)
 { for (int l=0; l<6 ;l++)
 { if (j==l)
 derivative[j]->r_multiplication(DH_theta_derivative[j],true);
 else derivative[j]->r_multiplication(DH_links[l]);
 }
 derivative[j]->_add_tool(tool_);
 }
 }

int kinematic_type_with_derivative::select_joint(const dataset_type data[],
 long length,FILE
*logfile)
{

 return get_joint_with_most_error_m1(data,length,logfile);
}

int kinematic_type_with_derivative::get_joint_with_most_error_m1(const dataset_type
data[],
 long length,FILE
*logfile)
{
 int j;
 double performance[6]={0.0,0.0,0.0,0.0,0.0,0.0};
 double squared_pose_error[3]={0.0,0.0,0.0};
 double error[3];
 register double z;

 for (int l=0; l<length ;l++)
 {
 joints.assign(data[l].theta);
 matrix.node_set->calculate_list();//new computation of the whole model
 for (int x=0; x<3; x++)
 { z = (data[l].p[x] - matrix.matrix[x][3]->double_value);
 squared_pose_error[x] += z*z;//fabs(z);//(z*z);
 error[x]=z;
 }
 for (j=0; j<LAST_JOINT; j++)
 { z = 0.0;
 for (int x=0; x<3; x++)
 z+= (error[x] * derivative[j]->matrix[x][3]->double_value);
 performance[j] += fabs(z);
 }
 }
 fprintf(logfile," x: %0.16G y: %0.16G z: %0.16G",squared_pose_error[0],
 squared_pose_error[1],
 squared_pose_error[2]);

Appendix C 161

C++ Sources: Kinematic parameters

 int joint_index=0;
 fprintf(logfile," %0.16G",performance[0]);
 for (int x=1; x<LAST_JOINT; x++)
 { fprintf(logfile," %0.16G",performance[x]);
 if (performance[x] > performance[joint_index])
 joint_index = x;
 }
 fprintf(logfile," %i",joint_index);
 return joint_index;
}

#include <float.h>
#define NUMBER_OF_ITERATIONS 10

 kinematic_type::~kinematic_type()
 {}

void kinematic_type::init_nominal_parameter()
{
 for (int l=0; l<18 ;l++)
 parameter.add_to_list(DH_NOMINAL_PARAMETER_[l].name,
 DH_NOMINAL_PARAMETER_[l].type,
 DH_NOMINAL_PARAMETER_[l].value);
}

void kinematic_type::joint_init()
{
 char jn[10]="theta1";
 for (int l1=0; l1<6; l1++,jn[5]++) //extracting the joint variable nodes
 joints.add_to_list(jn,NONLINEAR,0);
}

void kinematic_type::compute_forward_kinematic(dataset_type data[],long count)
{
#ifdef WITH_ORIENTATION
 double rot[3];
#endif
 for (int l=0; l<count; l++)
 { joints.assign(data[l].theta);
 matrix.node_set->calculate_list();//new computation of the whole model
#ifdef WITH_ORIENTATION
 euler_angles(matrix.matrix,rot);
#endif
 for (int x=0; x<3; x++)
 { data[l].p[x]=matrix.matrix[x][3]->double_value;
#ifdef WITH_ORIENTATION
 data[l].p[x+3]=rot[x];
#endif
 }
 }
}

double kinematic_type::compute_position_error(const dataset_type data[],long length)
//distal performance
{ double z=0;
 double z2;
 for (int l=0; l<length ;l++)
 { joints.assign(data[l].theta);
 matrix.node_set->calculate_list();//new computation of the whole model
 for (int x=0; x<3; x++)
 { z2 = data[l].p[x] - matrix.matrix[x][3]->double_value;
 z +=(z2*z2);
 }
 }
 return z;
}

#include <stdlib.h>

int kinematic_type::get_integer_from_stdin(char* s)
{
 printf(s); fflush(stdout);
 char g_buffer[100];
 return atoi(gets(g_buffer));
}

Kinematic parameters

#ifndef __ROBOT_PARAMETER
#define __ROBOT_PARAMETER
const double PI = 3.1415926535897932385;
typedef double tool_type[3];
extern const tool_type tool;

struct DH_link_parameter
{ double alpha
 ,a

Appendix C 162

C++ Sources: Kinematic parameters

 ,d;
};

extern const DH_link_parameter PUMA720_parameter[6];

#define LAST_JOINT 6
#define NUMBER_OF_SAMPLES 30

#include "ga_types.h"

extern const variable_type DH_NOMINAL_PARAMETER_[];
extern const string_matrix_type DH_theta_derivative[];
extern const string_matrix_type PUMA_parametric[];//contains the Puma Model to be
calibrated
 //for experimental reasons
enum transf_type {ROT_X ,
 ROT_Y ,
 ROT_Z ,
 TRANSL_X ,
 TRANSL_Y ,
 TRANSL_Z ,
 NO_TRANS };

struct elementary_transformation_type
{ char *name;
 double Value;
 transf_type type;
};

//for test constructor
//extern const elementary_transformation_type PUMA_parameteric_2[];

#endif

#include "robot_parameter.h"

//main model parameter structure
//all other constant structures further below are defined from them
const DH_link_parameter PUMA720_parameter[6] =
 // alpha ,a ,d
 {{-PI/2 ,0 ,0},
 {0 ,650 ,191},
 {PI/2 ,0 ,0},
 {-PI/2 ,0 ,600},
 {PI/2 ,0 ,0},
 {0 ,0 ,125}};

/* black tool: length 150.25 thickness 20.0025
 aluminium tool 143.536 (hole to hole) 12.93 thickness
 142.067 hole to top centre (48.617: including tool)

*/
const tool_type tool =
 {150.25, 1.63, 55.69};//measured

#define LINK_PARAMETER(nr,link)\
 {"alpha"#nr,link.alpha,NONLINEAR},\
 {"a"#nr, link.a, LINEAR},\
 {"d"#nr, link.d, LINEAR}

const variable_type DH_NOMINAL_PARAMETER_[]
 ={LINK_PARAMETER(1, PUMA720_parameter[0]),
 LINK_PARAMETER(2, PUMA720_parameter[1]),
 LINK_PARAMETER(3, PUMA720_parameter[2]),
 LINK_PARAMETER(4, PUMA720_parameter[3]),
 LINK_PARAMETER(5, PUMA720_parameter[4]),
 LINK_PARAMETER(6, PUMA720_parameter[5])};

#define DH_STRING_M(theta,alpha,a,d)\
 {{"cos("theta")", "-cos("alpha")*sin("theta")", "sin("alpha")*sin("theta")" ,
a"*cos("theta")"},\
 {"sin("theta")", "cos("alpha")*cos("theta")" , "-sin("alpha")*cos("theta")",
a"*sin("theta")"},\
 {"0", "sin("alpha")" , "cos("alpha")", d}}

#define DH_THETA_DERIVATIVE_STRING_M(theta,alpha,a,d)\
 {{"-sin("theta")","-cos("alpha")*cos("theta")", "sin("alpha")*cos("theta")", a"*-
sin("theta")"},\
 {"cos("theta")" ,"-cos("alpha")*sin("theta")", "sin("alpha")*sin("theta")",
a"*cos("theta")"},\
 {"0" ,"0" , "0" ,"0" }}

const string_matrix_type PUMA_parametric[] //contains the Puma Model to be calibrated
 //for experimental reasons
 ={DH_STRING_M("theta1","alpha1","a1" ,"d1"),
 DH_STRING_M("theta2","alpha2","a2" ,"d2"),
 DH_STRING_M("theta3","alpha3","a3" ,"d3"),
 DH_STRING_M("theta4","alpha4","a4" ,"d4"),
 DH_STRING_M("theta5","alpha5","a5" ,"d5"),
 DH_STRING_M("theta6","alpha6","a6" ,"d6")};

const string_matrix_type DH_theta_derivative[]
 ={DH_THETA_DERIVATIVE_STRING_M("theta1","alpha1","a1" ,"d1"),
 DH_THETA_DERIVATIVE_STRING_M("theta2","alpha2","a2" ,"d2"),

Appendix C 163

C++ Sources: Expression parsing (lexical and syntactic analysis)

