
Implementing the 2D square lattice Boltzmann method

in Matlab

René Fink

Wismar University of Applied Sciences

Research Group Computational Engineering and Automation

September 29, 2006

Abstract

In this paper, a Matlab implementation of the 2D square lattice Boltzmann BGK method

is presented. As an application example, the cavity flow problem from Hou et al is cho-

sen. The lattice Boltzmann method is explained shortly followed by a detailed discussion of

implementational aspects. The complete program code is attached in the appendix.

1 Introduction

Today, the lattice Boltzmann method (LBM) is very common in simulation domains, especially

due to its high potential for parallel processing. Despite its popularity, LBM novices are often

overextended since the standard literature ([1, 2]) is rather theoretical and without implementa-

tional hints. In the authors opinion, the easiest entrance to LBM can be gained by examination

of reference implementations for the famous cavity flow problem by Hou et al ([1]). Such im-

plementations are widely available for Fortran or C but hardly exist for Matlab. Since Matlab

provides data parallel operations, examination of such reference implementations should be par-

ticularly easy. Existing Matlab LBM implementations are rather complex and do not concern the

cavity flow benchmark.

Therefore, a Matlab reference implementation for 2D square LBM and the cavity flow prob-

lem is discussed in this paper. The implementation is based on the C reference implementation

by Krafczyk ([3]). The complete program code is listed in Appendix A.

2 2D square lattice Boltzmann method

The purpose of the lattice Boltzmann method is to simulate fluid behaviours in complex geome-

tries efficiently in parallel. Traditional fluid simulations, which are based on numerical solutions

of the Navier Stokes equations have limited parallel potential and can hardly handle complex

1

geometries. The lattice Boltzmann method is derived from the lattice gas automata (LGA), a

cellular automata approach which considers single particles on lattice nodes. In contrast to LGA,

LBM deals with distribution function values instead of single particles. The exact denomination

for the following described method is lattice Boltzmann BGK method (LBGK), caused by the

special collision operator being intruduced by Bhatnager, Gross and Krook in 1954.

In 2D square LBM, a square lattice with unit spacing is used. Each node has eight nearest

neighbours being connected by eight links (see Fig. 1). Particles on nodes move along the axes

with discrete speed |e| = 1 and along the diagonals with speed |e| =
√

2. Furthermore, non

moving particles with speed |e| = 0 are allowed. The occupation of particles is represented by

the single-particle distribution function fi(x, t), where i indicates the velocity direction of the

particle. The distribution function fi(x, t) represents the probability to find a particle at node x

and time t with velocity ei. The lattice Boltzmann BGK equation is:

fi(x+ ei, t+ 1) = fi(x, t)−
1

τ
[fi(x, t)− f

(0)
i

(x, t)] (1)

where the left hand side represents the particle propagation term and the right hand side the

particle collision term. For particle collision, the function f
(0)
i

(x, t) represents the equilibrium

distribution and τ the single relaxation time. The density per node ρ and the macroscopic velocity

u are defined by:

ρ =
∑

i

fi (2)

u =
1

ρ

∑

i

fiei (3)

The equation for the equilibrium distribution is:

f
(0)
i

= aρ[1 + 3(eiu) +
9

2
(eiu)

2
−

3

2
|u|2] (4)

whith a = 1
9

for non moving particles, a = 4
9

for particles moving along the axes and a = 1
36

for

diagonal moving particles. The relaxation time τ can be obtained from the viscosity ν by:

τ =
6ν + 1

2
(5)

In each time step, two operations have to be performed: collision and propagation. For

the collision step, the right hand side of Equation 1 is evaluated. Hereby, the type of cells (or

nodes) must be considered which can be either wall cells, fluid cells or driving (evocation) cells.

On fluid cells, the distribution function values are transformed into density and macroscopic

velocity following Equation 2 and 3. Subsequently, the equilibrium distribution function value

is evaluated by Equation 4. Finally, the distribution function value is updated by the right hand

side of Equation 1. On driving cells, distribution function values are only transformed into

density. Macroscopic velocities on driving cells are set to pre-defined constant values. Again,

the equilibrium distribution function value is evaluated by Equation 4 but in this case, the updated

2

Figure 1: Nearest neighbour links of a lattice node

distribution function value corresponds to the equilibrium value. On wall cells, a simple bounce-

back rule is applied in which every particle is reflected to its opposite direction.