 DH_THETA_DERIVATIVE_STRING_M("theta3","alpha3","a3" ,"d3"),
 DH_THETA_DERIVATIVE_STRING_M("theta4","alpha4","a4" ,"d4"),
 DH_THETA_DERIVATIVE_STRING_M("theta5","alpha5","a5" ,"d5"),
 DH_THETA_DERIVATIVE_STRING_M("theta6","alpha6","a6" ,"d6")};

#define DH_ENT_TRANSFORMATION__(nr,link)\
 {"theta"#nr ,0 ,ROT_Z},\
 {"d"#nr ,link[nr].d ,TRANSL_Z},\
 {"a"#nr ,link[nr].a ,TRANSL_X},\
 {"alpha"#nr ,link[nr].alpha ,ROT_X}

//for test constructor
const elementary_transformation_type PUMA_parameteric_2[]=
 {DH_ENT_TRANSFORMATION__(1,PUMA720_parameter),
 DH_ENT_TRANSFORMATION__(2,PUMA720_parameter),
 DH_ENT_TRANSFORMATION__(3,PUMA720_parameter),
 DH_ENT_TRANSFORMATION__(4,PUMA720_parameter),
 DH_ENT_TRANSFORMATION__(5,PUMA720_parameter),
 DH_ENT_TRANSFORMATION__(6,PUMA720_parameter)};

Expression parsing (lexical and syntactic analysis)

/***
 scanner.h

***/
#ifndef _scanner
#define _scanner

#include <ctype.h>
#include <string.h>
#include <stdio.h>
#include "toolunit.h"

#define in_alphabet(ch) ((toupper(ch)>='A')&&(toupper(ch)<='Z'))
#define in_digits(ch) (((ch)>='0')&&((ch)<='9'))
#define DefSymbol(sym) if (strcmp(s,"sym")==0) return sym; else

typedef class generic_scannertyp
{ private:
 int symbol_length;
 virtual int next_char()=0;
 static Tsymbole get_symbol(char);
 protected:
 int ch;
 const int EOF_character;
 public :
 symbolstringtyp symbolstr;
 Tsymbole symbol;
 bool read_until_character(char c);
 Tsymbole read_next_symbol();
 generic_scannertyp(int EOF_char):EOF_character(EOF_char)
 {}
 ~generic_scannertyp(){}
} *PScannertyp;

class Scannertyp: public generic_scannertyp
{ const char *expression;
 unsigned expression_index;
 virtual int next_char();
 public:
 void take_expression(const char *);
 Scannertyp():generic_scannertyp(0){}
};

#endif

#include "scanner.h"

Tsymbole generic_scannertyp::get_symbol(char arg)
{
 switch (arg)
 { case '*': return MULTIP_TOKEN;
 case '.': return DOT;
 case '(': return OPEN_PARAN;
 case ')': return CLOSE_PARAN;
 case '+': return ADD_TOKEN;
 case '-': return SUB_TOKEN;
 case '/': return DIV_TOKEN;
 case '#': return DOUBLECROSS;
 case '%': return GP_DIVISION;
 }
 return INVALID;
}

void Scannertyp::take_expression(const char *s)

Appendix C 164

C++ Sources: Expression parsing (lexical and syntactic analysis)

{
 expression = s;
 expression_index = 0;
 ch = next_char();
}

int Scannertyp::next_char()
{
 if (expression[expression_index]==0)
 return 0;
 return tolower(expression[expression_index++]);
}

bool generic_scannertyp::read_until_character(char c)
{ symbol_length=0;
 while (ch != EOF_character)
 if (ch==c)
 { ch=next_char();
 symbolstr[symbol_length]=0;
 return true;
 }
 else
 { if (symbol_length < max_token_length)
 symbolstr[symbol_length++]=ch;
 ch = next_char();
 }
 symbol=ENDTOKEN;
 return false;
}

Tsymbole generic_scannertyp::read_next_symbol()
{ symbol_length = 0;
 while ((ch==' '))
 ch = next_char();
 if (ch == EOF_character) { symbol=ENDTOKEN;return ENDTOKEN;}
 if (in_alphabet(ch))
 { symbol=IDENTIFIER;
 do { if (symbol_length < max_token_length)
 symbolstr[symbol_length++] = ch ;
 ch = next_char();
 } while (in_alphabet(ch)||(in_digits(ch)));
 }
 else if (in_digits(ch))
 { if (symbol_length==0) symbol=NUM_TOKEN;
 do
 { if (symbol_length < max_token_length)
 symbolstr[symbol_length++] = ch;
 ch = next_char();
 } while (in_digits(ch));
 }
 if (symbol_length==0) // special character
 { symbolstr[symbol_length++]=ch;
 ch=next_char();
 symbol= get_symbol(symbolstr[0]);
 return symbol;
 }
 symbolstr[symbol_length]=0; //termination
 return symbol;
}

#ifndef _expr_parser
#define _expr_parser
/***
 parser.h
 Jens- Uwe Dolinsky

 Simple expression parser used for establishing kinematic equations

EBNF
 CHARACTER := 'a'..'z' | 'A'..'Z'.
 DIGIT := '0'..'9'.
 IDENT := CHARACTER {CHARACTER|DIGIT}.
 NUMBER := DIGIT {DIGIT}.
 NUM := '.' NUMBER
 | NUMBER ['.' NUMBER] [factor].
 operand := NUM
 | IDENT ['(' sum ')'].
 factor := ('(' sum ')')
 | operand.
 signed_factor := {'-'|'+'} (factor).
 term := signed_factor { ('*'|'/') signed_factor}.
 sum := term { {'+'|'-'} term }.

 start_symbol := sum.
*/

#include "knot_tab.h"
#include "scanner.h"

typedef class Parsertyp : private Scannertyp
 {
 private:

Appendix C 165

C++ Sources: Expression parsing (lexical and syntactic analysis)

 PNode Kdb; //Node set
 PNode get_node(const char*,Tsymbole,PNode,PNode);
 virtual PNode read_operand() ;//throw(String);
 PNode read_signed_factor() ;//throw(String);
 PNode read_factor() ;//throw(String);
 PNode read_term() ;//throw(String);
 PNode read_sum() ;//throw(String);
 void throw_error(char*) ;//throw(String);
 public:
 PNode read_expression(char*,PNode);//throw(String);
 } *PParsertyp;

#endif

#include "parser.h"
#include <stdlib.h>

PNode Parsertyp::get_node(const char* name,Tsymbole sym,PNode left,PNode right)
{ PNode h = Kdb->get_node(name,sym,left,right);
 h->create_reference();
 referenztyp::remove_one_reference(h->lnext);
 referenztyp::remove_one_reference(h->rnext);
 return h;
}

PNode Parsertyp::read_operand()
{ PNode h=NULL;
 symbolstringtyp sym;
 sym[0]=0;
 switch(symbol)
 { case NUM_TOKEN: h= get_node(symbolstr,NUM_TOKEN,NULL,NULL);
 read_next_symbol();
 return h;
 case IDENTIFIER:
 strcat(sym,symbolstr);
 read_next_symbol();
 if (symbol==OPEN_PARAN)
 { h = read_sum();
 if (symbol!=CLOSE_PARAN)
 throw_error(") expected");
 else h = get_node(sym,FUNC_TOKEN,NULL,h);
 read_next_symbol();
 } else
 if (Node::compare_identifiers(sym,"pi")==0)
 h = get_node(sym,STRING_CONST,NULL,NULL);
 else h = get_node(sym,VARIABLE,NULL,NULL);
 return h;
 }
 throw_error("need identifier or number");
 return h;
}

void Parsertyp::throw_error(char* s)
{ throw string_class(s);
}

PNode Parsertyp::read_factor()
{PNode h=NULL,h1;
 switch(symbol)
 { case OPEN_PARAN: h = read_sum();
 if (symbol!=CLOSE_PARAN) throw_error(") expected");
 read_next_symbol();
 break;
 default: h = read_operand();
 }
 return h;
}

PNode Parsertyp::read_signed_factor()
{ PNode h=NULL;
 Tsymbole operation = ADD_TOKEN;
 while (dash_operator(symbol))
 { operation = (operation==symbol)?ADD_TOKEN:SUB_TOKEN;
 read_next_symbol();
 }
 h=read_factor();
 if (operation==SUB_TOKEN) //negative sign
 {
 PNode h1 = get_node("0",NUM_TOKEN,NULL,NULL);
 h = get_node(NULL,SUB_TOKEN,h1,h);
 }
 return h;
}

PNode Parsertyp::read_term()
{ PNode h=NULL,h1;
 Tsymbole hsymbol;
 h = read_signed_factor();
 while (dot_operator(symbol))
 { hsymbol=symbol;

Appendix C 166

C++ Sources: Templates for matrices and vectors

 read_next_symbol();
 h1 = read_signed_factor();
 h = get_node(NULL,hsymbol,h,h1);
 }
 return h;
}

PNode Parsertyp::read_sum()
{ PNode h=NULL,h1;
 Tsymbole operation ;
 read_next_symbol();
 h = read_term();
 while (dash_operator(symbol))
 { operation = ADD_TOKEN;
 do { operation = (operation == symbol)?ADD_TOKEN:SUB_TOKEN;
 read_next_symbol();
 } while (dash_operator(symbol));
 h1 = read_term();
 h = get_node(NULL,operation,h,h1);
 }
 return h;
}

PNode Parsertyp::read_expression(char *s,PNode menge)
{
 PNode h=NULL;
 take_expression(s);
 Kdb=menge;
 h = read_sum();
 if (symbol!=ENDTOKEN)
 throw_error("end of expr. expected, but found more");
 return h;
}

Templates for matrices and vectors

#ifndef _MY_TEMPLATES
#define _MY_TEMPLATES

template <class type__> class m_vector
 // :public raw_vector<type__>
{ public:
 const int dimension;
 type__ *data;
 m_vector(int d):dimension(d)
 {
 data=new type__[d];
 }
 ~m_vector()
 {
 delete[]data;
 }
 void assign(m_vector<type__> &v)
 { for (int l=0; l<dimension; l++)
 data[l]=v.data[l];
 }

};

template <class type__> class matrix_template
{public:
 type__ **data;
 const int rows,columns,size_;

 matrix_template(int r,int c)
 :rows(r),columns(c),size_(r*c)
 { data= (type__**)new type__[r];
 for (int l=0; l<rows; l++)
 data[l]= new type__[c];
 }
 ~matrix_template()
 { for (int l=0; l<rows; l++)
 delete []data[l];
 delete []data;
 }
 void assign(int r,int c,type__ value)
 { //if ((r>=rows) || (c>=columns))
 // printf("matrixdimension exceeded");
 data[r][c]=value;
 }
 type__ value(int r, int c)
 { //if ((r>=rows) || (c>=columns))
 // printf("matrixdimension exceeded");
 return data[r][c];
 }
 void swap_rows(const int r1,const int r2)
 { type__ z;
 for (register int l=0; l<columns; l++)
 { z= data[r1][l];
 data[r1][l]=data[r2][l];

Appendix C 167

C++ Sources: Local frames

 data[r2][l]=z;
 }
 }

};

#endif

Local frames

#ifndef __LOCAL_FRAME
#define __LOCAL_FRAME

typedef double vector3D[3];
typedef vector3D HG_matrix_type[4];
#include <stdio.h>
int get_measured_data(const char *robotrak_local_frame_file,
 const char *robot_local_frame_file,
 const char *robotrak_datafile,
 const char *robot_datafile,
 const char *error_diff_file,
 vector3D robotrak_measurements[],
 vector3D robot_measurements[],
 const char* taskspace_file);
#include "ga_types.h"

void create_program_file(const char * name,const dataset_type config[],const int
number);

void create_lc_program_file(const char *name,
 const dataset_type config[],
 const int number,
 class kinematic_type*ptr_kinematic_model,
 const char *location_filename);

typedef double jointangle_set[6];
int get_joint_angles(const char *filename,jointangle_set j[]);

void puma_forward(const dataset_type[],const int,const char*,const vector3D);
void puma_inverse(const double config[],
 const HG_matrix_type data,
 const int lockwrist,
 double theta[],
 const vector3D tool);

const HG_matrix_type HG_IDENTITY_M = {{1,0,0},{0,1,0},{0,0,1},{0,0,0}};

#endif

Transformation routines and parsing of VALII files

#ifndef __FILE_SCANNER
#define __FILE_SCANNER
#include "scanner.h"

class FileScannertyp: public generic_scannertyp //string scanner
{ FILE *stream;
 virtual int next_char()
 { int ch= fgetc(stream);
 while ((ch==10)||(ch==13))
 ch= fgetc(stream);
 return ch;
 }
 public:
 FileScannertyp(const char *f):generic_scannertyp(EOF/*EOF character*/)
 { stream=fopen(f,"rb");
 if (stream==NULL)
 throw int(1);
 }
 ~FileScannertyp()
 { if (stream!=NULL)
 fclose(stream);
 }
};
#endif

#ifndef __data_set__
#define __data_set__

#include "individual.h"

extern dataset_type teachpoints__[];
void convert_to_rad(dataset_type &);
void prepare_datasets(kinematic_type&,dataset_type[],int);
void generate_datasets(dataset_type[],const long,const long,const tool_type);

Appendix C 168

C++ Sources: Transformation routines and parsing of VALII files

#endif

#include "dataset.h"

void convert_to_rad(dataset_type &joints)
{ for (int l=0; l<6; l++)
 joints.theta[l]=(joints.theta[l]*PI)/180;
}

#include "local_frame.h"

#define SCALING_FACTOR 16

static void vector_assign(const vector3D &a,vector3D &r)
{ r[0]=a[0];
 r[1]=a[1];
 r[2]=a[2];
}

static void vector_product(const vector3D &a,const vector3D &b,vector3D &ab)
{ //VECTOR([a1*b2-a2*b1, a2*b0-a0*b2, a0*b1-a1*b0])
 ab[0]=a[1]*b[2]-a[2]*b[1];
 ab[1]=a[2]*b[0]-a[0]*b[2];
 ab[2]=a[0]*b[1]-a[1]*b[0];
}

static void vector_sub(const vector3D &a,const vector3D &b,vector3D &ab)
{ ab[0]=a[0]-b[0];
 ab[1]=a[1]-b[1];
 ab[2]=a[2]-b[2];
}

static double scalar_product(const vector3D &a,const vector3D &b)
{ return a[0]*b[0]+
 a[1]*b[1]+
 a[2]*b[2];
}

#include <math.h>
static void norm_vector(const vector3D &a,vector3D &na)
{ double n=sqrt(scalar_product(a,a));
 na[0]=a[0]/n;//x axis is normalised ab
 na[1]=a[1]/n;
 na[2]=a[2]/n;
}

static void frame_multiplication(const HG_matrix_type &left,
 const HG_matrix_type &right,
 HG_matrix_type &result)
{
 for (int r=0; r<3; r++)
 { for (int c=0; c<4; c++)
 { //element with first product
 result[c][r] = 0;//left[0][r]*right[c][0];
 for (int l=0;l<3;l++)//adding all products
 result[c][r]+= left[l][r]*right[c][l];
 }
 result[3][r]+=left[3][r];
 }
}

static void transform_lf(const HG_matrix_type lf,const vector3D pose, vector3D
&result)
{ for (int r=0; r<3; r++)
 { result[r]=0.0;
 for (int c=0; c<3; c++)
 result[r]+=(lf[c][r]*pose[c]);
 result[r]+=lf[3][r];//homogenous coordinates
 }
}

static void inverse(const HG_matrix_type& m,HG_matrix_type& res)
{ for (int c=0; c<3; c++)
 for (int r=0; r<3; r++)
 res[c][r] = m[r][c];

 vector3D ori;
 for (int r=0; r<3; r++)
 { ori[r]=0;
 for (int c=0; c<3; c++)
 ori[r]+=(res[c][r]*m[3][c]);
 ori[r]=-ori[r];
 }
 vector_assign(ori,res[3]);
}

void create_local_frame(const vector3D &a,
 const vector3D &b,

Appendix C 169

C++ Sources: Transformation routines and parsing of VALII files

 const vector3D &c,
 const vector3D &org,
 HG_matrix_type &local_frame)
{ // ->
 // ab = a- b
 vector3D ab;
 vector_sub(b,a,ab);
 vector3D normed_ab;
 norm_vector(ab,normed_ab); //x axis is normalised ab

 vector3D ac;
 vector_sub(c,a,ac);
 double lambda =scalar_product(ac,normed_ab);
 vector3D aE;
 aE[0]=lambda*normed_ab[0];
 aE[1]=lambda*normed_ab[1];
 aE[2]=lambda*normed_ab[2];
 vector3D Ec;
 vector_sub(ac,aE,Ec);
 vector3D normed_Ec;
 norm_vector(Ec,normed_Ec); // y axis

 vector_assign(normed_ab,local_frame[0]);
 vector_assign(normed_Ec,local_frame[1]);
 vector_product(normed_ab,normed_Ec,local_frame[2]); //z axis
 vector_assign(org,local_frame[3]);
}

static void create_inv_local_frame(
 const vector3D &a,
 const vector3D &b,
 const vector3D &c,
 const vector3D &org,
 HG_matrix_type &inv_transformation)
{ HG_matrix_type local_frame;
 create_local_frame(a,b,c,org,local_frame);
 inverse(local_frame,inv_transformation);
}