For the propagation step, distribution function values move to their linked cells by keeping

their velocities. The simulation loop is terminated when a steady state is reached, which can be

indiced by certain criteria.

3 Matlab Implementation

For the Matlab implementation of the LBM, the lid-driven cavity flow problem defined by Hou

et al ([1]) was chosen. In this benchmark case, the flow of an incompressible liquid enclosed in

a square cavity is simulated. The flow is driven by a constant stream on the top boundary.

Since a certain example was implemented, there are two program parts: model part and sim-

ulator part. The model part contains geometry settings of the cavity, velocity settings of driving

cells and definition of initial conditions. The simulator part contains definitions of simulator-

specific variables and the LBM code itself being enclosed in the simulation loop. In further

sections, there is no distinction between model and simulator part since the programmer’s view

is in focus there.

The implementation is not focussed on performance but on understandability. Therefore,

some operations are performed which are not necessary but increase both readability and com-

pactness of the code.

3.1 Data structures and initialization

In line 13–27, experiment parameters are set. Hereby, the number of nodes and iterations can

be specified in nx, ny and iterations. The geometry of the cavity is given by a matrix

geometry with size [ny,nx]. The type of cells is specified in geometry by either 0 (fluid

cells), 1 (wall cells) or 2 (driving cells). The initial density and the driving velocity on the top

boundary are given by the scalars rho 0 and u 0. Finally, the Reynolds number is specified by

Re affecting viscosity and relaxation which are stored in viscosity and tau. Taken from

[3], the formula for viscosity in dependency on lattice size n (n = nx = ny), driving velocity u0

3

and Reynolds number Re is:

ν =
(n− 1)u0

Re
(6)

In line 30, helper variables for distribution function value access are defined. These defini-

tions imply the following discrete microscopic velocities ei:



e1 e2 e3 e4 e5 e6 e7 e8 e9


=

(

0 1 0 −1 0 1 1 −1 −1
0 0 −1 0 1 1 −1 −1 1

)

(7)

In line 36–41, variables used in the simulation loop are allocated. Distribution function values

are arranged in a matrix f with size [nx*ny,9] where each row represents one cell while

each column represents one discrete velocity or link to neighboured node. In the same way, the

matrix feq stores equilibrium distribution function values. Macroscopic density and velocities

are stored in vectors rho, ux and uy, each with size [nx*ny,1], so each row represents one

cell. Finally, a variable usqr is defined, storing helper values for later equilibrium evaluations.

In line 44–46, distribution function values are set to initial values following Equation 4,

assuming zero macroscopic velocities on t = 0. The last step before the simulation loop (line

49–51) is to store the indices of wall cells, fluid cells and driving cells in vectors WALL, FL and

DR for data parallel evaluations during the simulation loop.

3.2 Simulation Loop

Line 53–109 contain the simulation loop. The loop runs for a fixed number of iterations, so no

steady state criteria are checked. As described in section 2, the simulation loop is divided into

two steps: collision and propagation, which are discussed in the following subsections.

3.2.1 Collision step

Collision step evaluations start in line 58–60, where the density and macroscopic velocities for

all cells are calculated following Equation 2 and 3. In line 63 and 64, constant velocities for

driving cells are set to u 0 for horizontal direction and 0 for vertical direction. In line 65, values

for the helper variable usqr are evaluated, representing the term |u|2 in Equation 4.

In line 68–76, equilibrium distribution function values of all cells are evaluated following

Equation 4. Since discrete velocities ei are implicit, expressions for individual velocities (or

directions) must be given explicit instead of using Eq. 4 once.

In line 80–88, distribution function values are updated according to cell types. Wall cells

are updated in line 80 by application of the bounce back rule. The usage of helper variables

for directions clearly shows the reflection of distribution function values in opposite directions.

Driving cells are updated in line 84 by just replacing the old distribution function values by

equilibrium values. Fluid cells are updated in line 88 following the right hand side of Equation

1.

4

3.2.2 Propagation Step

For the propagation step, the matrix of distribution function values (f) is transformed into an

array of size [ny,nx,9] by the Matlab function reshape() (line 94). The transforma-

tion allows easy and understandable programming of propagation in certain directions. In line

97–104, propagation in each direction is performed by data parallel expressions. For example,

distribution function values for particles which move in east direction (line 97) are right shifted

for one column. In line 107, distribution function values are rearranged into a matrix of size

[nx*ny,9] for the next iteration step.