#include <stdio.h>
#include <stdlib.h>
#include "file_scanner.h"

static double read_double(FILE *f)
{ char buffer[200];
 int ch;
 for(;;)
 { switch(ch=fgetc(f))
 { case EOF: throw int(0);
 case ' ':
 case '\n': continue;
 default: break;
 }
 break;
 }
 int l=0;
 for (;;)
 { buffer[l++]=ch;
 switch(ch=fgetc(f))
 { case EOF:
 case ' ':
 case '\n': break;
 default: continue;
 }
 break;
 }
 buffer[l]=0;
 return atof(buffer);
}

static void read_robotrak_local_frame_data(const char* file,HG_matrix_type &m)
{ FILE *f=fopen(file,"r");
 if (f==NULL)
 { printf("Cannot open file %s",file);
 throw int(0);
 }
 for (int c=0; c<4; c++)
 for (int r=0; r<3; r++)
 (m[c])[r]=0.0;
 for(int counter=0;;counter++)
 { for (int c=0; c<4; c++)
 for (int r=0; r<3; r++)
 try { double p=read_double(f);
 m[c][r] += p;
 }
 catch(...)
 { if ((c!=0)||(r!=0)||(counter==0))
 { printf("problems reading local framepoints");
 fclose(f);
 throw int(0);
 }
 else

Appendix C 170

C++ Sources: Transformation routines and parsing of VALII files

 for (int c=0; c<4; c++)
 for (int r=0; r<3; r++)
 m[c][r]/=counter;
 fclose(f);
 return;
 }
 }
}

static void get_robotrak_inv_local_frame(const char *name, HG_matrix_type &lf)
{ HG_matrix_type m;
 read_robotrak_local_frame_data(name,m);
 create_inv_local_frame(m[0],m[1],m[2],m[3],lf);
}

static int read_integer(FileScannertyp &sc)
{ bool minus;
 if (sc.read_next_symbol()==SUB_TOKEN)
 { minus=true;
 sc.read_next_symbol();
 } else minus=false;
 if (sc.symbol!=NUM_TOKEN)
 { printf("\nFile format error: expecting number");
 throw int(0);
 }
 return (minus==true)?-atoi(sc.symbolstr):atoi(sc.symbolstr);
}

static double read_double(FileScannertyp &sc)
{ auto char buffer[80]="";
 if (sc.read_next_symbol()==SUB_TOKEN)
 { sc.read_next_symbol();
 strcpy(buffer,"-");
 }
 if (sc.symbol!=NUM_TOKEN)
 { printf("\nFile format error: expecting number");
 throw int(0);
 }
 strcat(buffer,sc.symbolstr);
 if (sc.read_next_symbol()!=DOT)
 { printf("\nFile format error: expecting .");
 throw int(0);
 }
 strcat(buffer,".");
 if (sc.read_next_symbol()!=NUM_TOKEN)
 { printf("\nFile format error: expecting number");
 throw int(0);
 }
 strcat(buffer,sc.symbolstr);
 return atof(buffer);
}

typedef int pose_type[3];

static bool read_next_pose(FileScannertyp &sc,pose_type &p, int *tr_m)
{ int l;
 while (sc.symbol==DOUBLECROSS)
 { sc.read_until_character(' ');
 for (l=0;l<6;l++)
 read_double(sc);
 sc.read_next_symbol();
 }
 if (sc.symbol!=IDENTIFIER)
 return false;
 sc.read_until_character(' ');
 for (l=0; l<9; l++)
 if (tr_m==NULL) read_integer(sc);//overread first 9 numbers
 else tr_m[l] = read_integer(sc);
 for (l=0; l<3; l++)
 p[l]=read_integer(sc);
 return true;
}

static void read_until_location_points(FileScannertyp &scanner)
{ while (scanner.read_next_symbol()!=ENDTOKEN)
 if (scanner.symbol==DOT)
 if (scanner.read_next_symbol()==IDENTIFIER)
 if (strcmp(scanner.symbolstr,"LOCATIONS")==0)
 return;
 printf("\n No locations found");
 throw int(0);
}

static void read_robot_local_frame(const char *filename,HG_matrix_type &lf)
{ FileScannertyp sc(filename);
 read_until_location_points(sc);
 int f[3][4];
 for (int l=0;l<3;l++)
 for (int k=0;k<4;k++)
 f[l][k]=0;
 for (int counter=0;;counter++)
 { for(int k=0;k<4;k++)
 { if (sc.read_next_symbol()!=IDENTIFIER)
 { if (counter==0)

Appendix C 171

C++ Sources: Transformation routines and parsing of VALII files

 { printf("\n<robot local frame> file format error: expect location point
name");
 throw int(0);
 }
 for (int l=0;l<3;l++)
 for (int k1=0;k1<4;k1++)
 lf[k1][l] = (double)f[l][k1]/(SCALING_FACTOR*counter);
 return;
 }
 pose_type p;
 if (read_next_pose(sc,p,NULL)==false)
 { printf("\nCannot read location point");
 throw int(0);
 }
 for (int l=0; l<3; l++)
 f[l][k] += p[l];
 }
 }
}

//static void get_robot_local_frame(const char *filename,HG_matrix_type &lf)

static void get_robot_local_frame(const char *filename,HG_matrix_type &lf)
{ HG_matrix_type local;
 read_robot_local_frame(filename,local);
 create_local_frame(local[0],local[1],local[2],local[3],lf);
}
/*
static void get_robot_inv_local_frame(const char *filename,HG_matrix_type &lf)
{ HG_matrix_type local;
 read_robot_local_frame(filename,local);
 create_inv_local_frame(local[0],local[1],local[2],local[3],lf);
}*/

int get_joint_angles(const char *filename,jointangle_set j[])
{ int counter=0;
 FileScannertyp scanner(filename);
 read_until_location_points(scanner);
 for(;;)
 switch (scanner.read_next_symbol())
 { case ENDTOKEN: return counter;
 case DOUBLECROSS:{ scanner.read_until_character(' ');
 for (int l=0; l<6; l++)
 j[counter][l]=read_double(scanner);
 counter++;
 continue;
 }
 default:continue;
 }
}

static int round(double v)
{
 v+=0.5;
 return (int)v;
}

int convert_locations(const char *filename,const char *outp,
 const vector3D robot[],const vector3D rtrack[])
{
 FileScannertyp sc(filename);
 read_until_location_points(sc);
 pose_type p;
 int tr[9];
 FILE *f=fopen(outp,"w+");
 if (f==NULL) return -1;
 fprintf(f,".PROGRAM correct\n"
 "FOR l = 1 TO %u\n"
 "MOVE mcp[l]\n"
 "DELAY 4\n"
 "HERE #cp[l]\n"
 "END\n"
 ".END\n"
 ".LOCATIONS\n",30);
 for(int counter=0;;counter++)
 { sc.read_next_symbol();
 if (read_next_pose(sc,p,tr)==false)
 { fprintf(f,".END\n");
 fclose(f);
 return counter;
 }
 fprintf(f,"mcp[%u] ",counter+1);
 for (int pc=0; pc<9; pc++)
 fprintf(f,"%i ",tr[pc]);
 for (int l=0; l<3; l++)//data[l].p[j] -= (robotrak[l][j]-robot_poses[l][j]);
 fprintf(f,"%i ",p[l]-round((rtrack[counter][l]-
robot[counter][l])*SCALING_FACTOR));
 fprintf(f,"\n");
 }
}

static int read_and_transform_robotlocations(
 const char *filename,
 const HG_matrix_type &lf,
 vector3D poses[])