3.3 Visualization

Visualization operations are placed in line 112–118. In line 112, the magnitute of latest macro-

scopic velocity values is evaluated and scaled by driving velocity u 0. The result of the operation

is stored in a vector u of size [nx*ny,1]. In line 113, the vector u is transformed into a matrix

of size [ny,nx] by usage of reshape(). The purpose of this transformation is the necessity

of 2D data representation used as input for subsequent visualization operations.

In line 114, macroscopic velocity values are displayed in a picture using the Matlab function

imagesc(). This function constructs a bitmap picture from a double matrix, where the matrix

values are scaled to use the full colormap. In line 115, the aspect ratio of the plot is corrected,

while in line 116, a colorbar for reading magnitude values is added to the plot. In line 117, a plot

title is added containing the number of iterations performed. A visualization plot for a lattice

with 257x257 cells after 350000 iterations and Reynolds number 1000 is shown in Figure 2.

4 Conclusion

In this paper, a Matlab reference implementation for 2D square lattice Boltzmann BGK method

was presented. As an application example, the famous lid-driven cavity flow problem by Hou

et al was used. Using this implementation, Matlab users can gain an easy entrance to the lattice

Boltzmann method beside the standard literature.

Containing only 59 lines of code, this implemementation is very compact. Reasons for this

compactness are partly data parallel operations but also the acceptance of unnecessary evalua-

tions. For example, evaluation of equilibrium distribution function values in wall cells is not

necessary and keeps some potential for speed optimizations.

References

[1] S. Hou, Q. Zou, S. Chen, G. D. Doolen, A. C. Cogley: Simulation of Cavity Flow by the

Lattice Boltzmann Method. Journal of Computational Physics, Vol. 118, Issue 2, p. 329-347,

05/1995.

5

Relative macroscopic velocity magnitude (u/u
0
) after 350000 iterations

0 50 100 150 200 250

50

100

150

200

250

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2: Simulation results visualization

[2] S. Chen, G. D. Doolen: Lattice Boltzmann method for fluid flows. Annual Review of Fluid

Mechanics 30, p. 329-364, 1998.

[3] M. Krafczyk: Lattice-BGK TUTORIAL. Version 1.0, 03/2001. http://www.lstm.

uni-erlangen.de/lbm2001/download/LBGK_tutorial.tgz

A Program code

1 % 2D square Lattice Boltzmann Method reference implementation

2 %

3 % Problem description can be found in:

4 % Hou et al.: Simulation of Cavity Flow by the Lattice Boltzmann Method.

5 % Journal of Computational Physics, Vol. 118, Issue 2, 05/1995.

6 %

7 % Author: Rene Fink, Wismar University of Applied Sciences, Research Group

8 % Computational Engineering and Automation

9 %

10 % Date: 2006-09-26

11

12 % begin experiment parameter settings

6

13 nx=33; % number of grid points in x direction

14 ny=nx; % number of grid points in y direction

15

16 iterations=2000; % number of iterations

17

18 geometry=ones(ny,nx); % wall cells (geometry==1)

19 geometry(2:ny-1,2:nx-1)=0; % fluid cells (geometry==0)

20 geometry(1,:)=2; % driving cells on the top boundary (geometry==2)

21

22 rho_0=1; % initial density

23 u_0=0.1; % driving velocity on the top boundary

24

25 Re=1000; % Reynolds number

26 viscosity=(ny-1)*u_0/Re % kinematic viscosity (0.005 <= viscosity <= 0.2)

27 tau=(6*viscosity+1)/2; % relaxation time

28 % end experiment parameter settings

29

30 C=1;E=2;S=3;W=4;N=5;NE=6;SE=7;SW=8;NW=9; % helper variables for directions

31 % directions are indiced as follows:

32 % 9 5 6

33 % 4 1 2

34 % 8 3 7

35

36 f=zeros(nx*ny,9); % distribution function values of each cell

37 feq=zeros(nx*ny,9); % equilibrium disribution function value

38 rho=zeros(nx*ny,1); % macroscopic density

39 ux=zeros(nx*ny,1); % macroscopic velocity in x direction

40 uy=zeros(nx*ny,1); % macroscopic velocity in y direction

41 usqr=zeros(nx*ny,1); % helper variable

42

43 % begin set initial distribution function values

44 f(:,C)=rho_0*4/9;

45 f(:,[E S W N])=rho_0/9;