Appendix C 172

C++ Sources: Transformation routines and parsing of VALII files

{ FileScannertyp sc(filename);
 read_until_location_points(sc);
 pose_type p;
 vector3D double_pose;
 for(int counter=0;;counter++)
 { sc.read_next_symbol();
 if (read_next_pose(sc,p,NULL)==false)
 return counter;
 for (int l=0; l<3; l++)
 { double_pose[l] = p[l];
 double_pose[l]/=SCALING_FACTOR;
 }
 /*if (lf==NULL)
 for (int p=0; p<3; p++)
 poses[counter][p]=double_pose[p];
 else*/ transform_lf(lf,double_pose,poses[counter]);
 }
}

static int read_and_transform_robotrack_locations(
 const char *filename,
 const HG_matrix_type &lf,
 vector3D poses[])
{
 FILE *f=fopen(filename,"r");
 if (f==NULL)
 { printf("Cannot open file %s",filename);
 throw int(0);
 }
 vector3D double_pose;
 for(int counter=0;;counter++)
 { for (int c=0; c<3; c++)
 { try { double_pose[c]=read_double(f); }
 catch(...)
 { if (c!=0)
 { printf("format error in file %s",filename);
 fclose(f);
 throw int(0);
 }
 fclose(f);
 return counter;
 }
 }
 transform_lf(lf,double_pose,poses[counter]);
 }
}

double write_error_file(
 const vector3D robotrak_measurements[],
 const vector3D robot_measurements[],
 int number,
 const char* filename)
{ FILE *f=fopen(filename,"w+");
 if (f==NULL)
 { printf("\nCould not write error statistic file");
 return -1;
 }
 double total=0.0;
 double m_error,difference;
 for (int l=0; l<number; l++)
 { m_error=0.0;
 for (int k=0; k<3; k++)
 { difference = robotrak_measurements[l][k] - robot_measurements[l][k];
 m_error+= (difference*difference);//fabs(difference);
 fprintf(f,"%lf ",difference);
 }
 fprintf(f," %lf\n",sqrt(m_error));
 total+=m_error;
// fprintf(f,"%lf\n",m_error);
 }
 fprintf(f,"total squared :%lf\n",total);
 fclose(f);
 return total;
}

int get_measured_data(const char *robotrak_local_frame_file,
 const char *robot_local_frame_file,
 const char *robotrak_datafile,
 const char *robot_datafile,
 const char *error_diff_file,
 vector3D robotrak_measurements[],
 vector3D robot_measurements[],
 const char* taskspace_file)//,

{
 try
 {
 HG_matrix_type rm;
 get_robot_local_frame(robot_local_frame_file,rm);
 HG_matrix_type rt_m;
 get_robotrak_inv_local_frame(robotrak_local_frame_file,rt_m);
 HG_matrix_type transf;
 frame_multiplication(rm,rt_m,transf);

Appendix C 173

C++ Sources: Transformation routines and parsing of VALII files

 int l
=read_and_transform_robotrack_locations(robotrak_datafile,transf,robotrak_measurement
s);
 for (int r=0; r<3; r++)
 { transf[3][r]=0;
 for (int c=0; c<3; c++)
 transf[c][r]=(c==r)?1:0;
 }
 if
(l!=read_and_transform_robotlocations(robot_datafile,transf,robot_measurements))
 { printf("nonequal number of measurements");
 return -1;
 }
 if (error_diff_file!=NULL)

write_error_file(robotrak_measurements,robot_measurements,l,error_diff_file);

//write_error_file(transf_robotrak_measurements,exact_robot_poses,l,error_diff_file);
 //
write_error_file(robotrak_measurements,robot_measurements,l,"c:\\data\\cmp1.txt");
 //
write_error_file(transf_robotrak_measurements,exact_robot_poses,l,"c:\\data\\cmp2.txt
");

convert_locations(robot_datafile,taskspace_file,robot_measurements,robotrak_measureme
nts);

 return l;
 }
 catch(...)
 { return -1;
 }
}

/*
int get_measured_data(const char *robotrak_local_frame_file,
 const char *robot_local_frame_file,
 const char *robotrak_datafile,
 vector3D robotrak_measurements[])
{
 try
 { HG_matrix_type inv_rt;
 get_robotrak_inv_local_frame(robotrak_local_frame_file,inv_rt);
 HG_matrix_type robotm;
 get_robot_local_frame(robot_local_frame_file,robotm);
 HG_matrix_type transf;
 frame_multiplication(robotm,inv_rt,transf);
 return read_and_transform_robotrack_locations(robotrak_datafile,
 transf,robotrak_measurements);
 }
 catch(...)
 { return -1;
 }
}*/

#include "ga_types.h"
#include "robot_parameter.h"

void create_program_file(const char * name,const dataset_type config[],const int
number)
{ FILE *f=fopen(name,"w+");
 if (f==NULL)
 { printf("cannot open file %s for writing",name);
 return;
 }
 fprintf(f,".PROGRAM correct\n"
 "FOR l = 1 TO %u\n"
 "MOVE #cp[l]\n"
 "DELAY 2\n"
 "TYPE \"stop \", l\n"
 "DELAY 3\n"
 "END\n"
 ".END\n"
 ".LOCATIONS\n",number);
 for (int l=0; l<number; l++)
 { fprintf(f,"#cp[%u]",l+1);
 for (int j=0; j<6; j++)
 fprintf(f," %5.6lf",(config[l].theta[j]*180/PI));
 fprintf(f,"\n");
 }
 fprintf(f,".END\n");
 fclose(f);
}

#include "individual.h"

void create_lc_program_file(const char *name,
 const dataset_type config[],
 const int number,
 kinematic_type *ptr_kinematic_model,
 const char *location_filename)
{ FILE *f=fopen(name,"w+");
 if (f==NULL)

Appendix C 174

C++ Sources: Main program routines

 { printf("cannot open file %s for writing",name);
 return;
 }
 fprintf(f,".PROGRAM correct\n"
 "FOR l = 1 TO %u\n"
 "MOVE mcp[l]\n"
 "DELAY 2\n"
 "TYPE \"stop \", l\n"
 "DELAY 3\n"
 "END\n"
 ".END\n"
 ".LOCATIONS\n",number);
 FileScannertyp sc(location_filename);
 read_until_location_points(sc);
 pose_type p;
 int tr_m[9];
// vector3D double_pose;
 sc.read_next_symbol();
 if (read_next_pose(sc,p,tr_m)==false)
 { printf("\n no locations");
 throw int(0);
 };
 dataset_type ds;
 for (int l=0; l<number; l++)
 { for (int j=0; j<6; j++)
 ds.theta[j] = config[l].theta[j];
 ptr_kinematic_model->compute_forward_kinematic(&ds,1);
 fprintf(f,"mcp[%u]",l+1);
 for (int t=0; t<9; t++)
 fprintf(f," %i",tr_m[t]);
 for (int k=0; k<3; k++)
 fprintf(f," %i",round(ds.p[k]*16));
 fprintf(f,"\n");
 }
 fprintf(f,".END\n");
 fclose(f);
}

void generate_matrix(const double theta[],
 const double aa[],
 const double a[],
 const double d[],
 const int i,
 HG_matrix_type &A)
{ A[0][0]= cos(theta[i]);
 A[1][0]=-sin(theta[i])*cos(aa[i]);
 A[2][0]= sin(theta[i])*sin(aa[i]);
 A[3][0]= a[i]*cos(theta[i]);

 A[0][1]= sin(theta[i]);
 A[1][1]= cos(theta[i])*cos(aa[i]);
 A[2][1]=-cos(theta[i])*sin(aa[i]);
 A[3][1]=a[i]*sin(theta[i]);

 A[0][2]=0;
 A[1][2]=sin(aa[i]);
 A[2][2]=cos(aa[i]);
 A[3][2]=d[i];
}

Main program routines

#include "gp_system.h"

#define DATA_DIR_ "f:\\workdir\\"

class file_manager //just for controlling the resource (file) aquisition
{ public:
 FILE *file;
 file_manager(const char*name,const char* attr)
 { file=fopen(name,attr);
 if (file==NULL)
 printf("cannot open file: %s",name);
 }
 ~file_manager()
 { if (file!=NULL) fclose(file);
 }
};

#include "local_frame.h"

int get_and_convert_joint_angles(const char *teachpoint_file,
 dataset_type data[],
 jointangle_set joint_values[])
{ int n2=get_joint_angles(teachpoint_file,joint_values);
 if (n2<1)
 { printf("\nCannot find %s to read joint angles",teachpoint_file);

Appendix C 175

C++ Sources: Main program routines

 return -1;
 }
 for (int l=0; l<n2; l++)
 { for (int x=0; x<6; x++)
 data[l].theta[x] = joint_values[l][x];
 convert_to_rad(data[l]);
 }
 return n2;
}

int initialise_teachpoints(dataset_type data[],kinematic_type *ptr_kinematic_model)
{ jointangle_set joint_values[160];
 vector3D robotrak[160],robot_poses[160];//,tr_robotrak[100],ex_robposes[100];
 // test_transformations();
 try
 { //write corrected differences if available
 get_measured_data(DATA_DIR_"Lfs.ext",//robotrak_local_frame_file,
 DATA_DIR_"lfs.v2",//const char *robot_local_frame_file,
 DATA_DIR_"correctt1.ext",//const char *robotrak_datafile,
 DATA_DIR_"t1.v2",//const char *robot_datafile,
 DATA_DIR_"corrected_differences_t1.txt",
 robotrak,robot_poses/*,tr_robotrak,ex_robposes*/,
 DATA_DIR_"tko.v2");
 get_measured_data(DATA_DIR_"Lfs.ext",//robotrak_local_frame_file,
 DATA_DIR_"lfs.v2",//const char *robot_local_frame_file,
 DATA_DIR_"correctt2.ext",//const char *robotrak_datafile,
 DATA_DIR_"t2.v2",//const char *robot_datafile,
 DATA_DIR_"corrected_differences_t2.txt",
 robotrak,robot_poses/*,tr_robotrak,ex_robposes*/,
 DATA_DIR_"tko.v2");
 get_measured_data(DATA_DIR_"Lfs.ext",//robotrak_local_frame_file,
 DATA_DIR_"lfs.v2",//const char *robot_local_frame_file,
 DATA_DIR_"t2.ext",//const char *robotrak_datafile,
 DATA_DIR_"t2.v2",//const char *robot_datafile,
 DATA_DIR_"t2_differences.txt",
 robotrak,robot_poses/*,tr_robotrak,ex_robposes*/,
 DATA_DIR_"t2_ts_sp_correct.v2");
 int n=get_measured_data(DATA_DIR_"Lfs.ext",//robotrak_local_frame_file,
 DATA_DIR_"lfs.v2",//const char *robot_local_frame_file,
 DATA_DIR_"t1.ext",//const char *robotrak_datafile,
 DATA_DIR_"t1.v2",//const char *robot_datafile,
 DATA_DIR_"differences.txt",
 robotrak,robot_poses/*,tr_robotrak,ex_robposes*/,
 DATA_DIR_"t1_ts_sp_correct.v2");

 int n2=get_joint_angles(DATA_DIR_"t1.v2",joint_values);
 if ((n==-1)||(n2==-1)) return -1;
 if (n!=n2)
 { printf("mismatch: number of poses and jointangles");
 return -1;
 }
 int j;
 for (int l=0;l<n;l++)
 { for (j=0; j<6; j++)
 data[l].theta[j] = joint_values[l][j];
 convert_to_rad(data[l]);
 ptr_kinematic_model->compute_forward_kinematic(&data[l],1);
 for (j=0; j<3; j++)
 { //data[l].p[j] = tr_robotrak[l][j];
 data[l].p[j] -= (robotrak[l][j]-robot_poses[l][j]);
 }
 }
 return n;
 }
 catch(...)
 {}
 return -1;
}

void alter_joint_angles(const char* source_file,
 const char* dest_file,
 abstract_gp_system *msystem)
{ jointangle_set joint_values[160];
 dataset_type data[160];
 try
 { int n2=get_joint_angles(source_file,joint_values);
 if (n2<1)
 { printf("\nCannot alter file: %s",source_file);
 return;
 }
 for (int l=0; l<n2; l++)
 { for (int j=0; j<6; j++)
 data[l].theta[j] = joint_values[l][j];
 convert_to_rad(data[l]);
 }
 msystem->correct(data,n2);
 create_program_file(dest_file,data,n2);
 }
 catch(...)
 { printf("\n Unknown error while altering joint values of: %s",source_file);
 }
}

Appendix C 176

C++ Sources: Main program routines

#include <time.h>
#include <stdlib.h>

void gp_direct_joint_error_learning(PNode node_db) //direct joint error learning
{
 node_db->create_reference();
 try
 { kinematic_type kinematic_model(node_db,PUMA_parametric,6,tool);
 dataset_type data[100];
 int data_samples=initialise_teachpoints(data,&kinematic_model);
 if (data_samples==-1) return;
 srand(time(0)); //initialising the random number generator
 file_manager logfile(DATA_DIR_"gp_logfile.txt","w+");
 jointangle_set joint_values[160];
 int df =
get_and_convert_joint_angles(DATA_DIR_"t1correct.v2",&data[data_samples],joint_values
);
 if (df!=data_samples) return;
 calibration_system
robotgp_system(data,data_samples,kinematic_model);//instantiate system
 robotgp_system.ga(data,data_samples,logfile.file);//start evolution
 alter_joint_angles(DATA_DIR_"t1.v2",DATA_DIR_"updated_t1.v2",&robotgp_system);
 alter_joint_angles(DATA_DIR_"t2.v2",DATA_DIR_"updated_t2.v2",&robotgp_system);
 robotgp_system.write_statistic(logfile.file);
 }
 catch(int l)
 { printf("\n%u ",l);
 switch(l)
 {case 9: printf("MATH_NOT_EVALUABLE ");break;
 case 10: printf("ACCESS_VIOLATION");break;
 default:printf("Unknown Error");
 }
 }
 catch(...)
 { printf("Unexpected Exception\n");
 }
 Node::remove_one_reference(node_db);

}

void distal_supervised_learning(PNode node_db)
{
 node_db->create_reference();
 try
 { kinematic_type kinematic_model(node_db,PUMA_parametric,6,tool);
 dataset_type data[100];
 int data_samples=initialise_teachpoints(data,&kinematic_model);
 if (data_samples==-1) return;
 srand(time(0)); //initialising the random number generator
 file_manager logfile(DATA_DIR_"gp_logfile.txt","w+");
 calibration_system robotgp_system(data,data_samples,kinematic_model);
 robotgp_system.ga(data,data_samples,logfile.file);
 alter_joint_angles(DATA_DIR_"t1.v2",DATA_DIR_"updated_t1.v2",&robotgp_system);
 alter_joint_angles(DATA_DIR_"t2.v2",DATA_DIR_"updated_t2.v2",&robotgp_system);
 robotgp_system.write_statistic(logfile.file);
 }
 catch(int l)
 { printf("\n%u ",l);
 switch(l)
 {case 9: printf("MATH_NOT_EVALUABLE ");break;
 case 10: printf("ACCESS_VIOLATION");break;
 default:printf("Unknown Error");
 }
 }
 catch(...)
 { printf("Unexpected Exception\n");
 }
 Node::remove_one_reference(node_db);
}

void main_gp2(PNode node_db)
{
#ifdef PARALLEL_MODELLING
 gp_direct_joint_error_learning(node_db);
#else
 distal_supervised_learning(node_db);
#endif
}

void main()
{ PNode k = Node::createNode("pi",STRING_CONST,NULL,NULL);
 main_gp2(k);
 Node::remove_one_reference(k);
}

References 177

References

[1] ABB. (2000). RobotStudio – Programming & Simulation. RobotStudio® product
description, Hannover 2000.

[2] Adby, P.R. and M.A.H. Dempster. (1974). Introduction To Optimization
Methods. Chapman & Hall, London.

[3] Aho A. V., R. Sethi & J. D. Ullman. (1986). Compilers: Principles, Techniques,
and Tools. Addison Wesley.