46 f(:,[NE SE SW NW])=rho_0/36;

47 % end set initial distribution function values

48

49 FL=find(geometry==0); % create indices of all fluid cells

50 WALL=find(geometry==1); % create indices of all wall cells

51 DR=find(geometry==2); % create indices of all driving cells

52

53 for i=1:iterations

54

55 % begin collision step --

56

57 % begin distribution function value transformation to macroscopic values

58 rho(:)=sum(f,2); % macroscopic density

59 ux(:)=(f(:,E)-f(:,W)+f(:,NE)+f(:,SE)-f(:,SW)-f(:,NW))./rho; % x velocity

60 uy(:)=(f(:,N)-f(:,S)+f(:,NE)+f(:,NW)-f(:,SE)-f(:,SW))./rho; % y velocity

61 % end distribution function value transformation to macroscopic values

62

63 ux(DR)=u_0; % set x velocity for driving cells

64 uy(DR)=0; % set y velocity for driving cells

65 usqr(:)=ux.*ux+uy.*uy; % calculate helper variable value

66

67 % begin equilibrium distribution function value calculation

68 feq(:,C)=(4/9)*rho.*(1-1.5*usqr);

69 feq(:,E)=(1/9)*rho.*(1+3*ux+4.5*ux.ˆ2-1.5*usqr);

70 feq(:,S)=(1/9)*rho.*(1-3*uy+4.5*uy.ˆ2-1.5*usqr);

71 feq(:,W)=(1/9)*rho.*(1-3*ux+4.5*ux.ˆ2-1.5*usqr);

72 feq(:,N)=(1/9)*rho.*(1+3*uy+4.5*uy.ˆ2-1.5*usqr);

73 feq(:,NE)=(1/36)*rho.*(1+3*(ux+uy)+4.5*(ux+uy).ˆ2-1.5*usqr);

74 feq(:,SE)=(1/36)*rho.*(1+3*(ux-uy)+4.5*(ux-uy).ˆ2-1.5*usqr);

75 feq(:,SW)=(1/36)*rho.*(1+3*(-ux-uy)+4.5*(-ux-uy).ˆ2-1.5*usqr);

76 feq(:,NW)=(1/36)*rho.*(1+3*(-ux+uy)+4.5*(-ux+uy).ˆ2-1.5*usqr);

77 % end equilibrium distribution function value calculation

7

78

79 % begin wall cell f calculation (bounce back)

80 f(WALL,[C E S W N NE SE SW NW])=f(WALL,[C W N E S SW NW NE SE]);

81 % end wall cell f calculation (bounce back)

82

83 % begin driving cell f calculation

84 f(DR,:)=feq(DR,:); % distribution function value = equilibrium value

85 % end driving cell f calculation

86

87 % begin fluid cell f calculation

88 f(FL,:)=f(FL,:)*(1-1/tau)+feq(FL,:)/tau;

89 % end fluid cell f calculation

90

91 % end collision step --

92

93 % begin propagation step --

94 f=reshape(f,[ny,nx,9]); % transform f for easy propagation

95

96 % begin particle propagation

97 f(:,2:nx,E)=f(:,1:nx-1,E);

98 f(2:ny,:,S)=f(1:ny-1,:,S);

99 f(:,1:nx-1,W)=f(:,2:nx,W);

100 f(1:ny-1,:,N)=f(2:ny,:,N);

101 f(1:ny-1,2:nx,NE)=f(2:ny,1:nx-1,NE);

102 f(2:ny,2:nx,SE)=f(1:ny-1,1:nx-1,SE);

103 f(2:ny,1:nx-1,SW)=f(1:ny-1,2:nx,SW);

104 f(1:ny-1,1:nx-1,NW)=f(2:ny,2:nx,NW);

105 % end particle propagation

106

107 f=reshape(f,[nx*ny,9]); % re-transform f for next iteration step

108 % end propagation step --

109 end

110

111 % begin display

112 u=sqrt(ux.ˆ2+uy.ˆ2)/u_0; % calculate relative macroscopic velocity magnitude

113 u=reshape(u,ny,nx); % reshape u to 2D for plotting

114 imagesc(u); % plot macroscopic velicity magnitude

115 axis(’equal’); % make display square

116 colorbar; % show color index

117 title([’Relative macroscopic velocity magnitude (u/u_0) after ’,...

118 num2str(iterations),’ iterations’]); % show plot title

119 % end display

8