[4] Albright S. and K. Schröer. (1992). Practical Error Compensation for Use in Off-
Line Programming of Robots. In Robotic Systems: Advanced Techniques and
Applications (ed. Tzafestas), Kluwer Academic Publishers, pp.459-467.

[5] Arita T. and R. Suzuki. (2000). Interactions between learning and evolution: The
outstanding strategy generated by the Baldwin effect. In Proceedings of Artificial
Life VII, pp. 196-205, MIT Press.

[6] Bäck T. (1995). Generalized convergence models for tournament and (µ,λ)–
selection. In L. Eshelman, ed., proceedings of the Sixth International Conference on
Genetic Algorithms (ICGA95), San Francisco, CA. Morgan Kaufmann Publishers.

[7] Bäck, T. (1996). Evolutionary algorithms in theory and practice: evolution
strategies, evolutionary programming, genetic algorithms. Oxford University Press.

[8] Bäck, T., U. Hammel and H.P. Schwefel. (1997). Evolutionary Computation:
Comments on the History and Current State. IEEE Transactions on Evolutionary
Computation, Vol. 1, No 1, pp.3-17.

[9] Baker J. E. (1987). Reducing bias and inefficiency in the selection algorithm. In
Proceedings of the Second International Conference on Genetic Algorithms.
Lawrence Erlbaum Associates (Hillsdale).

[10] Beasley, D., D.R. Bull and R.R. Martin. (1993). An Overview Of Genetic
Algorithms. University Computing, Part 1 "Fundamentals", 15(2) 58-69, Part 2
"Research Topics", 15(4) 170-181.

[11] Berg J.O. (1993). Path and Orientation Accuracy of Industrial Robots.
International Journal of Advanced Manufacturing Technology. 8:pp.29-33, Springer-
Verlag London.

References 178

[12] Bernhardt, R. and S.L. Albright, editors. (1993). Robot Calibration. Chapman &
Hall, London.

[13] Blickle, T. and Thiele, L. (1995). A Comparison of Selection Schemes used in
Genetic Algorithms. TIK Report Nr. 11, ETH Zürich.

[14] Caenen J. and J. Angue. (1990). Identification of geometric and non geometric
parameters of robots. Proceedings of the IEEE International conference on robotics
and automation, pp. 1032-1037.

[15] CAMELOT. (2000). Ropsim product desription. Allerød, Denmark.

[16] Chellapilla K. (1997). Evolving Computer Programs without Subtree Crossover.
IEEE Transactions on Evolutionary Computation, Vol. 1, No. 3, pp. 209-216.

[17] Cramer, N.L. (July 1985) A Representation for the Adaptive Generation of
Simple Sequential Programs. Proceedings, International Conference on Genetic
Algorithms and their Applications, July 1985 [CMU], Pittsburgh, pp183-187.

[18] Davidor, Y. (1991). Genetic Algorithms and Robotics, World Scientific ,
Singapore. ISBN 9-810202172.

[19] DELMIA. IGRIP Reference Manual.

[20] De Jong, K.A. (1975). An analysis of the behavior of a class of genetic adaptive
systems. Doctoral thesis, Dept. of Computer and Communication Sciences,
University of Michigan, Ann Arbor.

[21] De Jong, A. Kenneth and William M. Spears. (1992). A Formal Analysis of the
Role of Multi-Point Crossover in Genetic Algorithms. In Annals of Mathematics and
Artificial Intelligence, Volume 5, 1, 1-26.

[22] Doty, K.L., C. Mechiorri and C. Bonivento. (1993). A theory of generalise
inverses applied to robotics. International Journal of Robotics Research, 12, pp.1-19.

[23] Driels M.R. and U.S. Pathre. (1994). Robot Calibration Using an Automatic
Theodolite. Int. Journal of Advanced Manufacturing Technology, 9, pp. 114-125,
Springer Verlag London Ltd.

[24] Dror G. Feitelson and Michael Naaman. Self- Tuning Systems in IEEE Software
March/April 1999, p52- 60

[25] Duelen G. and K. Schröer. (1991). Robot Calibration – Methods and Results.
Robotics and Computer- Integrated Manufacturing, Vol.8, No.4, pp. 223-231.

References 179

[26] Emden-Weinert T., S. Hougardy, B. Kreuter, H.J. Prömel and Angelika Steger.
(© 1996). Einführung in Graphen und Algorithmen (Introduction to graphs and
algorithms) Manuskript, Institut für Informatik, Lehrstuhl für Algorithmen und
Komplexität, Humboldt-Universität zu Berlin,
Available at: http://www.informatik.hu-berlin.de/Institut/struktur/algorithmen/ga/.

[27] Everett, L.J., M. Driels and B.W. Mooring. (1987). Kinematic Modelling for
Robot Calibration, Proceedings of IEEE International Conference of Robotics and
Automation, pp. 183-189. IEEE Press.

[28] Everett, L.J. and Tsing-Wong Hsu. 1988. The Theory of Kinematic
Identification for Industrial Robots. Transactions of the ASME. Journal of Dynamic
Systems, Measurement and Control, Vol. 110, 96-100.

[29] Everett L.J. (1993). Models for Diagnosing Robot Error Sources, Conference on
Robotics and Automation, Vol.2, pp.155-159.

[30] FAMOS. Carat robotic innovation GmbH. FAMOS Product description. Press
Release (Flexible Automation 5/98).

[31] Fogel, L.J., Owens, A.J. & Walsh, M.J. (1966). Artificial Intelligence through
Simulated Evolution. Wiley Publishing, New York.

[32] Fogel, D.B. (1997). The Advantages of Evolutionary Computation. In Lundh,
D., B. Olsson and A. Narayanan eds., Proceedings of BCEC97: BioComputing and
Emergent Computation, Singapore, World Scientific, pp.1-11.

[33] Fonseca C.M. and P.J. Fleming. (1993). Genetic algorithms for multi-objective
optimization: Formulation, discussion and generalization. In: S. Forrest (ed.),
Genetic Algorithms: Proceedings of the Fifth International Conference, Morgan
Kaufmann, San Mateo, CA, 141-153.

[34] Fu K.S., R.C. Gonzalez and C.S.G. Lee. (1987). Robotics: Control, Sensing,
Vision, and Intelligence, McGraw Hill, Singapore.

[35] Goldberg D. E. (1989). Genetic Algorithms in search, optimisations and
machine learning. Addison-Wesley.

[36] Goldberg D. E., B. Korb and K. Deb. (1989). Messy genetic algorithms:
Motivation, analysis, and first results. Complex Systems, 3, pp. 493-530.

[37] Goswami, Ambarish, Arthur Quaid, Michael Peshkin. 1993. Complete
Parameter identification from partial pose measurement. IEEE International
Conference on Robotics and Automation.

[38] Grefenstette J.J. and J.E. Baker. (1989). How genetic algorithms work: a critical
look at implicit parallelism. In Schaffer, J.D. (Ed.), Proceedings of the Third
International Conference on Genetic Algorithms (ICGA3), pp. 20-27. CA. Morgan
Kaufmann.

References 180

[39] Gruau F. (1995). Automatic Definition of Modular Neural Networks. Adaptive
Behavior V3N2, pp. 151-183, MIT press.

[40] Harvey I., P. Husbands and D. Cliff: Issues in evolutionary robotics in: J.-A.
Meyer, H. Roitblat and S. Wilson (eds.), From Animals to Animats 2: Proc. of the
Second Intl. Conf. on Simulation of Adaptive Behavior, (SAB92), pp. 364--373. MIT
Press/Bradford Books, Cambridge MA, 1993.

[41] Hayati S.A. and M. Mirmirani. 1985. Improving the absolute positioning
accuracy of robot manipulators. J. Robotic Systems. 2: 397-413.

[42] Holland J.H. (1975) Adaptation in Natural and Artificial Systems. Ann Arbor,
Michigan: The University of Michigan Press.

[43] Hollerbach, J.M. and C.W. Wampler. (1996). A taxonomy of kinematic
calibration methods. International Journal of Robotics Research, 14, pp. 573-591.

[44] Hollerbach, J.M. (1998). Robot calibration lecture notes. University of Texas at
Austin.

[45] Jenkinson, I.D. (2000). An application of neural networks to improve the
accuracy of an industrial robot for offline programming. Ph.D. Thesis, Liverpool
John Moores University, Liverpool, UK.

[46] Jordan, M.I. and D. E. Rumelhart. Forward models: Supervised learning with a
distal teacher. Cognitive Science, 16, 307-354, 1992.

[47] Judd R.P and A.B. Knasinski. 1990. A Technique to Calibrate Industrial Robot
with Experimental Verification. IEEE Transactions on Robotics and Automation,
Vol.6, No 1, pp. 20-30.

[48] Keane M.A., J.R. Koza and J.P. Rice. (1993). Finding an impulse response
function using genetic programming. In Proceedings of the 1993 American Control
Conference , volume III, pages 2345-2350, Evanston, IL, USA.

[49] Koza, John R. (1992). Genetic Programming: On the Programming of
Computers by Means of Natural Selection. Cambridge, MA: The MIT Press.

[50] Koza, J.R. (1994). Genetic Programming II: Automatic Discovery of Reuseable
Programs. Cambridge, MA: The MIT Press.

[51] Koza J.R. (1997) Future work and practical applications of genetic
programming. In T. Baeck, D. B. Fogel, and Z. Michalewicz, editors, Handbook of
Evolutionary Computation, pages H1.1--1--6. Oxford University Press.

[52] Ku, K. W. C. and M. W. Mak. (1997). Exploring the effects of Lamarckian and
Baldwinian learning in evolving recurrent neural networks. In Proceedings of the
IEEE International Conference on Evolutionary Computation, pages 617-621.

References 181

[53] Luke, Sean. 2000. Issues in Scaling Genetic Programming: Breeding Strategies,
Tree Generation, and Code Bloat. Ph.D. Dissertation, Department of Computer
Science, University of Maryland, College Park, Maryland.

[54] Ma, D., and J.M. Hollerbach. Identifying mass parameters for gravity
compensation and automatic torque sensor calibration. Proc. IEEE International
Conference. Robotics and Automation, Minneapolis, April 22-28, 1996, pp. 661-666.

[55] Michalewicz Z. (1992) Genetic Algorithms + Data Structures = Evolutionary
Programs. Artificial Intelligence. Springer Verlag, Berlin.

[56] Miller B.L. and D.E. Goldberg. (1995). Genetic Algorithms Selection Schemes
and the Varying Effects of Noise. IlliGAL Report No. 95009, University of Illinois.

[57] Ming-Yi Lay. (1994). Genetic Programming and its application to analyze
dynamical systems. Ph.D. thesis. The University of Texas. Austin.

[58] Montana D.J. (1995). Strongly Typed Genetic Programming, Evolutionary
Computation, Vol.3, No.2, pp. 199-230.

[59] Mooring, Benjamin W., Zvi S. Roth and M.R. Driels. (1991). Fundamentals of
Manipulator Calibration. John Wiley & Sons.

[60] Mühlenbein, H. and D. Schlierkamp-Voosen. (1993). Predictive Models for the
Breeder Genetic Algorithm: I. Continuous Parameter Optimization. Evolutionary
Computation, 1 (1), pp. 25-49.

[61] Nordin P. and W. Banzhaf. (1997). An On-Line Method to Evolve Behavior and
to Control a Miniature Robot in Real Time with Genetic Programming: Adaptive
Behaviour, 5 (2), pp.107–140.

[62] Paul R.P., B. Shimano & G.E. Mayer. (1981). Kinematic Control Equations for
Simple Manipulators. IEEE Transactions on Systems, Man, and Cybernetics. Vol.
SMC-11, No.6, June 1981.

[63] Perkins S. (1998). Incremental Acquisition of Complex Visual Behaviour using
Genetic Programming and Shaping, PhD thesis, University of Edinburgh, UK, Dec
1998.

[64] Pohlheim H. and P. Marenbach.(1996). Generation of structured process models
using genetic algorithms. In T. Fogarty, editor, Proc. AISB'96 Workshop on
Evolutionary Computing, volume 1143 of Lecture Notes in Computer Science, pages
102-109. Springer-Verlag.

[65] Rechenberg, I. (1973) Evolutionsstrategie: Optimierung Technischer Systeme
nach Prinzipien der Biologischen Evolution. Frommann-Holzboog, Stuttgart.

References 182

[66] Rosca J.P. (1995). An Analysis of Hierarchical Genetic Programming. TR 566,
Computer Science Dept., University of Rochester, March 1995.

[67] Roth, Zvi S., Benjamin W. Mooring and Bahram Ravani. (1987). An Overview
of Robot Calibration. IEEE Journal of Robotics and Automation, Vol. RA-3, No.5,
377-385, October 1887.

[68] Schröer K. (1993) Theory of kinematic modelling and numerical procedures for
robot calibration. Robot Calibration, eds. R. Bernhadt and S.L. Albright, pp. 157-
195, Chapman & Hall, London.

[69] Schwefel, H.-P. (1981) Numerical Optimization of Computer Models. John
Wiley & Sons, New York.

[70] Shamma J.S. and D.E. Whitney. (1987). A Method for Inverse Robot
Calibration. Transactions of the ASME Journal of Dynamical Systems,
Measurement and Control, Vol.109, pp. 36-43.

[71] Spears, William, M., K. A. De Jong, T. Baeck, D. Fogel, and H. de Garis
(1993). An Overview of Evolutionary Computation. In Proceedings of the European
Conference on Machine Learning, v667, 442-459.

[72] Stäubli: Unimation SA. (1992). VAL II command reference manual.

[73] Stone H.W. (1987). Kinematic Modelling, Identification and Control of Robotic
manipulators. Kluwer Academic Publisher, New York.

[74] Stroustrup, Bjarne. (1997). The C++ Programming Language (3rd edition).
Addison Wesley Longman, Reading, MA.

[75] Unimation. (1986). Equipment Manual 398Z1, UNIMATE PUMA Mark III –
VAL II Robot, 700 Series, Models 761/762. Unimation Ltd. Telford, UK.

[76] Vincze M., K.M. Filz, H. Gander, J.P. Prenninger and G. Zeichen. (1994). A
Systematic Approach to Model Arbitrary Non Geometric Kinematic Errors.
Advances in Robot Kinematics and Computationed Geometry, 129-138, Kluewer
Academic Publishers, Netherlands.

[77] Vincze M., K.M. Filz, H. Gander & J.P. Prenninger. (1996) . A Systematic and
Extendible Model for Arbitrary Axis Configurations. International Journal of Flexible
Automation and Integrated Manufacturing 3(2), pp. 147-164.

[78] Vincze M. J.P Prenninger and H. Gander. (1994) A laser tracking system to
measure position orientation of robot end effectors under motion. International
Journal of Robotics Research, 13, pp. 305-314.

[79] Vincze M., S. Spiess, M. Parotidis and M. Götz. (1999). Automatic Generation
of Non-Redundant and Complete Models for Geometric and Non Geometric Errors
of Robots. International Journal of Modelling and Simulation 19(3), pp. 236-243.

References 183

[80] Whitley, D. (1989). The GENITOR Algorithm and Selection Pressure: Why
Rank-Based Allocation of Reproductive Trials is Best. In Schaffer, J.D. (Ed.),
Proceedings of the Third International Conference on Genetic Algorithms (ICGA3),
pp. 116-121. San Mateo, CA. Morgan Kaufmann.

[81] Whitney, D.E., C.A. Lozinski and J.M. Rourke. (1986). Industrial Robot
Forward Calibration Method and Results. Journal of Dynamic Systems,
Measurement, and Control, Vol. 108, pp. 1-8.

[82] Workspace 4, User Guide Manual, Robot Simulations Ltd, 1998.

[83] Wu C. (1984). A kinematic CAD tool for the design and control of a robot
manipulator. International Journal of Robotics Research, 3, pp. 58-67.

[84] Zhuang H., Z.S. Roth and F. Hamano. 1992. A Complete and Parametrically
Continuous Kinematic Model for Robot Manipulators. IEEE Transactions on
Robotics and Automation , Vol.8, No.4.

[85] Zhong X., j. Lewis and F.L. N-Nagy. (1996) Inverse Robot Calibration Using
Artificial Neural Networks. Engineering Applications of Artificial Intelligence,
Vol.9, No.1, pp. 83-93. Elsevier Science Ltd.

